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A B S T R A C T

Air pollution imposes significant environmental and health risks worldwide and is expected to deteriorate in the
coming decade as cities expand. Measuring population exposure to air pollution is crucial to quantifying risks to
public health. In this work, we introduce a big data analytics framework to model residents' stay and commuters'
travel exposure to outdoor PM2.5 and evaluate their environmental justice, with Beijing as an example. Using
mobile phone and census data, we first infer travel demand of the population to derive residents' stay activities in
each analysis zone, and then focus on commuters and estimate their travel routes with a traffic assignment
model. Based on air quality observations from monitoring stations and a spatial interpolation model, we estimate
the outdoor PM2.5 concentrations at a 500-m grid level and map them to road networks. We then estimate the
travel exposure for each road segment by multiplying the PM2.5 concentration and travel time spent on the road.
By combining the estimated PM2.5 exposure and housing price harnessed from online housing transaction
platforms, we discover that in the winter, Beijing commuters with low wealth level are exposed to 13% more
PM2.5 per hour than those with high wealth level when staying at home, but exposed to less PM2.5 by 5% when
commuting the same distance (due to lighter traffic congestion in suburban areas). We also find that the re-
sidents from the southern suburbs of Beijing have both lower level of wealth and higher stay- and travel- ex-
posure to PM2.5, especially in the winter. These findings inform more equitable environmental mitigation po-
licies for future sustainable development in Beijing. Finally, or the first time in the literature, we compare the
results of exposure estimated from passive data with subjective measures of perceived air quality (PAQ) from a
survey. The PAQ data was collected via a mobile-app. The comparison confirms consistencies in results and the
advantages of the big data for air pollution exposure assessments.

1. Introduction

With rapid urbanization and industrialization, air pollution has
become a global threat to human health, especially for large and dense
cities in developing countries (Kampa & Castanas, 2008; Kelly & Zhu,
2016; Lelieveld, Evans, Fnais, Giannadaki, & Pozzer, 2015; Pope III,
Ezzati, & Dockery, 2009; World Health Organization, 2016). According
to the World Health Organization (WHO), around 3 million people died

in 2012 as a result of ambient air pollution exposure, which makes it
the largest environmental risk to the health of human beings world-
wide. The particulate matter of a diameter of less than 2.5 μm (PM2.5) is
a major public concern in recent years, especially for cities suffering
from severe hazes. Taking Beijing as an example, in 2015, the outdoor
PM2.5 concentration of 179 days were higher than 75 μm/m3 and the
average annual level reached 80.6 μm/m3 (Beijing Municipal
Environmental Monitoring Center, 2016). Such concentrations
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represent severe threats to public health, particularly to those vulner-
able to heart or respiratory diseases, such as the young and elderly
population (Di et al., 2017).

Due to these threats to health, quantifying human exposure to air
pollutants has received considerable attention, and various data and
methods have been introduced to estimate their exposure in space and
time (Dewulf et al., 2016; Jerrett et al., 2005; Levy, Levin, Schwartz, &
Kark, 2015; Nyhan et al., 2016; Quiros, Lee, Wang, & Zhu, 2013;
Shekarrizfard et al., 2017; Smith et al., 2016; Steinle, Reis, & Sabel,
2013). Many previous studies infer pollutants concentration from sta-
tionary air quality monitoring networks using spatial interpolation
techniques and estimate air pollution exposure with spatial distribu-
tions of population at aggregated level (Steinle et al., 2013). This ap-
proach ignores human mobility and the time spent at various places in a
day (Setton et al., 2011; Zhang, Qi, Jiang, Zhou, & Wang, 2013). The
development of GPS-enabled mobile monitors and location-aware in-
struments addresses this issue by measuring individual exposure during
their activities (Deville Cavellin et al., 2015; Gerharz, Krüger, & Klemm,
2009; Hatzopoulou et al., 2013; Quiros et al., 2013). Travel survey data
were also employed to examine the dynamic exposure of participating
interviewees (Smith et al., 2016). However, such datasets can only be
used to estimate exposure for limited groups of individuals, and it is
challenging to expand the samples to the population.

