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Well established fine-scale urban mobility models today depend on
detailed but cumbersome and expensive travel surveys for their cali-
bration. Not much is known, however, about the set of mechanisms
needed to generate complete mobility profiles if only using passive
data-sets with mostly sparse traces of individuals. In this study, we
present a novel mechanistic modeling framework (TimeGeo) that ef-
fectively generates urban mobility patterns with resolution of ten
minutes and hundred of meters. It ties together the inference of
home and work activity locations from data, with the modeling of
flexible activities (e.g., other) in space and time. The temporal
choices are captured by only three features: the weekly home-based
tour number, the dwell rate, and the burst rate. These combined gen-
erate for each individual: (i) stay duration of activities, (ii) number
of visited locations per day, and (iii) daily mobility networks. These
parameters capture how an individual deviates from the circadian
rhythm of the population, and generate the wide spectrum of empir-
ically observed mobility behaviors. The spatial choices of visited
locations are modeled by a rank-based exploration and preferential
return (r-EPR) mechanism that incorporates space in the EPR model.
Finally, we show that a hierarchical multiplicative cascade method
can measure the interaction between land use and generation of
trips. In this way, urban structure is directly related to the observed
distance of travels. This novel framework allows us to fully embrace
the massive amount of individual data generated by information and
communication technologies (ICTs) worldwide to comprehensively
model urban mobility without travel surveys.
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Our ability to correctly model urban daily activities for
traffic control, energy consumption and urban plan-

ning [1, 2] have critical impacts on people’s quality of life and
the everyday functioning of our cities. To inform policy mak-
ing of important projects such as planning a new metro line
and managing the traffic demand during big events, or to pre-
pare for emergencies, we need reliable models of urban travel
demand. These are models with high resolution that simulate
individual mobility for an entire region [3, 4]. Traditionally,
inputs for such models are based on census and household
travel surveys. These surveys collect information about indi-
viduals (socioeconomic, demographic, etc.), their household
(size, structure, relationships), and their journeys on a given
day. Nonetheless, the high costs of gathering the surveys put
severe limits on their sample sizes and frequencies. In most
cases, they capture only 1% of the urban household popula-
tion once in a decade with information of only one or few days
per individual. The low sampling rate has made it very costly
to infer choices of the entire urban population [3, 5–7].

More recent studies try to learn about human behavior in
cities by using data collected from location-aware technologies,
instead of manual surveys, to infer the preferences in travel

decisions that are needed to calibrate existing choice mod-
eling frameworks [8–10]. The problem, however, is that the
geotagged data available from communication technologies, in
the massive and low cost form, cannot inform us about the
detailed activity choices of their users, making most of the
data useless for meaningful urban scale mobility models. In
order to make the best use of the massive and passive data, a
fundamental paradigm shift is needed to model urban mobil-
ity and enhance new opportunities emerging through urban
computing [11]. This is our goal with TimeGeo, a modeling
framework that extracts individual features and key mecha-
nisms needed to effectively generate complete urban mobility
profiles from the sparse and incomplete information available
in telecommunication activities.

Mobile phones are the prevalent communication tools of
the twenty-first century, with the worldwide coverage up to
96% of the population [12]. The call detailed records (CDRs),
managed by mobile phone service providers for billing pur-
poses, contain information in the form of geo-located traces
of users across the globe. Mobile phone data have been useful
so far to improve our knowledge on human mobility at un-
precedented scale, informing us about the frequency and the
number of visited locations over long term observations [13–
18], daily mobility networks of individuals [15, 19], and the
distribution of trip distances [13, 15, 17, 20–22]. Due to the
sparse nature of mobile phone usage, these data sources have
sampling biases and do not provide complete journeys in space
and time for each individual [9]. Nonetheless, it has been pos-
sible to extract and characterize from phone data where each

..

Significance Statement

Individual mobility models are important in a wide range of
application areas. Current mainstream urban mobility mod-
els require socio-demographic information from costly manual
surveys, which are in small sample sizes and updated in low
frequency. In this study, we propose a novel individual mobil-
ity modeling framework, TimeGeo, that extracts required fea-
tures from ubiquitous, passive, and sparse digital traces in the
ICT era. The model is able to generate individual trajectories
in high spatial-temporal resolutions, with interpretable mech-
anisms and parameters capturing heterogeneous individual
travel choices. The modeling framework can flexibly adapt to
input data with different resolutions, and be further extended
for various modeling purposes.

S.J., Y.Y., and M.C.G. designed research; S.J., Y.Y., S.G., D.V., S.A., and M.C.G. performed re-
search; S.J., Y.Y., and S.G. analyzed data; S.J., Y.Y., D.V.,and M.C.G. wrote the paper.

1S.J. and Y.Y. contributed equally to this work.

