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Information technologies today can inform each of us about the best alternatives for shortest
paths from origins to destinations, but they do not contain incentives or alternatives that manage
the information efficiently to get collective benefits. To obtain such benefits, we need to have not
only good estimates of how the traffic is formed but also to have target strategies to reduce enough
vehicles from the best possible roads in a feasible way. Moreover, to reach the target vehicle reduction
is not trivial, it requires individual sacrifices such as some drivers taking alternative routes, shifts
in departure times or even changes in modes of transportation. The opportunity is that during
large events (Carnivals, Festivals, Sports events, etc.) the traffic inconveniences in large cities are
unusually high, yet temporary, and the entire population may be more willing to adopt collective
recommendations for social good. In this paper, we integrate for the first time big data resources
to quantify the impact of events and propose target strategies for collective good at urban scale.
In the context of the Olympic Games in Rio de Janeiro, we first predict the expected increase in
traffic. To that end, we integrate data from: mobile phones, Airbnb, Waze, and transit information,
with the unique information about schedules, location of venues and the expected audience for
each match. Next, we evaluate the impact of the Olympic Games to the travel of commuters, and
propose different route choice scenarios during the morning and evening peak hours. Moreover, we
gather information on the trips that contribute the most to the global congestion and that could be
redirected from vehicles to transit. Interestingly, we show that (i) following new route alternatives
during the event with individual shortest path (selfish strategy) can save more collective travel
time than keeping the routine routes (habit strategy), uncovering the positive value of information
technologies during events; (ii) with only a small proportion of people selected from specific areas
switching from driving to public transport (mode change strategy), the collective travel time can be
reduced to a great extent. Results are presented on-line for the evaluation of the public and policy
makers (www.flows-rio2016.com).

I. INTRODUCTION

There is complex relationship between transportation,
land use and the urban form. Technological innovations,
socio-demographic shifts and political decisions shape the
way people move in cities [1–6]. The amount of time
invested to move to work every day [7–10] has impor-
tant implications in the well functioning of our cities.
They affect total energy use, equity, air pollution, and
urban sprawling. Given this impact, master plans of ur-
ban transportation need to be both technically sound and
politically feasible [11–16]. This becomes a more press-
ing need when preparing for large events that unusually
stress further the use of the available infrastructures and
put at risk the overall success of the event if the planning
is poor.

In their best attempts, goals of an urban transporta-
tion plan seek to: (a) avoid long and unnecessary mo-
torized travel, (b) shift the movement of people to so-
cially efficient modes such as walking, biking, and public
transit, and (c) improve the technology and operational
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management of transportation services. To reach these
goals plans today try to promote the use of bus rapid
transit (BRT), congestion charging, or bike-sharing. But
much less is done to develop real time information plat-
forms that provide the value of choices for the social good.
Nowadays, the most popular information platforms such
as Waze or Google Transit Feeds give us individual infor-
mation about travel times but do not take into account
global information to better govern the system. One lim-
itation may be that the main set of tools and skills in ur-
ban transportation planning were developed in the sev-
enties, before the information age, and relied on the re-
sults of travel diaries, from which estimating urban travel
demand could be a very time consuming task. Second,
even if we could estimate the best collective solutions, ur-
ban transportation faces the “tragedy of the commons”.
Meaning that streets are a shared-resource system where
individual users act independently according to their own
self-interest behaving contrary to the common good of all
users by depleting that resource through their collective
action. However, there may be instances, when the pop-
ulation may be more prone to take actions for collective
benefits.

This may be the case during large urban events, which
gather people from different places. These represent
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important changes in routine activities of the popula-
tion. Large-scale events happen every year around the
world, such as Olympic games, world expositions, con-
certs, pilgrimage, etc. These popular events attract mas-
sive of participants or tourists traveling to one destina-
tion, thereby produce great opportunities also huge pres-
sures to transportation and the environment, especially
for cities with high population [17, 18]. Past research has
tried to estimate the impact of events to the economy and
air quality of the host city [19–21]. In the context of traf-
fic management during large-scale events, previous efforts
focus on ensuring the travel of participants efficient and
unimpeded. However, the disturbances to the travel of
the local population are not taken into account. Tradi-
tionally, the government seeks to reduce motorized trav-
els globally by ending plate number, but without making
smarter use of the travel information [22, 23].

