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Epidemic trajectories and associated social responses vary widely between

populations, with severe reactions sometimes observed. When confronted

with fatal or novel pathogens, people exhibit a variety of behaviours from

anxiety to hoarding of medical supplies, overwhelming medical infrastructure

and rioting. We developed a coupled network approach to understanding and

predicting social response. We couple the disease spread and panic spread pro-

cesses and model them through local interactions between agents. The social

contagion process depends on the prevalence of the disease, its perceived risk

and a global media signal. We verify the model by analysing the spread of dis-

ease and social response during the 2009 H1N1 outbreak in Mexico City and

2003 severe acute respiratory syndrome and 2009 H1N1 outbreaks in Hong

Kong, accurately predicting population-level behaviour. This kind of empirically

validated model is critical to exploring strategies for public health intervention,

increasing our ability to anticipate the response to infectious disease outbreaks.
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1. Introduction
Mathematical models together with increased computational power and data

availability have improved our ability to predict and control epidemics. The next

frontier is to unravel how diseases shape behavioural norms [1,2]. The public

response to a disease outbreak is usually calm and orderly [3]. In rare cases, how-

ever, the outbreak of disease can trigger social disturbances, including panic,

rioting, hoarding of medical supplies, fight from the area or violence against mem-

bers of groups believed to have or carry the disease [4–9]. Current large-scale

computational models range from high-level, stochastic metapopulation models

[10] to parameter-rich, agent-based models [11] that consider demographics, mobi-

lity and epidemiological data, as well as disease-specific mechanisms. However, by

identifying the fundamental mechanisms of the system, it is still possible to effec-

tively predict the outcomes of epidemics with few parameters. In particular,

network mobility information has shown that effective distances can successfully

predict the timing of global disease outbreaks [12]. In the domain of behavioural

responses to disease, individuals are assumed to take into account two types of

information [13,14]: (i) local information, which is generated locally and communi-

cated via social connections [15–18], and (ii) global information, which depends on

extrinsic factors that affect the entire population [19,20]. The coupling of disease

contagion and social contagion processes is a pressing need, as the joint dynamics

of such systems often differ from what would be expected from either process oper-

ating in isolation [1,2]. Nevertheless, the variations of social reactions to the same

disease have not yet been considered. Here we incorporate the social psychology

of risk behaviour into disease and information spread modelling techniques to

explain how disease transmission can give rise to social responses.

Most current models of disease and information spread assume that individ-

uals in the population are rational actors, who assess the likelihood of infection

and take protective action accordingly. While this assumption may hold for

some health behaviours, it neglects the emotional component and the social
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Figure 1. Social response most frequently occurs when the disease is novel
to the region or clinically severe. (a) The 11 926 disease outbreaks recorded

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:2014110

2

 on January 29, 2015http://rsif.royalsocietypublishing.org/Downloaded from 
context of health decision-making [21]. We develop a coupled

network model of the joint spread of disease and social

response, where the spread of social response is based on the

amplification of risk framework developed by Kasperson et al.
[22]. This framework assumes that perceptions about the risk

of disease are formed within a social context and factors such

as the predictability of the disease risk and the society’s famili-

arity with the disease will affect how the disease is perceived.

The perceived risk of infection is therefore not necessarily

the same as the true likelihood of infection. In our model,

amplification of risk-related messages in the media and in inter-

personal communication can provoke social responses, even

when the likelihood of infection is quite low. We demonstrate

the ability of the model to replicate real-world social responses

to diseases, as seen in Hong Kong during the 2003 severe acute

respiratory syndrome (SARS) outbreak and Mexico City at the

beginning of the 2009 H1N1 pandemic. We demonstrate how

diseases that are unexpected or unfamiliar to local experts can

trigger social responses, particularly when these diseases are

clinically severe or have unusually high morbidity or mortality.
by Ascel Bio between May 2008 and 2009 are shown. The majority of events
were not associated with social response (blue); however, there were regional
clusters of events with social response (red). (b) If a disease is unusual or
atypical in a region or seen as unknown or mysterious to local experts,
there is an increased likelihood of social response. Outbreaks of diseases
with the highest BSL are likely to have social responses. BSL-4 diseases
are severe and fatal, with no available treatments.