2To whom correspondence should be addressed. E-mail: martag@mit.edu

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX PNAS | April 6, 2016 | vol. XXX | no. XX | 1–12



individual may stay or pass by, and then infer the types of
activities that they engage in at various urban locations de-
pending on the time of their visits [23]. By labeling visited
location types for individual users as home, work, or other,
representative traffic origin-destination (OD) matrices for an
average day and by time of day can be generated [24, 25].
They are aggregated estimates of person-trips between pairs
of ODs within few hours, and these results have been success-
fully validated in various cities against existing travel demand
models that required expensive surveys for calibration [24, 25].

A fundamental question still remains on how to perform a
spatiotemporal mapping of raw mobile phone data to estab-
lish models of travel demand with high spatiotemporal res-
olution, through which individuals’ disaggregated daily jour-
neys can be generated. In the current literature that analyzes
sparse geotagged data, the daily temporal behavior of human
mobility is either not modeled or oversimplified [16, 26]. For
example, previous studies on human dynamics do not explic-
itly model individual temporal choices, but randomly draw
parameters such as waiting time or the number of activities
in each active period from aggregated distributions measured
from data [14, 15, 27]. The model in [19] introduces time
dependency in travel and tendency to arrange short out-of-
home activities in consecutive sequences (i.e., bursts of activi-
ties) [27–31], but the stay duration at flexible (other) locations
is fixed. Furthermore, it does not incorporate spatial choices
or the heterogeneity of individual behavior.

To realistically model individual mobility in cities at both
micro- and macro-level, it is necessary to understand the es-
sential features of a population distribute in space at different
times. Here we show that these features can be extracted from
big data sources. We present spatiotemporal patterns of in-
dividual daily mobility that can be generated by a coherent
framework of mechanisms. This paper discusses the first com-
prehensive process of converting sparse mobility traces into
daily trajectories in temporal resolution of ten minutes and
spatial accuracy of a few hundred meter radius, with inter-
pretable probabilistic mechanisms. Instead of using social-
demographic information to calibrate the set of detailed deci-
sions involved in activity choices—as required by mainstream
transportation modeling approaches, the framework consists
of directly measurable parameters discovered from passive
data. It represents a needed paradigm shift to model individ-
ual daily trajectories in cities, adapted to ubiquitously avail-
able sparse digital traces of individuals. The results are high
resolution travel diaries for a large sample of users based on
their ICT data in the urban context. The presented set of pa-
rameters can be further refined as more information becomes
available at the individual level.

Activity extraction from mobile phone data

To demonstrate the mechanistic modeling framework, we ana-
lyze a CDR data set of 1.92 million anonymous mobile phone
users for a period of 6 weeks in the Greater Boston area. To
have a control experiment, we also examine a donated set of
self-collected mobile phone traces of a graduate student in the
same region over a course of 14 months, recorded by a smart-
phone application. When an individual anchors at a location
to conduct an activity, it is defined as a stay. We apply the
stay extraction method discussed in the literature [23] to both
data sets. We filter out signal jumps as well as pass-by records

when mobile phone users were traveling. For each user, based
on the start time and frequency of visits to each stay location,
we infer the stay location type as home (H), work (W), or
other (O).

We are able to identify home locations for 1.44 million
users which is 75% of our initial user base. Next, we filter
users who have more than 50 total stays and at least 10 home
stays in the observation period. These are identified as ac-
tive users and are used to extract the various parameters of
TimeGeo (as explained in detail in the next sections). These
active users can be labeled as commuters (133,448 individuals)
who have journey-to-work trips, and non-commuters (43,606
individuals) who have no journey-to-work trips.

Fig. 1 illustrates the pipeline of extracting stays, labeling
activity types, and deriving individual mobility features from
raw mobile phone data for each of three demonstrated days.
Fig. 1 (a-c) show the raw cell phone records (in blue for 14
months, and in purple for each day), and the extracted stay
locations of the individual (in red). Fig. 1 (d-f) show that
for active users the extracted stays in each day define a daily
journey (usually starting and ending at home). A trip is made
when a user changes stay locations. The time-bar shows the
start time and duration for each stay, and activity types are
color-coded.