In this work, we evaluate the impact of large-scale
events to the traffic in the host city and strategies to
overcome it. Especially, we aim at understanding the
change of travel demand when large-scale events come,
and addressing reasonable demand management strategy
to mitigate the traffic congestion during events. We take
the Summer Olympics 2016 as an example to study the
impact of large-scale events to the travel of local pop-
ulation. The Summer Olympics will be held in Rio de
Janeiro, which is one of the most congested cities in the
world according to the TomTom’s report on global traffic
congestion [24]. A study released by the Industry Feder-
ation of the State of Rio de Janeiro (FIRJAN) confirms
that traffic congestion has tremendous economic costs as
well. The study found that congestion costed the cities of
Rio and São Paulo roughly USD 43 billion in 2013 alone.
The loss amounts to about 8% of each metropolitan
area’s Gross Domestic Product (GDP). This is greater
than the estimated budget for transport capital invest-
ment in Brazil, Mexico, and Argentina combined. Traffic
congestion originates from the imbalanced development
of travel demand of vehicles and the road network sup-
ply [25, 26]. For a booming city, the traffic congestion
can be mitigated through constructing more roadways
and transit infrastructure. But for mature urban areas
like Rio, opportunities for further investments in trans-
portation infrastructure are often limited [27].

As TomTom reported, the commuters in Rio spend
nearly 70% extra time during the peak hours in 2015.
The opening of Olympics will undoubtedly aggravate the
travel delay of the local population as the increment
of demand and reduction of supply. The International
Olympic Committee (IOC) predicts 0.48 million tourists
in Rio for Olympics, which is about 7.5% of Rio popula-
tion. To understand the impact of Olympics, we estimate
the person and vehicle travel demand of local popula-
tion using mobile phone data, also known as call detail
records (CDRs) combined with Waze data (see SI for
the description). The travel time of commuters are esti-
mated during the morning and evening peak hours and
compared with Google maps in the same hour. During

the Olympics, we predict the origin and destination of
tourists using the Olympic Games’ schedule, information
of venues, Airbnb properties and hotels, and then split
the taxi demand of tourists out from the total demand
in each hour. Afterward, the taxi demand together with
the local vehicle demand are assigned to the road net-
work under three routing scenarios: habit, selfish, and
altruism. We then predict the travel time of tourists and
evaluate the increment of local commuters’ travel time
under these routing scenarios in the peak hours. In ad-
dition, to mitigate the traffic congestion within a short
time, we propose a reasonable and easily reached mode
change strategy, which in essence target the best frac-
tion of travelers that could change from driving to metro
and BRT. To this end, we uncover the origin destination
pairs with most contribution to the collective travel time
and consider the overall benefit of taking one vehicle out
of that pair. Finally, we demonstrate the effectiveness
of the proposed demand management strategy by com-
paring with a benchmark program that reduces the same
number of vehicles randomly distributed.

