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ABSTRACT1
Big data such as call detail records (CDRs) from mobile phones are novel resources for travel de-2
mand models. An important open question is how to use them to extract practical information in3
relation to urban mobility, socioeconomic development, and well-being. Can we study individual4
mobility characteristics by income group through the lens of Big Data? In this paper, we present5
a data analysis framework that uses urban mobility extracted from CDRs, to study various charac-6
teristics of the commuting network of Bogota, Colombia, relating them to income groups by their7
residential location. We show that the diversity of commuting trips, defined in terms of entropy of8
the trips, increases with the income of the population. Further, we show that vehicle travel times9
during commuting hours from lower income groups clearly suffer longer congested travel times.10
Our results detail a method to use passively generated mobile phone data as a low cost alternative11
for transportation policies that can benefit from economic well-being measures for population with12
different income levels.13
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INTRODUCTION1
Rapid urbanization has become a common theme across the world, and its influence is profound2
in Latin America, where over 80% of the population lives in cities. Massive urban migration has3
imposed enormous burdens to the existing infrastructure, leading to increased congestion, longer4
travel time and delays, and severe environmental degradation. Spatial segregation is also a salient5
issue (1). Oftentimes, unintended effects of government policies have further accentuated this6
problem. For example, stratification became widely spread in major Colombian cities, and it was7
in fact sectioned as law in 1994 (nueva ley de sevicios publicos). Of particular interest is the case of8
Bogota, the capital and largest city of Colombia, where careful socioeconomic stratification—the9
basis of a cross subsidization scheme of public utilities for low income residents (2, 3)— has been10
implemented since the Eighties. New insights into the impact of this kind of policy on individual11
mobility and socioeconomic well-being can be obtained through the lens of Big Data.12

Latin American cities, as those in much of the developing world, exhibit sharp differences13
in income levels among various neighborhoods and are characterized by economic and urban spa-14
tial segregation, closely related to job opportunities, economic mobility, and travel behavior (1, 2).15
There has been a lot of qualitative work on understanding spatial segregation (3, 4, 5, 6, 7), how-16
ever, there are still ample opportunities to better quantify it using new data resources. In particular,17
it is necessary to come with effective alternatives at low cost to measure impacts of the spatial18
organization of cities on the well-being of their inhabitants. Understanding the interplay between19
economic segregation and mobility as extracted from communication technologies is important for20
more efficient means of transportation and urban planning (8, 9).21

To that end, we propose a framework of analysis to use big data through the lens of urban22
transportation (10) to quantify the impact of economic segregation on individual mobility. We23
utilize anonymized call detail records (CDRs) with an observation period of 6 months (in 201324
to 2014) to estimate the origin-destination (OD) matrices for a typical day in the city of Bogota,25
Colombia. We validate the ODs against the estimates from local official household travel survey26
(2011). We then create sampled networks with around 20,000 travelers for each of the 4 income27
brackets, over which we estimate the duration of home-based-work (HBW) trips by income group28
(socioeconomic stratum). We show differences in their mobility diversity and congested travel29
times. We demonstrate that the impact of segregation on urban mobility can be extracted from30
CDR data, which can be used as a good alternative to time consuming and expensive travel sur-31
veys.32

33

LITERATURE REVIEW34
Spatial segregation in its most extreme form originated in the ghetto, a clustering in space of iden-35
tifiable ethnic groups, often times instituted by political authorities. The causes and impacts of36
modern spatial segregation on society are a matter of debate (3, 4, 5, 6, 7) . Vandell et al. (11) ar-37
gue that in the urban space, segregation is the consequence of at least three factors: administrative38
policy, market forces, and individual choices. While many studies have shown the socioeconomic39
consequences of segregation, few have focused on using information technologies to measure the40
impacts of segregation on urban mobility. The available information has been limited (12), restrict-41
ing the sizes of representative samples by income groups, particularly for residents in poverty.42

In order to improve the mobility of a city, transportation and urban planners need to quantify43
the interplay between travel demand and existing infrastructures. This is typically done via models44
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of travel demand, which estimate daily trips of individuals aggregated to origin-destination (OD)1
matrices (13) by mode, purpose, and time of the day. The seed information to create these trip2
matrices need to capture travel preferences of various population groups across the day. This3
requires careful sampling of preferences through representative travel diaries. While these surveys4
are rich in detail per individual, they are expensive and quickly become outdated. They only5
contain one or two days for a thin sample (usually 1 percent households in a metropolitan area) to6
model trips over the years in a city with millions of residents (12, 14). These limitations are very7
problematic as local municipal budgets are increasingly constrained and people’s mobility patterns8
are dynamic. As a result, cheaper and more up-to-date data sources and analytical methods are9
called to increase the efficacy of urban travel demand models to empower urban and transportation10
planning in the age of information and telecommunications.11