Generating mechanisms of individual mobility

The modeling framework of TimeGeo is presented in Fig. 2
(a). It integrates the temporal and spatial choice mechanisms
of human mobility. We assume that for an individual agent,
her work activity has a fixed location, start time, and dura-
tion; her home activity is fixed in terms of location but flexible
with start time and duration; her other activity is flexible with
regard to location, start time, and duration. The presented
framework aims to model the flexible spatial and temporal
mobility choices, whereas the schedule of the fixed activity
(i.e., work) is assumed as predetermined (see SI Appendix
section 2 for details). We divide each day of a week into 144
discrete intervals of 10 minutes (i.e., 1008 time-intervals in a
week). For each time interval t within a week, an individual
first decides to stay or move. If she chooses to move, she then
decides where to go. We improve from previous human mobil-
ity models [14] by generating spatio-temporal patterns while
introducing individual-specific mobility parameters, namely:
a weekly home-based tour number, a dwell rate, and a burst
rate (explicitly defined later). These parameters capture the
heterogeneity of individual daily mobility observed in the pas-
sive digital traces. Nevertheless, due to the limited observa-
tion period of the CDR data used in this study, some parame-
ters cannot be extracted at the individual level. These global
parameters measure the preferential return and exploration
rates, and the rank selection probability. As large scale data
with higher frequency (e.g., GPS traces) and longer obser-
vation periods (e.g., many months) become available, these
global parameters could be measured at the individual level
as well.

Temporal choices. To uncover the key generating mechanisms
needed to reproduce individual daily trajectories, we propose
a time-inhomogeneous Markov model with three individual-
specific parameters—weekly home-based tour number (nw),
dwell rate (β1), and burst rate (β2)—to capture individual
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circadian propensity to travel [16, 19, 26] and likelihood of ar-
ranging short activities in consecutive sequences [27–31]. As
work activity is assumed to have fixed start time and dura-
tion, we consider two Markov states: home and other. Home
is considered as a less-active state, since the average stay du-
ration at home is significantly longer than that at other states
where people are more active (i.e., likely to travel).

When an individual l is at home, her individual travel circa-
dian rhythm is defined as nwP (t), representing her likelihood
of making a trip originated from home in a time-interval t of
a week. The weekly home-based tour number nw counts the
total number of trips that an individual l initiated from home
to other places. P (t) is the global travel circadian rhythm
of the population in an average week. We differentiate P (t)
for commuters and non-commuters (see SI Appendix section
3.1). For non-commuters, P (t) is measured as the fraction of
all user-trips in the time interval t of the week for the pop-
ulation (i.e.

∑1008
t=1 P (t) = 1, t = 1, 2, ..., 1008), capturing

the expected variation of travel in different time of the week
(shown in Fig. 2 (b)). For commuters, since work is modeled
as a fixed activity, P (t) does not include trips to or from work.
The product of the two, nwP (t), less than 1, defines the indi-
vidual travel probability at a specific time interval (t) while
she is at home.

To model an individual’s propensity to travel from an other
(out-of-home) state, we introduce a dwell rate β1 which mea-
sures how much more active (or likely to travel) the person
is at an other state compared to home. The probability of
traveling when an individual is at an other state is defined as
β1nwP (t). By capturing individual propensity to move from
an other state, β1nw controls the stay duration ∆t for flexible
activities. The higher the product β1nw, the more likely the
person will choose to move and thus the shorter duration ∆t
she will stay at other locations.

Next, if an individual is already out of home and chooses
to move at time t, we then model her decision to either go
home or go to an additional other location by introducing a
burst rate β2. We measure the probability that the individ-
ual travels from an other location O1 to an additional other
location O2 as P (O1 → O2) = β2nwP (t). It is assumed that
for an individual who has decided to move, the probability of
visiting an additional other location is proportional to β2nw.
The ratio between the two choices of going to an additional
other location or going home can be presented as follows:

P (O1 → O2)
P (O1 → H) = β2nwP (t)

1 − β2nwP (t) , [1]

For a given value of β2nw, when P (t) is high (e.g., in the af-
ternoon), people are more likely to visit additional other loca-
tions; when P (t) is low, people are more likely to return home.
For a given P (t), the higher the value of β2nw, the higher
probability the individual will keep visiting flexible (other) lo-
cations, and thus the greater number of daily locations N she
will visit.

Compared to previous models that randomly draw the stay
duration (or waiting time ∆t) or the number of visited lo-
cations (N) from aggregated empirical distributions [14, 27],
by introducing three individual-specific parameters including
weekly home-based tour number nw, dwell rate β1, and burst
rate β2, we explicitly model the temporal dynamics of indi-
vidual mobility. The Markov model framework allows it to

be analytically tractable and to derive explicit effects in the
resulting stay-duration and daily-location distributions P (∆t)
and P (N) (see SI Appendix section 6).