More recently, researchers have employed new data sources and
methods to study the dynamic exposure to air pollutants at the city
scale (Dewulf et al., 2016; Nyhan et al., 2016; Saraswat, Kandlikar,
Brauer, & Srivastava, 2016). For example, based on travel survey data,
Shekarrizfard et al. developed an integrated transportation and emis-
sion model to assess the individual stay and travel exposure to NO2 in
Montreal, Canada (Shekarrizfard, Faghih-Imani, & Hatzopoulou, 2016).
Saraswat et al. simulated the travel demand of population in New Delhi
with a Gravity model and estimated the human exposure for different
activities (such as staying at home, work and commuting in the road
network) (Saraswat et al., 2016). However, they neglected travel be-
havior and speed when estimating travelers' exposures.

With the development of information and communication technol-
ogies (ICT), large scale geo-located mobile phone data have been in-
creasingly useful to model human mobility in cities (Deville et al., 2014;
Dong, Li, Zhang, & Di, 2016; Gonzalez, Hidalgo, & Barabasi, 2008;
Jiang et al., 2016). For instance, Nyhan et al. (2016) adopted mobile
phone data to model the active population weighted exposure to PM2.5

at aggregated spatial levels in the New York City (Nyhan et al., 2016),
and quantified individual exposures to PM2.5 by considering both home
and work locations (Nyhan, Kloog, Britter, Ratti, & Koutrakis, 2018).
Dewulf et al. (2016) used mobile phone data to track a user's visited
locations and duration of stays to estimate dynamic exposure at in-
dividual level in Belgium (Dewulf et al., 2016). Although these works
took advantages of the large scale mobile phone data, they only con-
sidered the samples without expanding them to the population level in
the city (Devlin, Ghio, Kehrl, Sanders, & Cascio, 2003; Gauderman
et al., 2004). By only focusing on the exposures of stationary activities,
these studies also ignored exposures of human travel in cities. With the
increased traffic congestion and long commuting distances in large ci-
ties, commuters have spent more time on the road than ever before
(TomTom, 2017). As a result, people are exposed to non-negligible air
pollution while traveling. Therefore, it is important to estimate the air
pollution exposure on the road networks. More importantly, by esti-
mating exposure to PM2.5, it will offer opportunities for researchers to
examine the environmental justice for the economically disadvantaged
population (Marmot, 2005). The evaluation of environmental justice in
cities will be useful to inform policymakers to develop equitable stra-
tegies for sustainable urban futures (Brugge et al., 2015).

Towards this end, this study presents a framework that incorporates
urban mobility derived from massive and passive mobile phone data to
evaluate the environmental justice of PM2.5 exposure of commuters
with different wealth levels in Beijing at the population level. First, we

infer the seasonal average PM2.5 concentration per hour (at a 500-m
grid level) based on air monitor observations and a spatial interpolation
algorithm. We then map the PM2.5 concentration to the road networks.
Second, by using mobile phone data and census data together with a
traffic assignment model, we derive human mobility (including in-
dividual stay location, duration, travel routes and travel time) at both
individual and aggregated levels for the metropolitan area without
expensive travel surveys (Deville et al., 2014; Jiang et al., 2016; Jiang,
Ferreira, & González, 2017; Li, Wang, & Di, 2017; Xu & González,
2017). Moreover, we estimate the residents' outdoor stay exposure to
PM2.5 by weighting population density, and model the travel exposure
of commuters by accumulating the PM2.5 exposure on each traversed
road segment, taking travel time in traffic into account. Third, we in-
vestigate the environmental justice of residents by connecting human
exposure to PM2.5 with housing prices (a proxy for wealth) in Beijing,
which is important for policymakers to develop equitable environ-
mental mitigation policies for the city. Finally, by comparing our results
with a mobile-phone based survey on individual perception of air
quality, we assess the feasibility of using large-scale mobile phone data
to measure human exposure to the air pollution in the city.