Recent research has explored the opportunity to utilize cell phone data, known as call12
detail records (CDRs) for modeling travel behavior. CDRs are metadata on phone usage (such13
as phone calls, data or text messaging) collected by a cellular carrier for billing and operational14
purposes, and contain geospatial whereabouts of users during their phone usage. As cell phones15
have become ubiquitous, a surge of research (15) have demonstrated that various insights on human16
behavior can be extracted from the massive, passively collected CDR datasets. Techniques have17
been used to identify daily mobility motifs, which have simplified the extraction of daily trip chains18
of individuals without using surveys (16). Mobile phone meta data have also changed the process19
of modeling the spreading of infectious diseases such as dengue and malaria (17, 18, 19).20

The main advantage of individual phone records is that they contain hidden valuable in-21
formation on the most visited locations by each user across time. Mobile market share typically22
covers a great fraction of the population during various months and each individual tends to visit23
few repeated locations in their journeys (20). While the geospatial tags are not accurate in space24
and time to generate complete journeys in a day, depending on the data collection technologies,25
treated with right methods, it is possible to obtain average transportation demand matrices by pur-26
pose and by hour-of-the-day that represent the travel demand of an entire city (10, 13, 21).27

Of particular interest in this domain is the estimation and validation of OD matrices. Early28
works presented transient OD matrices using CDRs (22, 23) which mapped road usage to the29
neighborhoods that originated the travels. But their validation with existing models that also in-30
cluded mode, routes and travel times remained a challenge. In the last two years, the techniques to31
generate ODs from phone data as well as their validation have been further developed. Using only32
CDRs and census population data, (21) and (10) demonstrate techniques that can estimate ODs33
by purpose (e.g. commuting trips, or home-based-other) and by time-of-day (AM, PM etc.). The34
resulting ODs in Boston and Rio de Janeiro matched the ODs from existing models that required35
survey data. The work in (13) describes a system architecture for an end-to-end software solution36
that transforms and integrates mobile phone data into estimates of travel demand and infrastruc-37
ture performance, and applies it in five cities comparing favorably with existing models based on38
surveys. CDRs and population data are consistently transformed into OD matrices by purpose and39
time of day, and routes through road networks are constructed using open and crowd-sourced data40
repositories. The analytics on the system’s output is fast and portable.41

In the following sections, we first describe the data used in this study. We then employ42
similar methods tested for other cities (10, 13, 21) to transform CDRs into ODs and validate the43
modeling results with local household travel survey data for Bogota, Colombia (12). Next, we44
present a network analysis method to enable the understanding of the interplay between economic45
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segregation and individual mobility. The main challenge is how to obtain accurate transportation1
information by aggregating trips without loosing the representation by income from origins of the2
trips. While the technique is applied from end to end in Bogota, the results are portable to any3
other region with census and CDR data available.4

DATA AND METHODOLOGY5
Data6
To estimate travel demand for population by income stratum in Bogota, Colombia, we obtained7
(i) an anonymized CDR dataset from a telecommunication operator in Colombia, including in-8
formation for 1.5 million users for a period of 6 months across 2013 and 2014, (ii) population at9
the census block level with their income stratum (ranging from 1 to 6, representing income level10
from low to high). To validate our estimate results, we also obtained: (iii) a latest set of household11
travel survey data (in 2011) for transportation planning purpose, officially authorized by the city’s12
department of transportation and conducted by an international transportation consulting firm, and13
(iv) a set of car travel times for the estimated OD matrices at the tower-level in a weekday morning14
peak hour (7:00 am -8:00 am), queried from the API of an online mapping service. We discuss the15
details of these data sets in the following subsections.16