Spatial choices. To model the spatial choices of individual mo-
bility, we propose a rank-based exploration and preferential
return (r-EPR) model by incorporating a rank-based selection
of new locations to the original EPR model [14]. The EPR
model explains well the differences in the frequency of visits
of each location [13–18, 32]. For each movement, an individ-
ual decides either to explore a new location with probability
Pnew, or return to a previously visited location with proba-
bility 1 − Pnew. The exploration probability Pnew = ρS−γ

captures a decreasing propensity to visit new locations as the
number of previously visited locations (S) increases with time,
and effectively captures individual mobility choices between
explorations and returns. If the individual decides to return
to previously visited locations, she chooses a specific location
i with probability Pi defined as the visitation frequency of
location i [14]. Fig. 1 (g-i) illustrate Pi with different circle
sizes, using the volunteered student’s location records as an
example. In each sub-figure, we label the visitation frequency
of each location up to the current day. We highlight loca-
tions visited in the current day in the foreground and show
the previously visited ones in the background.

If the individual decides to explore a new location, she
needs to choose a destination from a large number of possible
alternatives. One limitation of the original EPR model pro-
posed in [14] is its lack of a mechanism for the new-location
selection. To select a new location, the original EPR model
randomly draws the exploration jump-size (∆r) from a global
empirical distribution. To model the exploration mechanism
more sensible to the urban structure, in this study, we incor-
porate a rank-based selection mechanism for newly explored
locations (i.e., r-EPR model).

Our selection mechanism gives a rank k to each alternative
destination based on their distances to the trip origin [33–36].
Among all potential new destinations, the one closest to the
current location is of k=1, the second closest k=2, etc. The
empirical probability of selecting the k-th location as a desti-
nation is quantified as P (k) ∼ k−α, the same form has been
measured in various studies that analyze aggregated trips
between locations for both commuting and non-commuting
trips [33–36]. For an individual to select an exploration-
destination, we measure P (k) aggregating all users’ destina-
tions. Figs. 1 (j-l) illustrate probabilities of selecting different
destinations (with higher ranks in red and lower ranks in blue).
Each dot represents a location for an other activity extracted
from the CDR data. The height of the dot on the z axis
represents the dot density at the location.

Because the observation period of the empirical data in
this study is six weeks, most users have a limited number
of exploration-trips, making it difficult to estimate the spa-
tial parameters of P (k) at the individual level. Given more
abundant data, this distribution could be estimated at the
individual level as well.

The role of land-use on travel distance

Different spatial patterns of cities imply different geographi-
cal advantages to urban functioning [37]. TimeGeo takes the
spatial distribution of locations (e.g., observed from the CDR
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data) as an input. To explain and quantify the influence of
land-use on travel, we propose a hierarchical multiplicative
cascade framework of analysis. It allows scenario tests on
how changes in land-use patterns will affect individual travel.
It can generate different scenarios of urban structure (i.e.,
spatial distribution of home and other activities).

Fig. 3 (a-d) show the distribution of different types of lo-
cations (home and other) extracted from the mobile phone
data set at two scales: At a scale with larger grids, home
and other locations are mixed spatially, showing high spatial
correlations. At a scale with smaller grids, the separation be-
tween home and other types of land-use becomes clear [35].
The intuition behind this phenomenon is that at a scale with
smaller grids (e.g., similar to the census block level), land use
is often separated— meaning that residential land use is sep-
arated from non-residential one; while at a scale with larger
grids (e.g., at the district, town, or regional level), residential
and non-residential land use mix together. A hierarchical mul-
tiplicative cascade divides an area of interest into grids with
different granularity and quantifies the spatial correlation of
each type of land uses at different scales.

The current framework integrates the two features that
influence the spatial choices of exploration to other locations.
These are (i) the spatial distribution of activity locations, and
(ii) the rank-based location-selection mechanism (illustrated
in Fig. 1 (j-l)). By characterizing the spatial distributions of
population and facilities at various scales, here we formalize
how these two features influence the observed trip-distance
distribution.

To quantitatively represent home to other (H − O) trip
distance, we denote home locations as the demand side D,
and other locations as the supply side S. The entire region of
interest is Ω0 (taken as a unit square, shown in Fig. 3(e)). We
progressively partition Ω0 into 41, 42, ..., 4n square-tiles with
side length 2−1, 2−2, ..., 2−n. Each time a mother-tile Ωi−1
(at resolution level i − 1) is partitioned into 4 daughter-tiles
Ωi (at resolution level i). Then the probability that a trip
goes outside its origin-tile at resolution level i, P>(i), can be
expressed as

P>(i) =
∫ M

1
P>(k)fSi,trip (k)dk [2]

where M is the total number of supplies in the entire region
Ω0; P>(k) is the probability that the k supplies in the origin-
tile are not chosen; fSi,trip (k) is the probability of finding k
supplies within the origin tile. The tile exceeding probabil-
ity P>(i) at different tile resolutions generates the resulting
distribution of trip distances. Equation 2 ties together the
rank-based selection mechanism P>(k) and the geographic
distribution of locations fSi,trip (k), which can be calculated
as

fSi,trip (k) =
∫ Q

0
fDi,trip (D)fSi|Di=D(k)dD [3]

where fDi,trip (D) is the conditional probability that a trip
originates in a tile at level i given D demands are in that
tile. fSi|Di

is the conditional probability of supply given de-
mand. Q is the number of demand in the entire study area.
In summary, to quantify trip distance through P>(i), we not
only need the distribution of each type (home and other) of
location, but also the correlation between them at different
scales. The detailed introduction to the cascade method of

analysis can be found in Ref. [38] and in the Methods sec-
tion, the derivation of the resulting trip distance distribution
is presented in SI Appendix section 5.