II. RESULTS

A. Travel Demand Estimation

Travel demand estimation before the Olympics.
In previous studies, we have estimated the average hourly
travel demand successfully using CDRs from mobile
phones (include the timestamp and location for every
phone call or SMS of innominate users), census records,
and surveys data in Rio de Janeiro [16, 28–30]. In the
travel demand estimation framework, the stay locations
of each user are recognized and labeled as home, work, or
other. Consequently, we classify the trips of each person
into three cases: home-based-work (commuting), home-
based-other, and non-home-based. After aggregating the
trips from CDRs and the census data, we could get a
reasonable origin-destination (OD) matrix with different
travel purposes. Finally, the estimated person (vehicle)
demands are 1.69 (0.44) million and 1.61 (0.41) million
during the morning and evening peak hour on weekdays
in Rio municipality, respectively (see Supplementary Fig-
ure 1 and Note 1). Afterward, we can extend the vehi-
cle demand to variations of five weekdays, with the help
of records from Waze Mobile [31]. Waze provided the
records of wazers for 7 months in 2015. The data sets in-
clude the location of user, timestamp, level and duration
of jam, average speed, and length of the queue, etc. We
relate the average length of the queue in the road net-
work (estimated with Waze data) as proportional to the
total vehicle demand in this hour (estimated with mo-
bile phone data). Consequently, we extend the 24-hour
demand estimated by CDRs to 5 weekdays according to
the different average queue length on different weekdays
(see Supplementary Note 2).
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Travel demand estimation during Olympics. To
build the OD matrix during Olympics, the two issues to
be addressed are the new locations of origins and desti-
nations and the flow between them. To facilitate this,
we only consider the flow from spectators’ residences to
venues. Figure 1a represents the location of 12 Olympic
venues, the distribution of Airbnb properties and hotels,
the metro and the BRT line in Rio. Most of the tourists’
residences are distributed in the southeast coastal area.
As planned by the municipal government, most venues
are located around the metro or BRT stations, which
makes public transportation quite convenient most of the
time.

The person travel demand equals to the sum of local
demand before Olympics and the number of people go-
ing to stadiums from their residences in the same time
interval. To achieve this, the number of spectators arriv-
ing each venue is estimated hourly based on the Olympic
game schedule and capacities of venues. Figure 1b shows
the results on weekdays during Olympics. The maxi-
mum number of spectators is nearly 0.1 million, which
is considerable in contrast to the number of commuters
in peak hour. To determine how many spectators depart
from hotels to venues and when, we make the following
assumptions: (i) 30% spectators will departure 1 hour
ahead; 40% spectators will departure 2 hours ahead; the
others will departure 3 hours ahead. (ii) Despite a part
of spectators are from local, as the distribution of Airbnb
properties is similar to the distribution of local popula-
tion, consequently, we consider all of the spectators are
from Airbnb properties and hotels, and name them as
tourists in the rest of the paper. To estimate the origin
of all tourists per hour, we assign all of the spectators to
Airbnb properties and hotels according to their capacities
(see Supplementary Note 3).

To estimate the additional vehicle demand during
Olympics, we estimate the travel mode of tourists in each
hour, distributing them among public transportation or
taxi. Specifically, we split the travel mode of tourists
into 4 categories, e.g. walking and Metro/BRT, bike and
Metro/BRT, taxi, and bus, depending upon the following
features: distance to metro/BRT stations, travel time,
the number of mode transitions. Figure 2a shows the
results of travels by mode on August 8 (Monday). As ex-
pected, most tourists choose Metro/BRT because both
of their hotels and venue are near to Metro/BRT sta-
tions. Nonetheless, during the daytime, we estimate that
about 10, 000 tourists will choose taxi to the venue per
hour, which will produce considerable additional vehicle
demand compared with before the Olympics (see Supple-
mentary Figure 2).

Figure 2b shows the total person and vehicle demand
on 10 weekdays from August 8 to 19. The vehicle de-
mand equals to the local vehicle demand from CDRs plus
the taxi flow by tourists. The morning peak is around
9:00 and the evening peak is around 18:00. During the
peak hour, about 27% of the population are traveling, the
number increase about 60, 000 during Olympics. Conse-

quently, traffic in the city will be more congested, espe-
cially for the path from tourists’ residences to venues.

B. Travel time estimation and impact analysis

Before Olympics, we assign the drivers to the routes
with the shortest paths. This is a common approxima-
tion to the complex problem of route selection, in which
the travel routes and times are estimated by assigning the
local demand to the road network using an assignment
model - the user equilibrium (UE) model, which means
no driver can unilaterally reduce his/her travel time by
changing routes. In our implementation of UE model, the
travel times of links depend on the volume-over-capacity
ratio (VoC) with the Bureau of Public Roads (BPR) func-
tion:

te(ve) = fs

[
1 + α

(
ve
Ce

)β]
× tfe (1)

where te(ve) is the average travel time on link e; tfe is
the free flow travel time on this link; fs is a scale factor
and not less than 1. The coefficients in BPR are cali-
brated using field data collected by surveillance cameras
as fs = 1.15, α = 0.18, β = 5.0. We compared our
estimated travel times of top commuter OD pairs with
Google map in the same hour and found good agreement
(see Supplementary Figure 1, Figure 3, and Note 4).