5

2. Causes of social response
We define a social response as a behavioural or emotional mani-

festation of concern about disease. Since social responses can

impede the ability of responders to deliver assistance and

can have high economic and social costs, there is interest in

better understanding why they occur. Biosurveilliance experts

associate social responses with a combination of several con-

ditions, including novelty to the society in question, clinical

severity, availability of countermeasures and extent of spread

[8,9]. The social amplification of risk framework affirms the

role of these conditions and suggests a possible mechanism

[22]. The framework asserts that risk-related information is

often communicated in such a way that the perceived risk of

an event is amplified. Amplification of risk is particularly

likely when the volume of communication is high, facts are

disputed, there is dramatization and the risk is novel or not

well understood. In the context of social response to disease out-

breaks, Kasperson’s framework suggests that commonplace

diseases are unlikely to produce risk amplification, whereas

novel, severe diseases, such as SARS or MERS, may provoke

amplification, since the public feels that the risk is unpredictable

and uncontrollable. Our model demonstrates risk amplification

when the disease is novel or clinically severe and also when the

disease is highly infectious and can spread quickly through

the population, overwhelming the medical infrastructure.

We analysed historical biosurveillance data provided by

Ascel Bio (AscelBio. http://ascelbio.com), a biosurveillance

company that gathers data on infectious disease outbreaks.

The data consist of 11 926 near-real-time, multi-source reports

on disease outbreaks. These data cover a time frame of 1 year

from May 2008 to May 2009 and include over 200 countries

and 300 diseases. The reports describe the social response

associated with the disease as well as other features of the

outbreak, such as where the outbreak took place and what

steps were taken to contain it. The overall incidence of

social response in the data was 5%.

In the database, the incidence of social response in

countries with little prior experience with the disease was

consistently higher than in endemic countries, even if the

rate of spread was lower. For example, social response
occurred in over 10% of dengue fever outbreaks in Latin

America where dengue fever is relatively novel, but only in

1% of outbreaks in Southeast Asia where dengue fever is

endemic. The observed difference was statistically significant

(Pearson’s x2-test: x2 ¼ 11.0, d.f. ¼ 1, p , 0.001). We also con-

sidered the role of local experts’ familiarity with the disease

in question. Lack of familiarity is usually a mark of novelty.

Using text parsing, Ascel Bio coded the reports based on

whether the disease was unknown ormysterious to local

experts and whether the outbreak was unusual or atypical

for the region. As shown in figure 1, outbreaks that involved

diseases that were unusual or unknown in the region were

associated with social response 16% of the time, compared

with only 4% of the time for outbreaks without those proper-

ties, a statistically significant difference (Pearson’s x2-test:

x2 ¼ 148.1, d.f. ¼ 1, p , 0.001). Clinical severity was also a

significant predictor of anxiety. Diseases were grouped

based on human disease biosafety levels (BSLs) [23]. BSL

describes the level of danger associated with working with

a particular microbe and ranges from 1 (unlikely to infect

human adults) to 4 (severe or fatal disease without available

treatment). Diseases with BSL-4 are significantly more likely

to have a social response than diseases with lower BSL (Pear-

son’s x2-test: x2 ¼ 26.7, d.f. ¼ 3, p , 0.001; figure 1). BSL-4

diseases were associated with social response 17% of the

time, whereas social response occurred in only 5% of out-

breaks of diseases with lower BSL. In other words, the data

indicate that the most severe diseases are more likely to be

associated with social response than less severe diseases.
3. Material and methods
The progression of disease and social response through the social

network is simulated using two separate agent-based models

http://ascelbio.com
http://ascelbio.com
http://rsif.royalsocietypublishing.org/
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Figure 2. Illustration of model dynamics. (a) Social response and disease are transmitted on two different graphs. The spread of disease fuels increased social
response. (b) At every time period (i) the disease transmission process spreads infection through the network, (ii) newly infected agents increase their social response
to k, and (iii) social response is communicated between neighbours and via a signal from the media.
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[24], linked by a coupling mechanism. We consider individuals in

a population as agents in a network. These individuals are con-

nected to each other through social ties, which are represented

by the edges of the network. The disease spread network and

social response spread network are permitted to differ in our

model. Details on the networks used in our simulations are

provided in the electronic supplementary material.

The agents repeatedly interact according to behavioural rules,

which govern the spread of disease and social response. The disease

and social response are assumed to spread independently, coupled

by an interaction rule; when an agent becomes infected, her social

response level is increased to reflect the perceived risk of the disease

to the society in question. Specifically, the social response of the

agent is set to the disease risk index, k [ (0:5, 1), which represents

the society’s familiarity with the disease, the degree to which the

disease is unexpected, the clinical presentation of the disease

and the method and rate of spread. Higher values of k indi-

cate greater perceived risk, and, consequently, greater amounts

of amplification. For example, the common cold in North America,

a familiar and mild disease, would have k ¼ 0.5, whereas SARS, a

novel and highly fatal disease, would have a high value, such as

k ¼ 0.95. The likelihood of agents experiencing heightened social

response increases when they interact with the sick, with agents

who already have heightened social response or when they receive

a signal from the media that the disease is a threat. The structure

and dynamics of the model are shown in figure 2 and will be

described in more detail in the sections that follow.