Results

Extracted mobility features from mobile phone data. In this
section we show the results for non-commuters. For each in-
dividual, the weekly home-based tour number nw is directly
extracted from the data. While the β1 and β2 parameters
are calibrated using the temporal Markov model. The rest of
the parameters needed are: α = 0.86 for the rank selection
probability P (k) ∼ k−α, and ρ = 0.6 and γ = 0.21 for the
preferential return mechanism Pnew = ρS−γ . These three pa-
rameters are extracted from the aggregated data of the entire
population (Fig. 2(d, e)).

The individual values of β1 and β2 values, are obtained
by calibrating the Markov model to minimize the following
statistic:

A(β1, β2) =
∫

|PD(∆t)−PM (∆t|β1, β2)|d∆t+η|N̄D−N̄M (β1, β2)|
[4]

where PD(∆t) and PM (∆t|β1, β2) are the distributions of the
individual empirical and modeled stay-duration, respectively.
Scalar values N̄D and N̄M (β1, β2) are the average daily num-
ber of visited locations measured from the individual’s empir-
ical data and from the model-simulation, respectively. The
difference between N̄D and nw is that N̄D counts all trips
while nw only counts trips starting at home. Meta-parameter
η = 0.035 controls the weight between the two components.
Since A(β1, β2) is a non-convex function, discrete β1 and β2
values are used (β1 = 1, 2, 3, ..., 20, β2 = 1, 6, 11, ..., 101) to
estimate the (β1, β2) pair that minimizes A(β1, β2) for each
person. The empirical results of nwβ1, nwβ2 and nw for all
the individuals is presented in Fig. 2(c). The median value
of nw, nwβ1 and nwβ2 for non-commuters are 7.4, 34.2, and
355.6 respectively. Median dwell rate β1 = 4.6, suggesting
that when people are not at home, they are on average 4.6
times more likely to travel.

Simulated mobility features. Taking the featured parameters
measured directly from active users of the mobile phone data
set, TimeGeo can generate realistic individual daily trajecto-
ries over a long time period at the urban scale.

We first use the student volunteer’s 14-month mobile phone
records as an example to explain the simulation and interpret
the results of TimeGeo. We fix the locations of home and
work (in this case school is identified as work) and apply the
proposed modeling framework to simulate the spatiotempo-
ral choices of flexible other activities and temporal choices of
home activities. For the student, we computed that his dwell
rate β1 = 4, burst rate β2 = 36, and weekly home-based tour
number nw = 7. His burst rate is lower than the population
average, reflecting smaller likelihood to conduct consecutive
short activities. Fig. 4 (a-c) show three simulated days for
the student. The days are predominated by home-work trips,
with a few trips to other locations. The model is able to cap-
ture not only the number of locations visited each day, but
also more detailed configuration of daily trip chains. Fig. 4 (d)
shows the distribution of the most frequent daily mobility net-
works, i.e., daily motifs, of the student. We represent unique
locations as nodes and trips between locations as edges and
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count the motif distribution for days start and end at home.
The dominating motif is traveling just between two locations
in a day. To show the infrequent motifs clearer, we present
the percentage in log scale.

A key value of TimeGeo is to use ICT records to generate
individual trajectories from discovered mobility features at
the urban scale. In Fig. 4 (d-f), we illustrate a user with
very sparse data. She only had 4 distinct locations in 30 days
and we simulate her complete daily trajectories in space and
time. We select two different sets of β1, β2, and nw from the
joint distribution shown in Fig. 2 (c) to generate two synthetic
realizations of the user. Fig. 4 (e-f) show the two resulting
profiles of simulated journeys of the same sparse user and
Fig. 4 (h) shows the distinct motif distributions.