In the following sections, we will discuss in detail our methods to
estimate PM2.5 concentrations, urban mobility, population stay and
travel exposure to PM2.5 concentrations, and their relation to environ-
mental justice in Beijing. We obtained data of the PM2.5 concentrations
in Beijing from 2015 to 2016. Ideally, we would like to collect data on
human mobility, air quality, and wealth level of residents for the same
period; however, such efforts have been challenging. In particular,
world-wide urban mobility studies in the past relied mostly on ex-
pensive travel surveys collected by cities and government agencies in
very low frequency to estimate travel demand for a given year, by
adjusting samples to a current population. For example, the national
household travel surveys in the U.S. are conducted every ten years. One
of the advantages of this study is that by using more recent mobile
phone data we can estimate more up-to-date travel demand models
compared to those using traditional expensive travel surveys. However,
due to data availability limitation, we could only obtain mobile phone
data from 2013. With the assumption that the routine travel demand of
Beijing residents in 2013 were similar to those in 2015 and 2016, the
mobile phone data in 2013 can be a good proxy to estimate the stay and
travel exposure of residents in 2015. We collected housing price data
harnessed from an on-line platform in 2016 as a proxy for wealth dis-
tribution, assuming that correlation between wealth level and housing
price is relatively stable in metropolitan areas such as Beijing.

2. Materials and methods

2.1. Estimating the spatial concentration of PM2.5

As one of the most crowded cities in the world, Beijing accom-
modates 21.5 million residents in an area of 16,410 km2. Since 75% of
Beijing residents live in the urban area within the Sixth Ring Road, a
20% of the total land area of the Beijing metropolitan area (Fig. 1A),
this study is focused in this area. Beijing Municipal Environmental
Monitoring Center (BJMEMC) (Beijing Municipal Environmental
Monitoring Center, 2016) collects concentrations of major air pollu-
tants on an hourly basis from 35 air quality monitoring stations, among
which 24 are located within the Sixth Ring Road (Fig. 1A). The PM2.5

concentration in Beijing displays strong seasonality, in both climate
characteristics and economic activities such as coal heating in the
winter (Guo et al., 2014; Liu et al., 2016). To derive the representative
seasonal air quality data, we average the PM2.5 concentration for each
monitoring station during a given hour in the summer (from June 1st to
August 31st, 2015) and winter (from December 1st, 2015 to February
28th, 2016), respectively. Fig. 1B shows the average PM2.5 concentra-
tion per hour for the 24 stations, and their respective average value in
the summer and winter. The average PM2.5 concentrations in the
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summer were stable and below 75 μm/m3; while in the winter, the
values were relatively higher at night than those during the day. The
PM2.5 concentrations in the winter at most monitoring stations were
higher than 100 μm/m3 and ranked as either unhealthy or very un-
healthy based on standards defined by the U.S. Environmental Protec-
tion Agency (EPA) (U.S. Environmental Protection Agency, 2017).

Estimating the PM2.5 spatial concentrations is the first step to
quantify human exposure to air pollutants in the city. The Ordinary
Kriging (OK) spatial interpolation method (Wong, Yuan, & Perlin,
2004;Zou et al., 2015) and the land use regression (LUR) method are
widely used for mapping the spatial PM2.5 concentration with sparse
monitoring data. LUR utilizes the geographic characteristics to refine
the estimation of PM2.5 concentration. Zou et al. evaluated the perfor-
mance of LUR and OK interpolation in Houston, and revealed that LUR
and OK generate similar end-result accuracy for their comparable error
rates (6.13% and 7.01%, respectively) in the estimation of PM2.5 con-
centration (Zou et al., 2015). By applying the OK method implemented
with the python function of GEOMS2, an open-source geostatistics and
geosciences modeling software (CERENA Research Center, 2017), we
estimate the PM2.5 concentration at a 500m grid level in sub-regions of

the city based on the seasonal average values of the 24 monitoring
stations per hour.

We predict the values at the target locations based on the distance
and spatial distribution of the target location using the OK method.
Each of the (500m by 500m) grid is then assigned a PM2.5 con-
centration per hour for the summer and winter. Fig. 1C exhibits the
estimated PM2.5 concentration in each zone Jiedao (a community-level
zone in China) during the morning peak hour, the midday off-peak
hour, and the evening peak hour in both summer and winter. As shown
in the figure, PM2.5 in the winter were more concentrated in the
southeast of Beijing, where industrial activities played an important
role.