3.1. Disease spread dynamics
We implement a susceptible, infected, recovered (SIR) model [25],

adapted for agent-based modelling [26]. The infection spreads

through pair-wise interactions between infected agents and their

neighbours on the disease network. Each agent’s disease state at

time t is represented by Xi(t) [ {S, I, R}, where S ¼ susceptible,

I ¼ infected and R ¼ recovered. The model is initialized with

almost all agents in a susceptible state. Agents become infected

through contact with infected neighbours on the disease network.

At time t, an infected agent infects each of her susceptible neigh-

bours, independently, with probability b, that is, if Xi(t) ¼ I,
Xj(t) ¼ S and i and j are neighbours on the disease network, then

Xj(tþ 1) ¼ I with probability b

S with probability 1� b:

�
(3:1)

Following infection, agents recover after TR time periods, where

the parameter TR is set to reflect the time that infected persons

continue to circulate in the network. Specifically, if Xi(t 2 1)¼ S
and Xi(t) ¼ I, then

Xi(t) ¼ � � � ¼ Xi(tþ TR � 1) ¼ I, Xi(tþ TR) ¼ R: (3:2)
In the SIR model, the disease will grow into an epidemic if the

infection rate is sufficiently larger than the recovery rate [26]. Since

severe diseases frequently result in behavioural changes in the

population that reduce the spread of disease, we assume that

after the cumulative number of cases in the population has sur-

passed an intervention threshold, t, agents will reduce their

disease-spreading contacts in the population until the outbreak

has ended. We model this contact reduction by randomly remov-

ing edges from the disease graph. At each time period, each

edge in the disease graph has probability h of being removed for

that time period and probability 1 2 h of remaining in the

graph, independent of previous time periods and other edges.

Removal of edges in this manner is equivalent to a reduction in

the effective infection rate to b � (1 2 h).

3.2. Social response spread dynamics
In addition to the disease state, Xi(t), each agent i has a value, Yi(t),
associated with his social response at time t. The social response,

Yi(t), is treated as a continuous random variable in the range

0–1. A social response of 0 indicates no anxiety and no behavioural

symptoms. A social response of 1 indicates severe anxiety or be-

havioural manifestations of concern about disease, such as panic

buying or participating in a protest. In this model, we do not differ-

entiate between behavioural and non-behavioural responses but

consider both types of social response to be part of the same con-

tinuum. An agent’s social response can be changed in one of three

ways. First, agents are influenced by their neighbours on the social

network and will probabilistically update their social responses to

be more similar to their neighbours’. Second, if the disease is

actively spreading, agents can receive an excitatory signal from

the media, resulting in increased social response. Finally, immedi-

ately upon infection, the social responses of infected agents are

increased to k. Thereafter, the social responses of infected agents

are allowed to change according to the social response update

rules. Heightened social response spreads through the population

via two mechanisms: (i) when the disease is novel to the region or

is perceived as being particularly threatening, media influence

spreads concern through the population, and (ii) when com-

municating with their neighbours, agents are biased towards

adopting the opinions of their more concerned neighbours,

rather than the most calm ones.

3.2.1. Media signal
The media plays an important role in communicating risk mess-

ages to the public. Young et al. [27] paired high media exposure

and low media exposure diseases on the basis of mode of trans-

mission, symptoms, mortality and prevalence. They found that

infectious diseases that receive extensive media attention are

http://rsif.royalsocietypublishing.org/
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considered to be more severe than diseases that do not receive

such attention. Thus, we postulate that media attention will

increase concern about disease and that diseases that are more

novel and severe will have larger media signals.

Let NI(t) be the number of infected agents at time t. Then, the

global media signal at time t, M(t), is defined as follows:

M(t) ¼ 2k� 1 if NI(t) . 1
2�max {NI(0), :::, NI(t� 1)}

0 otherwise:

�
(3:3)

Let Mi(t) be the media signal received by agent i. Each agent

receives the media signal with probability p. Thus,

Mi(t) ¼
M(t) with probability p

0 with probability 1� p:

�
(3:4)

Media amplifies concern over the disease when many people

are infected in the present compared with the past. In general, a

non-zero media signal is sent when the disease is actively spread-

ing in the population. At the end of the outbreak, when there are

only a few cases remaining, a media signal will not be sent.