The importance of the individual features extracted from
data (Fig. 2 (c)) lies in its ability to capture diverse travel
behaviors observed in the population. Fig. 5 (a-d) compare
mobility patterns for different individual profiles. The individ-
ual 1 and 2 represent two extreme cases: one travels more fre-
quently (shown in squares, nw = 10.86, β1 = 6, β2 = 41) and
the other travels less frequently (shown in circles, nw = 5.51,
β1 = 1, β2 = 36). As a comparison we also present the
average case —a simulation using median values of the pa-
rameters nw, β1, and β2. Fig. 5 (a, b) show that these three
individuals have distinct P (∆t) and P (N) distributions. The
less frequent traveler has significantly longer stay duration
and visits fewer locations per day. To quantify the differences
between empirical distributions of data and the model simu-
lation, we employ the Kolmogorov–Smirnov (KS) test. The
KS statistic between empirical and simulated P (∆t) for the
two extreme individuals are 0.12 and 0.11 respectively. If
we compare their empirical data with the average case, the
KS statistic increases to 0.25 and 0.20 respectively. Similarly,
for these two individuals, the KS statistic for P (N) are 0.05
and 0.12. When comparing with the average case, the KS
statistic increases to 0.40 and 0.50 respectively. It confirms
the importance of including individual-specific parameters to
model temporal choices. Interestingly, although these three
cases share similar location visitation frequency f(L), the sim-
ulation result fits less well in trip distance distribution P (∆r)
(as shown in Fig. 5 (c, d)). The KS statistic for P (∆r) are 0.64
and 0.49. One reason is that the model uses global parame-
ter values for spatial choices. On the other hand, as is shown
by the aggregated trip distribution in Fig. 5 (h), the proposed
model overestimates long-distance trips because although trip
distance (rank of each location) is an influential factor when
selecting new visitation locations, for return-trips, distance is
not a decision factor. Therefore, compared to empirical data,
the proposed model has a higher probability of visiting far but
frequently visited locations. With data of high frequency and
longer observation period available in future studies, machine
learning methods can be applied to better learn from choices
at individual level when choosing return trips for improvement
of our proposed modeling framework.

Fig. 5 (e-h) compare aggregated mobility features ex-
tracted from data and simulation for all the active non-
commuters. These results show that to reproduce individual
mobility patterns realistically, it is critical to incorporate each
of the mechanisms proposed in the current modeling frame-
work. Namely, the weekly home-based tour number, dwell
rate, burst rate, the rank-based EPR, over the land use profile

of the city under consideration. The results on the aggregated
daily mobility motif distribution is presented in SI Appendix
section 4.2.

For the dwell rate (β1), if β1 = 1, i.e., the model does not
differentiate the mobility circadian rhythms of home or other
activities. The resulting P (∆t) distribution will underesti-
mate trips with short duration, and the KS statistic increases
from 0.04 to 0.27. For the P (N) distribution, the KS statis-
tic for the model with and without the burst rate β2 are 0.03
and 0.22 respectively. The bursts of flexible activities, cap-
tured by the dwell and burst rates β1 and β2, ensure realistic
distributions of the stay duration P (∆t) and the number of
daily visited locations P (N). The improved rank-based EPR
mechanisms, model the selection of locations. It improves the
KS statistic of the trip distance distribution from 0.52 to 0.39.
The visitation frequency to the Lth most visited location fol-
lows f(L) ∼ L−1.2±0.1. In Fig. 3 (f), P>(i) measures the
probability that a generic exploration trip goes outside its ori-
gin tile at resolution level i. At the largest 4 tile sizes (24km,
12km, 6km, 3km), the cascade is a pure log-normal cascade
and P>(i) can be analytically calculated and the result com-
pares very well with the data. The empirical data, simulation,
and analytical calculation all show that 20% of the trips cross
the tile with a size of 24km, and over 60% cross the tile with
a size of 3km.

In SI Appendix section 4.3 we show the results of simulated
daily mobility patterns for the population (aged 16 and over)
in Metro Boston (3.54 million individuals). By carefully ex-
panding active mobile phone users to the population, we gen-
erated 1 weekday mobility trajectories using TimeGeo. Our
simulation results show good agreement with the latest travel
survey [39] and with two state-of-the-art travel demand mod-
els of the Boston Region Metropolitan Planning Organization
(MPO) which needed expensive surveys for calibration [40].

Conclusion

We present a mechanistic modeling framework to generate
individual daily mobility with fine-resolution at urban scale.
Temporally, we introduce the weekly home-based tour number,
dwell rate, and burst rate to model the bursts of short flexible
activities in activity-chains. This mechanism can reproduce
individual distributions of stay duration, number of daily vis-
ited locations, and daily mobility motif distribution. Spatially,
an improved rank-based EPR model is introduced to explain
individual activity location selection choices. Compared to
the original EPR model, the ranking mechanism quantifies
the likelihood of selecting new destinations in space based on
the distribution of facilities around trip origins. Moreover,
the covariance of the distributions of population and facilities
in a given region are characterized using a hierarchical multi-
plicative cascade framework of analysis. In this way, we take
account of the influence of region-specific spatial structure
on individual travel distances. This enables us to perform
scenario tests on how changing land use in the city would
affect micro-level individual travel behavior and macro-level
OD flows.