The Olympics will disturb the routes of a fraction of
travelers, especially those with routine routes congested
by the trips to the games and the reduced capacity of the
Olympic lanes. Olympic lanes will be dedicated to ath-
letes by separating a lane from some roads, while tourists
and local travelers can not use the reserved lane. In our
calculations we take into account this new reduced ca-
pacity. We explore the effects of three distinct behavioral
choices: (i) habit : All travelers will follow their routine
travel routes even if this route is having more conges-
tion during the Olympics; (ii) selfish: travelers have good
knowledge of the traffic situation each of them will choose
the route with shortest travel time, which follows the UE
model; (iii) altruism: travelers are follow the travel routes
for the best case scenario for the total travel time. In this
case, the travel route of each traveler is assigned via sys-
tem optimization. Under these three scenarios, the traffic
states on the roads are diverse under the three scenarios
(see Supplementary Figure 4).

To access the impact of different routing strategies dur-
ing the Olympics, we predict the travel time of tourists
and local commuters under the three ideal scenarios. Fig-
ure 3a and 3b illustrate the box plot of distribution of
tourists’ travel time during the morning and evening peak
hour on 10 weekdays, respectively. The habit scenario
always perform worse than selfish and altruism as local
travelers will not give their way to tourists even they are
suffering more serious congestion and could find shorter
path. Selfish and altruism scenarios, by contrast, allow
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tourists on August 8. (b) The predicted travel demand by total number of people and vehicles during Olympics on 10 weekdays
from August 08 to 19. The person demand estimates are the aggregation of local travelers and tourists going to venue from
hotel in the same hour. The vehicle demand is the aggregation of local vehicle demand and taxi used by tourists.

travelers choose their route toward their own or others’
benefit. To evaluate the impact of Olympics to local com-
muters, we calculate the average percentage increment of
commuter’s travel time as

Icomm =

∑
od∈OD (tOlymod − tbeforeod )f cod∑

od∈OD t
before
od f cod

× 100% (2)

where od is one of all the OD pairs; f cod refers to the num-

ber of commuters; tOlymod and tbeforeod refer to the travel
time in the od route before and during Olympics, re-
spectively. Icomm can be negative as selfish or altruism
allows some commuters find a shorter path than before.
Figure 3c and 3d depict the distribution of commuters
travel time in a log scale on weekdays. More people have

larger travel times (Icomm > 20%) under the habit sce-
nario than under selfish or altruism scenarios. More-
over, in contrast with selfish, altruism raises the number
of commuters suffering high percentage increment but
earns remarkable benefits for more commuters. This is
because of the essence of altruism: while a small fraction
of people sacrifice with longer travel times via detour to
less popular routes [16], the overall saving in travel time
is larger. We find interesting contrasts to studies made
during commuting routines in Rio [16], here we see that
the difference in travel-times between the altruism and
selfish are smaller, but both are in strong contrast to the
habit scenario. This shows the clear benefits of informa-
tion technologies to help decrease congestion during the
events.
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Figure 3e and 3f illustrate the average percentage in-
crement per day. The percentage increment of the habit
scenario is always larger, followed by selfish and altruism.
Furthermore, certain peak hours are subject to most se-
rious delay, e.g., morning peaks on August 09 and 16,
evening peaks on August 12, 15, and 19.

However, in practice, the most plausible travel behav-
iors of travelers is between habit and selfish, which means
a fraction of people change path toward shortest travel
time, others keep their routine routes. To examine such
intermediate state, we define a selfish parameter Λ signi-
fies the fraction of selfish travelers. Λ ranges from 0 to
1, where 0 equals to the habit scenario, and 1 equals to
the selfish scenario. Specifically, the travelers in each OD
pair seek their shortest travel time with a percentage of Λ
and their routes need to be reassigned, others are follow-
ing their habit routes. For each link, it can be occupied
by habit flow and selfish flow. The habit flow is calcu-
lated as vhabite · (1 − Λ), where vhabite is the link volume
under habit scenario. The selfish flow vselfishe is obtained
by assigning the selfish demand using UE model. There-
fore, the VoC is calculated by:

V oCe =
vhabite (1− Λ) + vselfishe

Ce
(3)

and the BPR function in Equation 1 is used to estimate
the travel time on each link. For each OD trip, the total
commuting time also contains two parts: (1−Λ)·f cod·thabitod

and Λ · f cod · t
selfish
od , where thabitod is the travel time under

habit scenario and tselfishod is the shortest travel time un-
der selfish parameter Λ. Figure 3g and 3h indicate the
average increment for commuters on each weekday with
different selfish parameters. The increment percentage
decreases with the increase of Λ, which indicates that
the impact of Olympics reduces if more travelers are self-
ishly looking for their best route as opposed to using their
routine routes.

Most of the transportation planning strategies de-
signed to reduce motorized vehicles are applied indepen-
dently of origin and destination of the travelers, in con-
sequence they are very costly in terms of the percentage
of car reduction (usually 10% of the cars selected by end-
ing digit in the plates), to achieve very modest benefits in
travel times, usually of the order of 2% [32]. Based on the
estimation of travel delays of commuters under the self-
ish scenario, we explore the spatial impact of Olympics to
commuters in relation to their living and working places.
To achieve this, we average the percentage increment of
commuter trips to origin and destination zones. Results
indicates commuters who live in the northeast of Rio suf-
fer serious impact in the morning peak hour (see Supple-
mentary Figure 5). In addition, people working in the
eastern coastal area suffer travel delays the most in both
of the morning and evening peak hour. We also find the
densely populated Governador Island always suffer crit-
ical delay as one of the two bridges between the island
and mainland are set as Olympic lanes.

To facilitate the policy making, we visualize the travel
time before and during Olympics all over the metropoli-
tan area of Rio, as shown in Figure 4. From the visual-
ization, travelers can explore their travel time increment
by Olympics during the peak hours. Besides, the plat-
form provides the travel time under different scenarios,
which helps the travelers and policy makers realize the
collective benefits generated by the travel demand man-
agement strategy.

C. Informed mode change strategy

Aiming to mitigate the traffic congestion during
Olympics, the government of Rio de Janeiro has made
great efforts, such as enhancing the capacity of the traf-
fic network, extension of the public transportation infras-
tructure, including construction of new metro and BRT
lines. However, considering the massive economic and
time cost of construction, in this work we propose an ef-
ficient strategy to manage the travel demand with the
present transport infrastructure, concretely, reducing a
fraction of vehicle demand toward relieving congestion
during the peak period to the most extent.

With the purpose of selecting the critical trips to re-
duce, we quantitatively evaluate the contribution of each
OD trip to the collective travel time. Namely, we con-
sider the following question: how much time will the col-
lective save if we take one vehicle out from the existing
demand? We represent the road network as a directed
acyclic graph G(N , E), where N is the set of nodes, and
E is the set of directed edges. After assigning the travel
demand to the road network, each road segment e ∈ E
is associated with volume ve and travel time during traf-
fic te. First, for a road segment, we estimate the travel
time saving of others if we reduce one vehicle using the
marginal edge cost, which is the partial gradient of total
travel time over the current volume. For each edge, we
have:

MCe =
∂(vete)

∂ve

= te(ve) + fsαβ

(
ve
Ce

)β
× tfe

(4)

where edge travel time te is calculated using the cali-
brated BPR function in Equation 1. The marginal edge
cost MCe consists of two terms: the first one te reflects
the travel time of one vehicle and the second would be the
saved travel time by other vehicles in the same edge. The
travel route pi,j of each OD trip (i, j) is the set of edges
on the path. Consequently, we calculate the marginal
path cost of OD pair (i, j) as the sum of MCe for the
edges traversed by the path:

MCp =
∑
e∈E

δepMCe (5)

where δep is the delta function, which is 1 if edge e is
traversed by path p, 0 otherwise.
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FIG. 4. Interactive visualization of travel times before the Olympics and during the Olympics via various
strategies of mobility. The purple hexagon reflects the origin of trips. The white hexagons are associated with the Google
travel time for comparison. The colors of other hexagons reflect the travel time from origin to them. Results are presented
on-line for the evaluation of the public and policy makers, see www.flows-rio2016.com.