Call Detail Records17
The CDR dataset was gathered at the cellular tower-level, with 659 towers distributed across the18
Bogota metropolitan area (with an area of 477 square kilometers, and a population density of19
16,143 persons per sq. km.). The study area encompassing the Capital District with its 20 locali-20
ties (localidades) and the neighboring municipalities of Soacha, Mosquera, Funza, Madrid, Chía,21
Cajicá, Cota, La Calera, Tenjo, Tabio, Sibaté, Zipaquirá and Facatativá, for 912 transportation22
analysis zones (ZATs). Each record in the CDR dataset contains an anonymous user ID, the ge-23
ographical location in the form of the latitude and longitude of the cellular tower, and the time at24
the instance of the phone activity. We analyze the OD trips at both celluar tower level for network25
analysis purpose and at the locality and ZATs level for OD validation purposes. Figure 1 A-C.26
shows the basic statistics on the CDR dataset.27
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FIGURE 1 A-C. Distribution of number of active days of the Bogota phone data. B. Distri-
bution of the individual users’ average daily records. C. Distribution of daily phone records
for all phone users over the 6-month observation period. D. Correlation between the World-
Pop residential population and the mobile phone estimated residents before (green) and after
(blue) expansion adjustment. E. Correlation between the employment population estimated
from local household travel survey data and that estimated using the mobile phone data. F.
Distribution of the expansion factors which are used to expand mobile phone users to total
population.

Population and Income1
To understand the economic status of local communities, we obtained a data-set at the city block2
level. The total population in Bogota is over 7 million. The census population data were also used3
to help expand the CDR sample users to the population for the Bogota metropolitan area, in order4
to generate representative urban travel demand estimates. To do so, in Fig. 1 D, we show the before5
(in green) and after (in blue) comparison of CDR users and census population at the ZAT level for6
Bogota. The purpose is to calculate expansion factors at the geographic level of analysis (e.g.,7
shown here at the ZAT level). Fig. 1 F shows the distribution of expansion factors over Bogota.8

We use the official socioeconomic stratification as a proxy for the spatial distribution of in-9
come within the city of Bogota. The department of city planning (DCP) is legally responsible for10
assigning a socioeconomic stratum to each city block (2). A scale from 1 through 6 is used, where11
1 corresponds to the lowest socioeconomic level and 6 to the highest. The socioeconomic level of12
each city block is determined by a DCP official who relies on direct observation of the block and13
its surroundings and must take into account the following factors in his assessment (24): physical14
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characterizes of buildings, condition of local roads, presence and quality of sidewalks, ease of ac-1
cess to major roads and public transport, quality of urban space surrounding the block and overall2
urban context of the neighborhood. Socioeconomic stratification is the basis of a differentiated3
pricing scheme for public utilities (2). Residents of blocks classified in the three highest socioeco-4
nomic levels pay proportionally higher rates that are used to subsidize residents in the three lowest5
levels. Thus, careful assignment and regular updates to the socioeconomic stratification of the city6
are guaranteed by the current regulatory framework. Furthermore, in countries such as Colombia,7
where the informal economy plays a significant role, income data is grossly under-reported in both8
the census and local surveys (25). Using socioeconomic stratification as a proxy for income is a9
reasonable alternative that does not suffer from such biases.10

There are about 45 thousand blocks classified by income (socioeconomic stratification) in11
the city but only 659 cell-towers. We need to assign and income rank to each cell-tower coverage12
area, This requires careful aggregation of the block-level income categories to the cell-tower scale.13
We map each city block to its corresponding cell-tower coverage area by calculating the centroid14
of the block and determining the converge area it falls within. Then, for each cell tower coverage15
area we calculate the population-weighted income rank:16

µn =
ln

Â
i=1

wisi, (1)

where ln is the number of blocks that fall within coverage area n, wi is the population weight of17
block i, defined as the fraction of the total population of block i, si is the discrete socioeconomic18
stratum (from 1 to 6) assigned to block i by the city planning officials.19

Survey of Mobility20
The 2011 Bogota Survey of Mobility (12, 26) was a local household travel survey, including 4521
thousand individual samples to represent the over 7 million Bogota residents. The survey was con-22
ducted to collect trip information for residents during one sample day, including their trip purpose,23
and departure and arrival time and zonal information, and their social demographic information.24
Although there are more than 900 ZAT zones in the Bogota metropolitan area, due to the limited25
sample size, the survey only covered residents’ travel in 767 ZATs. Using the estimates from the26
survey data, we validate our estimated employment population by inferring cellphone users’ work27
location (discussed later), combined with our calculated expansion factors at the ZAT level (shown28
in Fig. 1 F). Fig.1 E shows high correlation between the employment estimates from the cellphone29
data model and those from the model informed by the survey data.30