TimeGeo serves as a general modeling framework of urban
trajectories that can be flexibly adapted to different applica-
tion scenarios using population density and the distributions
of facilities in any city. It can be coupled with sparse loca-
tion data from ICTs that sample the visitation preferences
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of actual individuals and can complement or, for some appli-
cations, substitute the need for expensive travel surveys for
modeling urban travel. The framework is flexible to gener-
ate trajectories with various data conditions. The minimum
requirement is to have population and facilities distributions.
In the current results, the parameters to model exploration
and returns (α, ρ and γ) are assumed to be the same across
the population, while the temporal mobility rates of an indi-
vidual are assumed to be independent of the actual location.
In future studies, as more data of higher frequency and over
longer periods become available, it is possible to further learn
from the individual variations of the proposed parameters. It
is also interesting to explore the variations of the model pa-
rameters across urban areas, and across population groups
with different demographics and lifestyles.

Materials and Methods

All study procedures were carried out with Institutional Review
Board approval from MIT COUHES (protocol # 1405006399) ap-
proved on June 10, 2014. Call Detailed Record (CDR) data was
collected by AirSage for billing and operational purposes. The stu-
dent, who donated his 14-month self-collected mobile phone traces
through a smartphone application (OpenPaths), provided informed
consent for the research.

Mobile phone data. We extracted activity stay locations of 1.92 mil-
lion cell phone users from their Call Detailed Records (CDR) in the
Greater Boston area during an observation period of 6 weeks. A
stay means performing an activity at a location. A stay sequence,
or an activity sequence, represents consecutive stays a person made
in a period of time (usually a day). A trip is made between con-
secutive stay locations. These stay locations are also called trip
origins and destinations. In the CDR data, a record is made when
a user calls, sends text messages, or uses data through the cellular
networks. Each record is in the following format: (UserID, longi-
tude, latitude, time). The precision of the location is about 200m
to 300m in urban areas. For the voluntarily self-collected mobile
phone user example, a record is made every time the smartphone
application detects a significant spatial movement. The data is in
the same format and similar spatial resolution as the CDR data.
The detailed methods to extract stay locations and to label loca-
tion types (as home, work, and other) are presented in SI Appendix
section 1. For the CDR data, the records do not directly correspond
to a user’s stays—A stay could not be detected if a user does not
use his or her cell phone more than once during a stay. Even for
cases when more than one cell phone usages were recorded, the stay
duration can only be approximated for active phone users. There-
fore not all cell phone users have enough records to be measured
for basic mobility patterns presented in this study. Meanwhile, we
cannot determine if long stays at one location (for over 2 days) are
caused by no cell phone usage or actual stay at one location for
over 2 days, therefore these stays were removed from the analysis
and not captured by the model.

The hierarchical multiplicative cascade model. For any given sub-
region ω ⊂ Ω0, D(ω) is the number of trip origins in ω and S(ω) is
the number of trip destinations in ω. We use bivariate random mea-
sures X(ω) = [D(ω), S(ω)] to represent the number of demand and
supply locations in ω, where X results from a cascade process in
which the fluctuations at different spatial scales combine in a mul-
tiplicative way. The generation of bivariate [D, S] cascades is illus-
trated in Fig. 3(c). The demand and supply in a generic i-tile Ωi are
Di and Si and the associated measure densities are D′

i = Di/|Ωi|
and S′

i = Si/|Ωi|. One starts with uniform measure densities D′
0

and S′
0 in Ω0, then progressively partitions Ω0 into 41, 42, ..., 4n

square tiles of side length 2−1, 2−2, ..., 2−n. The demand and sup-
ply densities in the daughter tiles are multiplied by independent
realizations of non-negative random factors WDi and WSi , with
mean value 1. The random vectors Wi = [WDi , WSi ], i = 1, 2, ...n
are the generators of the cascade. While the generators Wi have

independent values in different i-tiles, their components WDi and
WSi in a given i-tile may be dependent. Moreover, the distribu-
tion of Wi may vary with the resolution level i. These features
provide important modeling flexibility. The measured densities at
resolution level i − 1 and i are related as

[
D′

i
S′

i

]
d=

[
WDi 0

0 WSi

] [
D′

i−1
S′

i−1

]
[5]

According to Fig. 3 (a-d), at larger tile sizes almost all tiles are
non-empty and the supply and demand have positive correlation.
Consequently for small i values (large tile sizes) the generator can
be described as joint log-normal variables [38]. If the log generators
ln(WDi ) and ln(WSi ) have joint normal distribution with variances
σ2

WDi
and σ2

WSi
, mean values −1/2σ2

WDi
and −1/2σ2

WSi
and cor-

relation coefficient ρLNi , then ln(Di) and ln(Si) have joint normal
distribution with mean values mDi and mSi , variances σ2

Di
and

σ2
Si

and correlation coefficient ρi given by

σ2
Di

=
i∑

j=1

σ2
WDj

, mDi = ln(D04−i) − 1/2σ2
Di

[6]

σ2
Si

=
i∑

j=1

σ2
WSj

, mSi = ln(S04−i) − 1/2σ2
Si

[7]

ρi =
i∑

j=1

ρLNj σWDj
σWSj

σDi σSi

[8]

Therefore, once we can estimate σWDi
, σWSi

and ρLNj , the rest
of the variables can be calculated.