Larger values of MCp indicate more collective travel
time would be saved if we take the trip out. Conse-
quently, a sensible strategy is to reduce the demand from
top-ranked OD pairs. To formulate a feasible strategy,
we only consider the trips which origins and destinations
are both nearby the metro or BRT stations, which means

these people could switch to public transport other than
driving. In our experiments, we examine the maximum
distance from centroid of zone to nearest station as 1km,
2km, 3km, respectively. First, we select the OD trips
in certain distance to the nearest metro or BRT station.
Then, calculate the MCp for each trip and reduce 60%

www.flows-rio2016.com
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demand from the top-ranked trips. The number of top-
ranked trips ranges from 1, 000 to 10, 000. Finally, we
reassign the remainder demand to the road network and
check the reduction of the collective travel time. As a
benchmark, we keep the same number of total reduced
trips but uniformly distribute them to all OD pairs near
Metro and BRT stations.

Figure 5a illustrates the reduction of collective travel
times as a percentage of the travel time before the strat-
egy, which approximately follows a linear relationship
with the number of reduced OD pairs. Interestingly, in
contrast to the uniform benchmark, the strategy based
on marginal costs can be more effective by a factor of five.
For example, if we reduce 60% flow from the selected 5000
OD pairs at the range of 2km, this represents 1.14% of
the total flow. In that case, the reduction in the per-
centage of collective travel time is more than 10% with
the marginal cost strategy and only 2% with the uniform
benchmark case. In addition, whether for marginal cost
strategies or uniform benchmark, different distances pro-
duce similar results for the same number of OD pairs.
However, as shown in Figure 5b, greater extent indicates
a lower demand needed to reduce. The reason is that
a greater extent provides more candidates, which leads
us to choose the OD pairs with more contribution to the
collective travel time saving.

Figure 5c presents the spatial distribution of the re-
duced demand with strategy {2km, 6000 OD pairs}. The
strategy reduces the collective travel time by 10.6% at
the expense of 1.4% decrease of the demand, and im-
prove the average speed of all vehicles from 37.08km/h
to 39.94km/h. Through the strategy, a fraction of local
commuters’ and tourists’ travel time are shorten, espe-
cially for the travelers with a long trip (see Supplemen-
tary Figure 6). Interestingly, the distribution of desti-
nations concentrates a very small area, Centro of Rio.
Meanwhile, the distribution of origins concentrates two
areas, the west end of BRT line and the west end of metro
line. Proposed strategy suggests people live in two neigh-
borhoods in the West Zone of Rio (e.g. Santa Cruz and
Paciência) and three neighborhoods in the North Zone
of Rio (e.g. Guadalupe, Marechal Hermes, and Bento
Ribeiro) switch from driving to BRT or metro line during
the morning peak hour, especially who work in Centro of
Rio. Moreover, Figure 5c gives the additional ridership
produced by the proposed demand management for each
segment of the metro and BRT line. As can be seen, the
maximum increase is 5, 000 travelers in the morning peak
hour, which is acceptable in contrast with the capacity
of metro and BRT, ∼ 30, 000 passengers per hour per
direction.

III. DISCUSSION

Mega events can greatly benefit the host city in many
aspects, such as attracting investment, stimulating econ-
omy, and attracting countless tourists, etc. Nevertheless,

it also exerts disruptions in the routine of the city. One of
the most feared costs by the population is the increase in
travel times, especially for already dense cities, which are
more likely to host the event. In the run-up to Olympics,
city planners need estimates on how the traffic will be af-
fected, in order to establish proper policies to cope with
the impact. However, the current impact evaluation on
travelers is mostly confined to qualitative studies with
anecdotal experience of events management, but we lack
of quantitative methods to support the strategies. Mostly
due to difficulties of data availability to estimate travel
demand. In this work, we present a method to estimate
urban travel demand and the time increments to com-
muters during a large event by integrating multiple and
large scale data resources. Moreover, we propose reason-
able and effective strategies to help mitigate the increase
in congestion.