Travel Times in an AM Peak Hour31
To asses the impact of spatial segregation on travel times, we estimate the trip duration for OD pairs32
that have a high number of home-based work trips. Bogota is a very congested city; estimates of33
trip duration have to take into account the increase in travel times during rush hours. To do so, we34
use the estimates of congested travel times provided by an online mapping service API (e.g., the35
Google traffic API, source: https://developers.google.com/maps/documentation/directions).36

Generating OD Flows from CDR Data37
Combined with population data and the CDR data, we generate ODs by trip purpose and by time-38
of-day based on three key steps: stay detection, activity labeling, and trip generation, as discussed39
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in (21).1

Stay Detection2
In order to discover users’ activity location, we first filter out noise resulting from tower-to-tower3
call balancing performed by the mobile service provider, creating the appearance of false move-4
ments. We then employ a method (27) to distinguish users’ stationary stay locations (when/where5
users engage in an activity) from their moving pass-by locations (when/where users are en-route6
to activities). As the data is tower-based, one can only know the closest tower to the user’s actual7
location, so the estimate of a user’s position is known up to the Voronoi cell for that tower. Due8
to the discrete nature of this data, the aforementioned call sequence simplification is carried out9
by joining sequences of calls made from a sets of towers within a certain distance threshold, fol-10
lowed by joining the sequence of calls made from the same tower. To address issues of temporal11
resolution, we only keep stays if the user is known to be in that location for at least 10 minutes.12

Activity Labeling13
To successfully extract purposes for every trip, we classify activities as home, work and other.14
Human mobility patterns as captured from mobile phone data that exhibit regularity and frequent15
returns to previously visited sites. For every user, her most visited location on weekdays from16
7pm-8am and on weekends is classified as her home. Users with too little activity from their home17
locations are filtered out of the analysis. This is followed by assigning the user’s work place, which18
is defined to be the non-home location that the user visits second most during the complement19
of the home time period on weekdays. Similarly, users with too few calls from their assigned20
workplace are excluded. Stays made from other locations are all classified under other. Once each21
stay is labeled with an activity purpose, then the resulting trips obtained from stay locations can be22
assigned with purpose pairs, such as home-based-work (HBW), home-based-other (HBO), or non-23
home-based (NHB). The ODs obtained in this way are then classified in terms of their purpose24
pairs. These methods are not necessarily definite solutions for perfectly estimating users’ home25
and work locations, but they are straightforward and may lead in some cases to incorrect labeling26
of home and work locations. However, with increased spatial and temporal granularities of data27
and the inclusion of refined GIS information, more sophisticated algorithms can be developed.28

Trip Estimation29
After the call data have been assigned one of the three activity tags (home, work or other), the30
next step is to go through the time-ordered stay sequence for every user. Two consecutive calls on31
weekdays constitute a raw trip if they are not from the same location and are in the same effective32
day, which spans 3am of the previous day to the 3am of the next. Our method assumes that users33
typically travel from their home location at the beginning of an effective day and travel back home34
at the end. Therefore if a user’s last call of the day is not from the home location, a raw trip is35
added to home. Similarly, if a user’s first call of the day is made from a location other than home,36
a trip is added to ensure user’s travel from her home. As CDR data is passive and generated when37
users choose to interact with their phones, one cannot assume that users start their trip at the exact38
time they make the call. We introduce a departure time estimation to account for the passiveness39
of CDR data as explained in (21). Fig.2 A-D shows the activity start time and duration by activity40
type of home, work, other, and all types. Fig. 2 E-H compares the trip departure time distribution41
by trip purpose of HBW, HBO, NHB and all types between the estimates of survey and the CDR-42
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data based model. The results show that in general the CDR based model presents similar temporal1
patterns to the survey, although there are some trade-off between the trips by trip purpose.2
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FIGURE 2 A-D. Temporal distribution (start time and stay duration) for inferred activities,
including A. Home, B. Work, C. Other, and D. All types of activities. E-H. Comparison of
trip start time by trip purpose, estimated with the local household travel survey data (in light
green) and with the mobile phone data (in green), for different trip purposes including: E.
Home-based-work (HBW), F. Home-based-other (HBO), G. None-home-based (NHB), and
H. All trip purposes.