3.2.2. Social response update
At time t, agent i’s social response updates according to the

following two steps, applied sequentially:

Step 1. Social response exchange. We use a modified version of the

DeGroot model to describe how social responses are communi-

cated between neighbours [28]. For each neighbour j of node i,
with probability q, j communicates with i at time t. If j commu-

nicates with i, Iij ¼ 1, otherwise Iij ¼ 0. For all nodes, i, Iii ¼ 1.

Let wj(t) be the weight assigned to the social response of node

j at time t. Agents are given a bias toward listening to neighbours

that are more concerned about the disease. Therefore,

wj(t) ¼
10 if Yj(t) � 0:5
1 otherwise:

�
(3:5)

Then the social response of node i following step 1 is given by

Yi(t0) ¼ tanh Mi(t)þ
1P

j[(i,j) Iijwj

X
j[(i,j)

IijwjYj(t)

0
@

1
A, (3:6)

where Mi(t) is the media signal received by agent i at time t. Each

agent’s social response after step 1 is a weighted average of its

neighbour’s social responses plus the media signal received by

that agent. Note that the hyperbolic tangent is used to restrict the

social responses to be within the range [0,1].

Step 2. Social response decay. Decay reflects the eventual cease of

panic as the disease spread tapers off. Following step 2, agent

i’s social response level is given by

Yi(tþ 1) ¼ a� Yi(t0), (3:7)

for some constant a [ [0, 1]. Following the social response

update, the next time period begins and the disease and social

response updates are repeated.

3.3. The joint diffusion of disease and social response
Agents who are infected generate social response and communi-

cate this response to their neighbours. During the time period

in which agent i is infected, i’s social response is set to k.

More precisely,

Yi(t) ¼ k if Xi(t� 1) ¼ S and Xi(t) ¼ I: (3:8)

The model is implemented by simulating the disease-state

transitions followed by social response-state transitions. Thus,

at each time t, Xi(t) is updated for each agent i. Then, Yi(t) is

updated, first by setting the social response of newly infected

agents to k and then by communication among agents and

reception of a signal from the media.
3.4. Simulation design
To validate the model’s performance, we simulated the joint

spread of disease and social response during the SARS and

H1N1 outbreaks in Hong Kong in 2003 and 2009, respectively,

and the two waves of H1N1 infection that affected Mexico City

in 2009. The Hong Kong simulations were selected to illustrate

how novel and severe diseases with extremely low incidence can

result in a large social response, while diseases that are not per-

ceived to be as threatening frequently produce little social

response, even if they affect a large portion of the population.

These simulations were compared against longitudinal survey

data taken at the time of the outbreaks, allowing for precise vali-

dation of the results. The Mexico City simulations were selected

because they illustrate how the response to the same disease can

change when there are changes in the disease’s perceived novelty

and severity. These simulations were qualitatively compared with

news reports from the time period and quantitatively compared

against an index of Google Internet search volume for influenza.

Formal survey data are quite rare and were not available for the

Mexico City H1N1 outbreaks.

We also explored the parameter space to confirm that the

model produced a social response under the conditions pre-

dicted by the social amplification of risk framework. We show

the results of two simulation studies, one demonstrating that

media influence can produce social response when the disease

has high perceived risk and the second demonstrating that a

social response can occur when the disease spreads quickly

through a large portion of the population.

The H1N1 and SARS simulations were conducted with 400 000

agents and 100 model realizations, and the parameter exploration

simulations were conducted with 15 000 agents and 500 model

realizations. Each realization was allowed to run until the disease

was no longer spreading. For each realization, we recorded the

number of new infections at each time t as well as the mean

social response of agents in the network. Realizations were

initialized with a randomly selected agent as the initial infected

agent. If this agent infected no other agents before recovering,

the realization was repeated.

The H1N1 and SARS simulations were used to demonstrate

the model’s ability to predict social response for real disease out-

breaks. First, we fit the simulated disease spread to the observed

disease spread. Let the expected new infections for each day be

the number of new infections for that day averaged over all

model realizations. We selected disease parameters such that

the simulated expected new infections for each day approxi-

mated the daily number of new infections observed in the

outbreak. Then, we manually estimated k based on the society’s

perception of the disease at the time of the outbreak. We ran the

simulations and calculated the expected mean social response for

each day by averaging the mean social response over the model

realizations. Finally, we compared the simulated expected mean

social response with the available data on how the society

responded to the outbreak. Overall, the model achieved high pre-

dictive accuracy. The parameters used in the H1N1 and SARS

simulations are shown in table 1.
4. Results
4.1. Model behaviour: effects of disease severity and