At smaller tile sizes, empty tiles cannot be ignored and extreme
forms of dependence like mutual exclusion may occur. In this case
the generator is better modeled as a β cascade, in which a tile is
either filled or empty. The generators W (i) = [WD(i), WS(i)] of
a bivariate β cascade have a discrete distribution with probability
masses concentrated at four (wD, wS) points: mass P00 at (0, 0),
mass PD0 at (1/PD, 0), mass P0S at (0, 1/PS), and mass PDS at
(1/PD, 1/PS). PD = PD0 + PDS , PS = P0S + PDS , and PD0 +
PDS + P0S + P00 = 1. Thus a tile is either filled or empty. The
correlation between the supply and demand is ρβi

.
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Fig. 1. Extraction of stays and daily journeys from raw cell phone data. (a-c) Stay locations extracted from the self-collected cell phone records of
a student in three sample days. (d-f) Illustration of trips between consecutive stays in each day. (g-i) Visitation frequency of all locations, counting from the first day of the
observation period to the current day. For this individual, home and work stays dominates all the visits. Highlighted arrows mark the trips on that day. The time-bar above
each sub-figure is color-coded by activity type based on each stay’s duration. (j-l) Illustration of the rank-based EPR model. To illustrate different cases we use the individual’s
home, work, and one other location as trip origins. The potential trip destinations are color-coded by different chosen probabilities based on their rank. The closer a location
is to the origin, the higher the probability it has to be chosen. The height of the dots represents the density of destinations in the surrounding region. The most dense place
for other type of activities is in downtown Boston.
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Fig. 2. Flow chart of TimeGeo and input features extracted from active CDR users. (a) Spatial and temporal choices per time step. Three individual
specific parameters control temporal patterns, including the weekly home-based tours (nw), dwell rate (β1), and the burst rate (β2). nw influences the travel likelihood when
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(c) Joint distribution of β1nw , β2nw and nw for active non-commuters in the CDR data set. The two-dimensional marginal distributions are shown by the contour plots. The
green dot is the most probable parameter value combination with nw = 6.1, β1nw = 22.4, β2nw = 508.0. (d) Empirical probability to visit a new location Pnew as a
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Fig. 3. The multiplicative cascade analysis framework. (a,b) The distribution of home locations in the Boston area at two different resolutions. (c,d) The
distribution of other locations at two different resolutions. The variance of both distributions and their correlations depend on the resolution of the grids, or the cascade level i.
At the scale with larger grid-cells, the number of non-residential (other ) locations has higher correlation with the distribution of home locations; while at the scale with smaller
grid-cells separation between residential and other land-use types are observed. (e) Illustration of the hierarchical cascade process generating trip demand D. Each tile
is repetitively divided into 4 smaller tiles. The density of locations in each tile is controlled by the cascade generator W at each tile level. (f) P>(i) is the probability of an
exploration trip going outside their origin tiles at level i at 8 tile levels with tile side-length from 24km to 187m (the entire Boston Metro Area, larger than the area shown in the
maps, is set as a 48km square). Results show the calculation with the multiplicative cascade framework, in the simulation and measured by the mobile phone data.
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Fig. 4. Simulation of daily trajectories of one active commuter and one sparse user. (a-c) Simulated trajectories of the student with self-collected
cell phone records. Three sample days are shown here. The trips for each sample day are in purple, and the visitation frequency of each location are calculated until the
sample day and represented by the circle sizes. (d) Distributions of daily mobility motifs for the active commuter’s data vs. simulation. The model captures well the higher
propensity of motifs with node-sizes 2 and 3 as well as some other occurrences. (e) A sample sparse user with 10 stays at 4 distinct locations in an observation-period of
30 days. (f-g) Two different realizations for simulating the same sparse user with different parameter values. The first realization uses nw = 6, β1 = 4, β2 = 23. The
second realization uses nw = 6, β1 = 10, β2 = 73. Larger values of β1 and β2 generate more consecutive out-of-home activities and more daily visited locations. (h)
Distributions of daily mobility motifs for the two realizations of the same sparse user using different parameter values. With small nw , β1nw , and β2nw values the person is
likely to have simple motifs, while large parameter values lead to more complex daily activity chains.
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