OD Generation3
With the estimated trip departure time, and expanding the individual trips, we aggregate trips to4
construct OD matrices between zones by counting the number of expanded trips between each pair5
of zones on a typical day. We generated ODs for cell-tower based Voronoi-polygons, as well as6
for ZATs. We validate the ODs estimated from CDR data against those derived from the mobility7
survey at the ZAT level, since the survey only records trip origins and destinations at the ZAT8
level. We aggregated OD trips from ZAT to localities in Bogota. Fig. 3 shows the correlation of9
the ODs estimated from CDR and from survey data by time of day at the locality level. In general,10
the correlations of the CDR-based model and the Survey-based model are very high at the inter-11
locality level. The estimates of these two models on the total number of trips per day are reasonably12
close (as shown in Table 1). Given the good correlations and the validity of the method for other13
cities, we use the CDR-based travel demand model to further analyze the mobility characteristics14
by income group, because it is informed by many more users than the survey. This allows us to15
sample tens of thousands commuters per income bracket.16

Network Analysis17
The generated ODs naturally lend themselves to a network structure representation (10, 16, 28).18
The weight of the directed link connecting the origin node to the destination node is given by the19
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Bogota HBW NHB+HBO AM MD PM Total
CDR Trips (millions) 1.53 9.07 1.98 4.10 2.46 10.60
Survey Trips (millions) 2.82 9.80 1.99 5.09 2.48 12.62

TABLE 1 Number of trips on a typical day, split by trip purpose and time of day. AM, MD,
and PM refer to 7am to 10am, 10am to 3pm, and 3pm to 7pm.
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FIGURE 3 OD validation with Household Travel Survey at the Locality Level. by time of
day, including A. morning (AM), B. midday (MD), C. evening (PM).

number trips estimated for that particular pair. Since we label trips by purpose, we select only1
OD pairs that represent commutes to work, as pairs where the number of HBW trips is significant.2
This selection enables us to quantify the relation between economic well being and the structure3
of the commuting network. The resulting network has 633 nodes and 27,939 links. Figure 54
shows the commuting network for Bogota using a geotagged layout, the distribution of degree or5
number of connections per node (Fig. 5B) and the trips per link (Fig. 5C). We see that while the6
degree distribution of the origins has an exponential decay, the distribution of the number of trips7
is broader with few OD pairs having between 100-1000 commuting trips. To assess the impact8
of income on the different network metrics we divide the nodes into four groups: low income,9
with weighted income stratum ranging 1.0 to 2.5 contained in 141 nodes, middle income, in the10
range 2.5-3.5 with 230 nodes, upper middle income, ranging in 3.5-4.5 with 134 nodes and higher11
income, from 4.5-6.0, and with 128 nodes.12

In a seminal work Eagle et al. (29) analyzed landline calls and a nationwide mobile phone13
dataset in the UK. They proposed metrics of topological and spatial network diversity that dis-14
played a strong correlation with the socioeconomic outcomes of the regional communities that15
each node represented. In this work we estimate mobility diversity (30) in similar way, first cal-16
culating the Shannon entropy of each node: Hi = �Âk

j=1 pi jlog(pi j), where k is the number of17
destinations with origin in i, or the degree of node i. pi j is the relative proportion of trips between18
i and j: pi j =

Ti j
Âk

j=1 Ti j
. The spatial diversity of node i is then defined as:19

Di =
Hi

log(ki)
, (2)

which is the ratio of the entropy observed in the trips divided by Hrand = log(ki), the Shannon20
entropy when all trips from i are weighted equally among all the destinations, meaning pi j = 1/ki.21
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FIGURE 4 A. Map of population distribution by stratum from 1 to 6 going from lowest (1) to
highest income (6). B. Population distribution of 4 income brackets (in gray) and fraction of
users in each of 6 income strata. Income brackets are defined based on the average stratum
on a given trip source. These are low income [1, 2.5], middle income [2.5-3.5], upper middle
income [3.5-4.5] and higher income [4.5-6.0]. C. Distribution of factors to expand mobile
phone users to population in the different origins separated in four income brackets– in each
income bracket we have 1 user each 20 people, showing that the used mobile phone data
cover all income levels with little bias.