As a case of study, we take the 2016 Summer Olympics
in Rio de Janeiro. The large inflow of tourists increases
the travel demand while the establishment of Olympic
lanes decreases the road network supply. The main task
is to estimate the raise in the demand-to-supply ratio
and how this will affect travel times. Fist, we estimate
the person and vehicle travel demand during Olympics
in Rio by the prediction of the number of tourists in traf-
fic and their travel mode. In particular, we can already
expect greater number of tourists are traffic during the
morning peaks of August 8th, 12th, and 15th, as well
as the evening peaks of August 12th, 15th, 16th, and
17th. By estimating the routing of travelers under three
distinct scenarios, habit, selfish, and altruism, we assess
quantitatively the impact of Olympics to commuters. We
find that the habit scenario produces the greatest travel
times, followed by selfish and altruism. For some peak
hours, the increment in the percentage of travel times
of all commuters can be up to 7% if people follow their
routine routes. The selfish scenario, which is the maxi-
mum benefit possible just changing routes, still produces
about 5% of the increment for the most affected peak
hours. This is in agreement with the magnitude of sav-
ings reported by cÇolak et al. [16] in routine conditions.
They showed that the collective travel times could be
decreased at most by 4.7% − 7.7% by routing strategies
(altruism).

In order to more effectively mitigate the overall traf-
fic congestion during the Olympics, we proposed an in-
formed mode change strategy, in contrast to uninformed
practices of restricting cars. To that end, we calculate
the contribution of each OD pair to the collective travel
time. By reducing the 1% of the total travel demand
from the zones near metro and BRT lines, the decrease
of overall travel time reaches about 9%. Wang et al. re-
ported that 1% target decrease in demand can achieve
14% and 18% decrease in travel times for San Francisco
Bay Area and Boston Area, respectively [32]. However,
the proposed countermeasures did not consider the al-
ternative travel modes. In contrast, our strategy only
targets drivers within 3km of public transportation both
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FIG. 5. Demand management results during the morning peak hour. (a) Collective travel time reduction under
different strategies. The reduction of collective travel time rise linearly over the number of reduced OD pairs. The slope of
marginal strategy equals to 1.45 × 10−3, 1.64 × 10−3, and 1.67 × 10−3 for 1km, 2km, and 3km, respectively; The slope of
uniform benchmark equals to 0.47× 10−3, 0.39× 10−3, and 0.40× 10−3 for 1km, 2km, and 3km, respectively. As can be seen,
marginal cost based strategy reduces the collective travel time with more than 3 times of uniform based strategy. (b) The
reduced demand under different strategies. In general, a greater extent produces lower demand to reduce. With the increase
of the reduced OD pairs, the difference of total reduced demand is more evident. (c) Addition ridership to Metro/BRT line
and reduced population around stations with configuration {2km, 6000 OD pairs}. The width of the metro and BRT line
reflects the increased ridership by strategy. Blue and red in different area reflect the origin and destination of reduced demand,
respectively. The deeper the color, the more the people need to switch to metro or BRT from driving.

in their origins and destination. For incentives, the gov-
ernment could set up discounts for transit and promote
ridership services between the selected communities to
metro or BRT stations.

Overall we showed that the use of information to tar-
get mode change can be the most cost-effective alter-
native to increasing capacity in transportation. This
information-based approach is convenient not only for
relieving congestion, but also has the potential favor
the use of public transport, deliver better environmen-
tal outcomes, stronger communities, and more sustain-
able cities. We have estimated how the travel demand

in each zone contributes differently to the overall con-
gestion, these results can be helpful for the palling of
routes of public transportation. In future studies, we
can calculate the reduction in emissions associated with
the improve in travel times when take one vehicle out
from the selected OD pairs. Thereby managing vehicle
demand to improve air quality. The data resources used
in our work are the byproducts of the use of commu-
nication technologies (CDRs, waze, etc) or open source
repositories (event schedule, venue property, Airbnb, ho-
tel, OpenStreetMap, etc). Consequently, the proposed
methods are portable for events in other cities. Mean-
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while, as the data resources are becoming more and more
open and abundant, our work represents a very concrete
application for demand prediction and management that
improves the urban well being.