incidence
We analysed the model behaviour under different sets of

parameters. Consistent with our observations from data,

two combinations of model parameters produced social

response. Assuming p . 0, a high value of the disease risk

index (k) produced a social response, regardless of the

http://rsif.royalsocietypublishing.org/
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Figure 3. Effects of disease severity and incidence. (a) Media influence: the disease parameters were chosen such that, absent media influence, no social response
occurred. When the novelty and severity of the disease were low (small k), little social response was observed, regardless of media penetration p. When the novelty
and severity were high (large k), media influence resulted in a social response, even at low levels of media penetration. In other words, if diseases lack charac-
teristics that result in high perceived risk of infection, such as novelty, severity or lack of knowledge about treatment or transmission, media will not excite a social
response. (b) Large disease spread: an unusually prevalent disease can produce social response even if media penetration is low and the disease is neither novel nor
severe (b ¼ 0.281, TR ¼ 1, h ¼ 0.0, k ¼ 0.60 and p ¼ 0.05).

Table 1. Disease transmission and social response parameters used in case study simulations.

Mexico City Hong Kong

H1N1, spring 2009 H1N1, autumn 2009 SARS, 2003 H1N1, 2009

disease transmission dynamics

b per contact infection probability 0.258 0.243 0.255 0.239

TR duration of infective period 1 day 1 day 1 day 1 day

t intervention threshold 100 cases 800 cases 3 cases 800 cases

h edge removal probability 0.25 0.15 0.25 0.05

social response dynamics

k disease risk index 0.75 0.60 0.95 0.60

q per contact communication probability 0.50 0.50 0.50 0.50

p media penetration 0.05 0.05 0.05 0.05

a response decay 0.95 0.95 0.95 0.95
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disease spread parameters (b and TR), as media influence

drove concern about infection. Since k represents the per-

ceived novelty and severity of disease, this combination of

parameters reflects the situation in which the disease is per-

ceived as highly threatening even though incidence may be

relatively low. Examples of diseases with high k include

Ebola, avian influenza and MERS. Outbreaks of these dis-

eases have historically been quite small, but have attracted

widespread attention. Figure 3a shows the effect of p and

k on average social response when the disease spread is

small. The expected peak mean social response is the largest

mean social response observed at any point in the outbreak,

averaged over the model realizations. In the absence of

media influence, the disease itself did not trigger a social

response. For high novelty or severity of disease (k � 0.7),

we observed that even low levels of media penetration
( p) produced large social responses (figure 3a). Media

had little effect on the social response of the agents when

the disease was perceived as neither novel nor severe

(figure 3a, k , 0.7).

Alternatively, a large social response can be produced

when the disease parameters (b and TR) are set such that

infection is very prevalent in the network. In this case, the

unexpectedly large spread of disease drives the surge in

social response. The 2013 dengue fever outbreak in Singapore

is an example of such behaviour [29]. Figure 3b shows a large

disease spread resulting in a social response. In this example,

removing the coupling mechanism and spreading social

response only via the media resulted in a 60% decrease in

the expected peak mean social response, compared with the

baseline case in which social response was spread via both

coupling and media.

http://rsif.royalsocietypublishing.org/
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Figure 4. Predicting the social response to SARS and H1N1 in Hong Kong.
The simulated number of new infections and simulated social response are
shown for (a) the 2003 SARS outbreak and (b) the 2009 H1N1 outbreak.
Mean State-Trait Anxiety Inventory (STAI) scores are shown for comparison
with the simulated social response. The disease spread was modelled such
that the expected number of new infections per day reflected the observed
new infections per day. The disease risk index (k) was set to 0.95 for SARS,
reflecting the novelty of the virus, its unexpected appearance in Hong Kong
and the high clinical severity of the disease. Residents of Hong Kong con-
sidered H1N1 to be a much less severe disease than SARS. Therefore, we
set the disease risk index to be lower, 0.60. In these simulations, the wide-
spread media attention directed at SARS helped to fuel a large social
response in the population, whereas H1N1 did not produce a social response.
The shape of the simulated social response corresponds well with the mean
STAI for the SARS outbreak. For the H1N1 outbreak, comparison with the
mean STAI indicates that the perceived risk of H1N1 in Hong Kong was
slightly overestimated.
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4.2. Case study: Hong Kong SARS and H1N1
Hong Kong is a special administrative district of China and

home to 7 million people. In 2003, Hong Kong became the

epicentre of the severe acute respiratory syndrome outbreak

in South Asia. In total, 1755 cases were reported, with 299

deaths [30]. While SARS was spreading in Hong Kong,

Leung et al. [31] conducted a series of surveys of the popu-

lation. The surveys measured anxiety using the State-Trait

Anxiety Inventory (STAI) and asked about self-protective

behaviours. It was found that at the height of the outbreak

in early April, the residents of Hong Kong were experienc-

ing heightened anxiety in response to the spread of SARS

(figure 4a, lower left). Over time, as the case count fell, the

anxiety scores returned to lower levels. In addition, anxiety

during the SARS outbreak had behavioural manifestations.