Lower diversity implies that the commuting trips of origin i are more attracted to some destinations1
than others, among the ki observed destinations. Entropy close to 1 implies that the trips are2
uniformly balanced. Also, the trip duration and the trip distance per origin are weighted over each3
node as follows: < x >i= Âk

j=1 pi jxi j, where xi j is the quantity of interest as measured for OD pair4
i,j.5

RESULTS6
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FIGURE 5 Network of commuting trips. A. 633 origin nodes colored by income group (low,
middle, high) and sizes representing the total number of commuting trips. B. Degree distri-
bution represents the number of destinations of each node. C. Distribution of trips between
the links.
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FIGURE 6 Income and various network metrics vs. population of the origins. A. Aver-
age income B. Degree C. Mobility diversity D. Commuting travel times. Most trip sources
have around 5,000 people, those with larger population have lower income and lower mobil-
ity diversity. There is not correlation between the average commuting travel time and the
population, and surprisingly, very low correlation between the degree and the population of
origin.
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We start by exploring the properties of the network in relation with the population of the1
origins (Figure 6). Most origins have similar population around 5,000 people. More populated2
nodes have lower income (Figure 6A) and slightly higher degree (Figure 6B). Origins with larger3
population have lower diversity (Figure 6C), indicating that they are preferentially attracted to4
particular destinations. There is not clear relation between the population of the origins and their5
average travel times in commuting (Figure 6D).6

Next, we compare diversity and the entropy by income brackets (Figures 7 A-D). We ob-7
serve that the higher the income the smaller the tendency of the origins to have preferential des-8
tinations for commuting (Figures 7 A-B), resulting in higher mobility diversity. Indeed, there is9
significant positive correlation between diversity and income rank (Pearson’s r is 0.47). Entropy10
on the other hand does not display any significant relation with income (Figures 7C-D). In order to11
obtain estimates independent of the number of travelers per origin, we sample directly the commut-12
ing trips of 20,000 mobile phone users for each of the 4 income brackets. They are selected with13
home locations following the population distribution of the city. Similar to the total network, the14
sampled network has 633 nodes and 25,073 links. The observed effects of entropy and diversity by15
income group remain for both the sampled network and the entire network, as shown respectively16
in Figs 7 A vs. B and C vs.D.17

Finally, we use the sampled network to study the distance to work, trips duration and time18
spent in congestion by income group (Figure 8). The sampling accounts for the wide differences in19
population among origins (Figure 6A), leading to similar statistics of the quantities of interest by20
income group and thus to more meaningful results. For each OD pair, congested travel times and21
road distances are queried form an online mapping service as discussed in the methods section.22
The distribution of values for the lowest income bracket tend to be broader. It is striking to see,23
however, that consistently, people in the lowest income group travel longer distances to work,24
spend more time in their commutes and are more affected by congestion. In fact, low income25
residents spend almost twice as much time in congestion than the high income sample (Figure26
8C).27

CONCLUSIONS28
We use mobile phone data and query on-line maps to study the commuting network in Bogota,29
focusing on the relation between socioeconomic characteristics of the origins and their mobility30
characteristics. We find that mobility diversity has a significant positive correlation with income31
rank. Previous studies have confirmed this observation using information and communication32
technologies (ICTs) in the context of social contacts (29) and trips at a country scale (30). Eagle et33
al. (29) suggested that the diversity of social contacts is relevant because it showed very high degree34
of correlation (greater than 0.72) with socioeconomic indicators of well being. More recently,35
Pappalardo et al. (30) showed that social diversity may not be as important in the predictability of36
the Gini coefficient of a Municipality, and that the mobility diversity adds the largest predicting37
power to their regression models. The debate is only starting and many questions remain open,38
specially for both mobility and social networks within the urban scale, where less studies of this39
type have been done.40

To our knowledge, this is the first study showing that mobility diversity is correlated with41
a socioeconomic indicator of well-being at the lowest possible degree of granularity, the mobile42
phone tower level. This opens up the possibility of using network based structural metrics from43
ICTs in the context of urban and transportation planning in relation to economic well being. In44
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FIGURE 8 Travel by income group for commuters in a sampled network containing 20,000
travelers from each income bracket. A. Distance B. Duration of trips in congested travel time
(calculated with the Google Maps api) C. Time spent in congestion.
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particular, the clear differences in the time spent in congestion by income group, suggest that1
travel information based on mobile phones can be used to measure the effects of transportation2
interventions to alleviate congestion for the most vulnerable sectors. Interesting avenues for future3
research related to this work, include the study of the characteristics of the social network in4
relation to the economic well-being at the urban scale. Also it is interesting to measure metrics of5
spatial exposure among different groups and how these affect the economic complexity of various6
cities. In the ideal scenario, we can learn types of urban organizations that promote better outcomes7
for their inhabitants. In the new data-rich reality of cities, deeper insights into their social and8
spatial connections will help make the places we live more sustainable, efficient and equitable.9
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