Here we evaluated three ideal scenarios and their im-
pact over the Olympics. We expect that the most likely
routing behavior to be observed will be between habit
and selfish, meaning that only part of the population
may find their shortest route and others will follow their
habit route before Olympics. To have an idea of such
scenarios, we have defined a selfish parameter Λ, and re-
port the results for different values that go from habit to
selfish case.

Interesting avenues for improving this work is the esti-
mation of routing behavior [33] . Collecting data about
individual route choices before and after the event will
be useful to understand the changes of behavior during
large events.

IV. METHOD

A. Data sets

The data resources used in this work are: mobile phone
data (CDRs), Waze data, camera data, Airbnb data, ho-
tel data, Olympic game schedules and location, as well
as the OpenStreetMap. CDRs consist of 5 months of
2.19 million users and are used to estimate the 24-hour
routine ODs before Olympics; Waze data sets contain
0.6 million reports in one month and are used to extend
the 24-hour ODs to five weekdays. We argue that the
larger overall congestion length in the road network re-
lates to larger number of cars. Also, camera data sets
provided the relation between traffic volumes and aver-
age speeds in 85 main streets and are used to calibrate
the relationship between volume-over-capacity and ac-
tual travel time. Airbnb data sets contain 13, 400 prop-
erties and each property provides its location and the
number of accommodations available. We estimate the
distribution of tourists’ residences using Airbnb data set
together with 106 hotels information. OpenStreetMap
provides the road network we used in our demand as-
signment. Game schedules and locations and capacities
of the venues are used for the estimating the tourists’
destination and departure times. Among the data sets,
CDRs, Waze data, and camera data are the byproduct
of the activity. Other data sets are all publicly available
(see Supplementary Notes 1-4).

B. Tourists travel mode split

Before we estimate the vehicle demand during
Olympics, the taxi demand of tourists must be split
from the tourists demand in each hour. We define four
modes for tourists: walking and metro/BRT, bike and
metro/BRT, taxi, and bus. The reason we merge the

metro line and BRT lines together is that they are closed-
loop, as shown in Figure 1. Walking and metro/BRT
means the origin and destination of tourists is near
enough to the stations (1km); Bike and metro/BRT
means they are near enough for biking (2km). Besides,
the tourists will consider bus if its travel time and num-
ber of transfers are both acceptable. Otherwise, they
will choose taxi to the venues. Besides, we assume the
occupancy of taxi by tourists is 2.0, which means two
tourists will take one taxi averagely during the Olympics
(see Supplementary Figure 2 and Note 3).

C. Travel time estimation

To estimate travelers’ delay during the Olympics,
we represent their routing behavior before and during
Olympics using a traffic assignment model. Traffic as-
signment aims to estimate the travel time and volume
on each road segment. The estimation is implemented
by appointing a reasonable (usually shortest) travel path
for all of the trips from their origin to destination. Be-
fore Olympics, we assume that all travelers have found
their route with shortest travel time and assign the de-
mand with UE model. To validate the estimated travel
time, we compare the travel times of top 5000 commuter
OD pairs with Google map API during the morning peak
hour. The results show the estimation is acceptable (see
Supplementary Figure 1). During Olympics, both of the
demand and the capacity of the road networks change.
For the habit scenario, as all of the travelers follow their
route before the Olympics, we update the volume and
travel time on each edge with considering the additional
tourists flow. Tourists’ routes are chosen according to
the shortest path before Olympics. For the selfish sce-
nario, we assign the new demand with UE model as be-
fore the Olympics. For altruism scenario, we calculate
the shortest path with respect to the marginal cost for
each OD pair, which makes the entire road network reach
system optimum. Aiming at a more realistic estimation
of travelers’ routing after Olympics starts, we argue that
only a fraction of people can find their shortest path,
which means one fraction of the drivers follow their rou-
tine route, while the remaining fraction is assigned using
the UE model to the available space (see Supplementary
Figure 4 and Note 5).
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