Many residents wore face masks and stayed home from

work or school; some engaged in panic buying [7].

In the summer and autumn of 2009, Hong Kong was

affected by the global H1N1 pandemic. Compared with

SARS, H1N1 affected a large proportion of the population.
Using blood tests taken before and after the outbreak, as well

as survey data and reports of confirmed cases, Wu et al. [32]

estimated that about 11% of the population of Hong Kong

was infected with H1N1. Another study found that between 11

and 19% of the population was likely to be infected [33]. Never-

theless, public anxiety was relatively low. One survey found

that a majority of residents, 64%, felt that the H1N1 outbreak

had had no effect on their daily lives [34]. Another survey

found that anxiety was low at all points in the outbreak, with

a mean score of about 18 on the STAI (figure 4b, lower right)

[35]. This low level of concern was due to the low perceived

severity of H1N1. In late April, when H1N1 was spreading in

Mexico but had not yet reached Hong Kong, surveyed resi-

dents of Hong Kong estimated H1N1 to be about 60% as

severe as SARS. As they learned more, the severity estimates

were revised downward. When H1N1 finally hit Hong Kong

in June, residents believed H1N1 to be only about 15% as

severe as SARS [35].

The volume of Google searches for ‘H1N10 in Hong Kong

during 2009 supports the findings about perceived disease

severity [36]. The most searches were conducted in late April,

before H1N1 had begun to spread locally in Hong Kong.

Although there was a spike in search interest in mid-June

when local transmission began, search interest in H1N1

declined in Hong Kong over July and August even as the

number of cases rose. The residents of Hong Kong appear to

have been interested in the threat of a seemingly dangerous dis-

ease, but when it actually arrived and was not as severe as

feared, interest dissipated. It is also important to note that the

arrival of H1N1 in Hong Kong was not a surprise. It was

quite clear that H1N1 would have a global footprint, and

health officials in Hong Kong had months to prepare their

response. The SARS and H1N1 outbreaks are compared in

table 2. Observations about the disease severity and incidence

of SARS and H1N1 in Hong Kong were incorporated into the

choice of model parameters. The model fitting procedure is

described in the electronic supplementary material.

Although there were many more cases of H1N1, the simu-

lated social response for H1N1 was much smaller than that for

SARS (figure 4), since H1N1 was not perceived to be as severe.

Since SARS had low incidence, most agents in the network

were unlikely to be personally connected to anyone infected

with the disease, making the media signal the primary driver

of social response. Indeed, removing the effect of media in

the SARS simulations resulted in a 100% decrease in the

expected peak mean social response. For the H1N1 simulations,

coupling played a more important role in the simulated social

response, though media influence was still important. Remov-

ing the effects of media resulted in a 65% decrease in the

expected peak mean social response compared with the base-

line model in which media was active. Removing the coupling

mechanism resulted in a 28% decrease.

The simulated social response corresponds well with the

available STAI data (figure 4, lower plots). The simulated

social response for SARS peaked at a high level at the same

time as the peak in cases, then declined over the months

that followed, returning to a normal level by June 2003.

This behaviour mirrors the trajectory of the mean STAI

score in Hong Kong during the time period [31]. The simulated

social response for H1N1 rose only slightly during the outbreak

and never reached the same level as during the SARS outbreak.

If anything, the simulated social response overestimated the

social response to H1N1, perhaps indicating a lower value of

http://rsif.royalsocietypublishing.org/


Table 2. Comparison of SARS and H1N1 outbreaks in Hong Kong; disease and social response characteristics.

SARS, 2003 H1N1, 2009

disease characteristics

1755 cases and 299 deaths; a 17% mortality rate [30] approximately 11% of the population infected [32,33]

medical personnel had no prior experience with SARS medical personnel were familiar with the treatment of influenza

and anti-viral drugs were effective

the disease’s arrival in Hong Kong was unexpected [7] health officials had months to prepare for H1N1

social response characteristics

high anxiety, about 25 on the STAI [31] low anxiety, about 18 on the STAI [35]

behavioural social response, including panic buying [7] 64% of residents reported no effect on their daily lives [34]

Table 3. Comparison of spring and autumn outbreaks of H1N1 in Mexico City in 2009; disease and social response characteristics.

spring outbreak autumn outbreak

disease characteristics

203 confirmed cases: April 1 to June 1 [38] 2138 confirmed cases: September 1 to December 31 [38]

marked the emergence of a strain of influenza that in the past had caused

extreme morbidity and mortality

H1N1 was not as severe as originally feared and there was

increased familiarity with the virus

social response characteristics

schools, restaurants and entertainment venues closed [37] no widespread closures or activity restrictions [41]

media reports of widespread panic [39,40] media reports gave little indication of panic or anxiety
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k would have been a more suitable prediction. Cowling et al.
[35] observed that the mean STAI score was stable near baseline

during the entire outbreak. The simulated expected mean social

response was positively, but insignificantly, correlated with

mean STAI (r ¼ 0.5, d.f. ¼ 14, p ¼ 0.18). The relationship was

insignificant due to the low number of observations of mean

STAI (five for the SARS outbreak and 11 for the H1N1 out-

break) and the slight overestimate of k for the H1N1 outbreak

in Hong Kong; we will show in §4.3 that the estimate was

appropriate for the autumn H1N1 outbreak in Mexico City.
4.3. Case study: H1N1 in Mexico City
In March of 2009, cases of respiratory illness began to surface

in La Gloria, Mexico. By April 10, it was reported that 616

people, or 28.5% of the population, had been infected [37].

While it has since been confirmed that multiple respiratory

infections were circulating, at the time it appeared that a novel

H1N1 influenza virus was responsible for the outbreak. Shortly

afterwards, influenza cases began to be reported throughout

Mexico. The outbreak was particularly intense in Mexico City

where, according to data from the Mexican Social Security Insti-

tute, 203 confirmed cases were reported by June 1 [38]. The

Mexican government responded to the outbreak in Mexico

City with extreme social distancing measures that have been

estimated to have reduced disease transmission by between

29% and 37% [38]. Schools, restaurants and entertainment

venues were closed, and all public gatherings cancelled [37].

Many businesses voluntarily shut down. There were media

reports of widespread panic [39,40].

In late August of 2009, there was a second outbreak of H1N1

in Mexico City corresponding with the return of children from
the summer school vacation. By that time, fears that the 2009

influenza pandemic could reach the scale of the 1918–1919 pan-

demic had largely been alleviated. As a consequence, though

many more people were infected in the autumn outbreak,

the outbreak was met with relative calm. While the Mexican

government continued to encourage hygiene and social distan-

cing of infected individuals, closures were isolated and the

disease was allowed to run its course [41]. In Mexico City,

approximately 10 times as many cases were confirmed in the

autumn H1N1 outbreak, which lasted from late August to

early December, than in the spring outbreak, which lasted

from April to May [38]; however, the social response to the

autumn outbreak was much smaller. The spring and autumn

outbreaks are compared in table 3. The disease spread

parameters and disease risk index were fit to the distinct

dynamics of the spring and autumn outbreaks using the

procedure outlined in the electronic supplementary material.

The simulated social responses were in accordance with our

observations from media reports about the outbreaks (figure 5).

The model predicted a large social response for the spring out-

break. For the significantly larger autumn outbreak, the model

predicted low social response. It is important to note that had

the Mexican government not implemented extreme contact

reduction measures at the beginning of the spring outbreak,

there probably would have been many more cases. Neverthe-

less, given that these measures were in place, it seems that the

social response observed was connected to the potential of a

large and deadly outbreak, rather than the presence of such

an outbreak.

Media played a more important role in spreading social

response than did the coupling mechanism for both simulated

social responses. Removing the effect of media resulted in a

http://rsif.royalsocietypublishing.org/
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Figure 5. Predicting the social response to the 2009 autumn and spring out-
breaks of H1N1 in Mexico City. The simulated number of new infections and
simulated social response are shown for (a) the spring H1N1 outbreak and (b)
the autumn outbreak. The Google Trends search index for the term ‘influenza0

in Mexico City is shown for comparison with the simulated social response.
The disease spread was modelled such that the expected number of new
infections per day reflected the observed new infections per day. For the
spring outbreak, the disease risk index (k) was set to 0.75 to reflect
H1N1’s novelty and its perceived severity. For the autumn outbreak, we low-
ered the disease risk index to 0.60, since Mexico City already had experience
with H1N1 and H1N1was shown to not be as severe as originally feared.
While the number of cases produced in the spring outbreak was relatively
low, a large social response resulted. The autumn outbreak, though larger,
was met with relative calm. In our model, the social response in the
spring outbreak was triggered by heightened media attention brought on
by the novelty and perceived severity of the disease. In the autumn, the
size of the media signal was reduced and the resulting social response
was much smaller. The simulated expected mean social response was strongly
correlated with the Google Trends search index for influenza in Mexico City
(r ¼ 0.69, d.f. ¼ 32, p , 0.001).
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97% decrease in the expected peak mean social response for the

autumn outbreak and a 100% decrease for the spring outbreak.

Removing the coupling mechanism resulted in 8% and 5%

decreases for the autumn and spring outbreaks, respectively.

To the best of our knowledge, quantitative research on the tra-

jectory of social response during these outbreaks has not been

completed. Such research will be needed to thoroughly vali-

date the simulated social response curves. Researchers have

used Google Trends search indices as an indicator of issue sal-

ience [42]. We, therefore, investigated the relationship between

the simulated social response and the Google Trends influenza

search index for Mexico City [36]. The search index is a normal-

ized measure of the volume of search queries for the term

‘influenza0. We used the index as aproxy for anxiety related

to H1N1. The simulated expected mean social response was

strongly correlated with the search index (figure 5, lower

plots; r ¼ 0.69 d.f. ¼ 32, p , 0.001). There is no significant

association between the number of confirmed influenza cases
and the influenza search index (r ¼ 20.21, d.f. ¼ 32, p ¼
0.24), which suggests that the interest in influenza was not pri-

marily driven by people infected with the disease. The index

corresponds well with our qualitative analysis of news reports

from the time period, and we believe that it at least partially

measures social response. An approach to quantitative esti-

mation of social response with greater content validity is

needed for better validation of the simulations in the future.
5. Discussion
We have introduced a model of the joint diffusion of social

response and disease through a population. It is among the

first in the field to explore how the spread of disease influences

social processes in a society. This model contributes to the body

of knowledge in several ways. Perhaps most importantly, the

present model accounts for discrepancies between perceived

and actual risk of infection. One might assume that social

response to disease spread is proportional to the overall

burden of the disease. Under this hypothesis, we would

expect that low probability, high severity diseases and high

probability, low severity diseases would elicit little social

response, yet this is not the pattern observed. Instead, while

high probability, low severity diseases, such as seasonal influ-

enza, do not typically elicit social response, high severity, low

probability diseases, such as Ebola and SARS, frequently do.

Moreover, the same disease can provoke different social

responses in different locations or even in the same location

at different times, as with H1N1 in Mexico City. Through incor-

poration of a mechanism for risk amplification, the present

model is able to realistically model these scenarios.

The model is one of the first to introduce a mechanism for

media influence. Media undoubtedly plays a large role in disse-

minating information about the threat of disease and, according

to the social amplification of risk framework, can be responsible

for increasing concern about infection. Bomlitz & Brezis [43] col-

lected data on the number of newspaper articles about different

types of diseases. They found that newspaper coverage of a

health risk is negatively correlated with the number of deaths

from the risk. Novel, low incidence risks, such as SARS and

bioterrorism, garner the bulk of attention, while more common-

place risks are comparatively ignored. Our model captures

this behaviour. Media actively influences the population

when novelty and severity are high, regardless of incidence.

We have shown that even when a disease has low incidence

and social response does not spread by word of mouth,

media influence can produce a social response.

The model is extremely flexible, allowing us to simulate a

variety of real-world situations with just a few parameters.

We have shown through the simulations of H1N1 in

Mexico City and of SARS and H1N1 in Hong Kong that

the model can account for large and small social response

resulting from changes in novelty and perceived severity of

disease. Additionally, the model approach allows us to add

additional interventions to prevent disease without extensive

modifications. We can then explore what happens when

interventions are triggered by heightened social response

rather than disease incidence.

We encountered a significant problem while identifying

real-world quantitative data about disease-related social anxiety

against which to validate the shape and magnitude of the simu-

lated social response curves. Very few studies are currently

http://rsif.royalsocietypublishing.org/
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available. The Hong Kong outbreaks discussed in the paper

were selected partially because of availability of such quantitat-

ive estimates. More survey studies explicitly measuring

characteristics of social response are needed for full validation

of the model. Additionally, data from Internet search engines,

news sources or social networking sites could be mined to pro-

duce a quantitative assessment of social response (see Vaisman

et al. [44] for discussion of an initial attempt).

One of the limitations of the model is that the disease risk

index (k) is currently estimated manually, which is a potential

source of bias. We are working on developing a data-driven

approach to estimate k, based on early information about

the outbreak, the characteristics of the disease and historical

data on how similar cultures have responded to similar
disease threats. Similarly, more quantitative data on social

response are needed to better estimate this parameter.

Eventually, we plan to use this model, not only to explain

social response during past disease outbreaks, but to predict if

and how social response will spread during future outbreaks.

Incorporating mechanisms for analysis of the effects of mitiga-

tion measures will further enhance the model’s usefulness.

These predictions will help policy makers better respond to dis-

ease outbreaks, by bringing to their attention when there is risk

for social disruption and allowing them to take its cost into

account.
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