2.2. Inferring urban mobility from mobile phone data

The travel demand for the 16.3 million residents living in the urban
area of Beijing is estimated using mobile phone data, provided by a
mobile operator in China. The mobile phone dataset contains 100,000
active users with their call detail records (CDRs) and data detail records
(DDRs) for December 2013. The communication activities of CDRs
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comprise the incoming and outgoing phone call and the sending and
receiving of a text message, while DDRs comprise the using of Internet
data. Each record of the CDRs and DDRs data has a hashed ID, start
time-stamp of the activity, type of activity, duration of the activity,
longitude and latitude of the cell tower that communicated with the
phone. The hashed ID is unique for each mobile phone devise, so that
we are able to analyze the anonymized user when she is interacting
with the phone which communicates with the nearest cell tower. In rare
cases, the second nearest tower will be used if the nearest one is fully
loaded. The cell phone in use will be switched to the closest cell tower
when the user is moving. The average distance between cell towers is
332 meters (with a median of 254 meters), representing the spatial
resolution of the study. Alexander et al. and Colak et al. outlined a
general framework to obtain the travel demand, a.k.a. Origin-
Destination (OD) matrices, from massive mobile phone data
(Alexander, Jiang, Murga, & González, 2015). We apply the same
method here to extract daily trips from mobile phone samples in
Beijing. These trips are then combined with the resident population of
each zone within the Sixth Ring Road to estimate representative urban
travel demand at the zonal level. Before modeling the travel behavior of
each anonymous users, we first eliminate non active users. Then, we
extract stay locations of the active users from their raw records. We
improve upon the stay-point algorithm presented by Zheng and Xie
(2011) and Jiang et al. (2013) as follows: (i) We apply a temporal ag-
glomeration algorithm, such that temporally consecutive records within
a certain radius (e.g., 500 meters) are bundled together with an updated
stay duration from the start time of the first record to the end time of
last one. (ii) We label the records as pass-by points and stays, based on
the stay duration threshold (e.g.,10min). In the analysis hereafter, we
only focus on the stays. We then combine all the spatially adjacent stay
points for a user (within a threshold) as his or her stay regions. For this
spatial agglomeration, we use a spatial search balancing tree, R-tree, to
accelerate the computation (see Fig. S1 in Supplementary Material (SM)
(Guttman, 1984)).

After the stay locations are detected for each user, the stays are
labeled as home, work, or other. The most frequently visited location
during weekday nights and weekends are labeled as home, and the most
frequently visited one during weekday working hours (at least 500
meters away from home) is labeled as work, if one exists, and the rest
are labeled as other. Each trip can be then labeled as one of the three
categories, (i) home-based-work (HBW), which refers to the trips be-
tween home and work, a.k.a. commuting; (ii) home-based-other (HBO),
which refers to the trips between home and other places; (iii) non-
home-based (NHB), which refers to the trips between work and other
places or two other places. Among the three categories of trips, com-
muting flow among zones are the most stable as the urban population
and economic structure are relatively stable in the metropolitan area,
such as Beijing. Eventually, as the mobile phone users only cover a part
of the entire population, we expand the travel portrait of the mobile
phone samples with expansion factor by zone. The expansion factor is
defined as the ratio between the actual resident population and the
number of mobile phone users whose home are located in the given
zone. We aggregate the population data in 2015 at the 100 by 100
meter grid level obtained from WorldPop (Tatem, 2017) to the Jiedao
level. After aggregating the trips at the zone level, we estimate the OD
matrices by hour for an average weekday and 24 OD matrices were
derived for the population and commuters, respectively.

Fig. 2A shows the OD pairs with the large commuting flows between
zones for the morning peak hour, obtained from the above discussed
mobility model. Fig. 2B shows the average number of phone usage re-
cords per day per user during a month. Majority of users are active,
with an average of 15 daily records. As we observe the travel demand of
individuals during one month, the records cover most places that they
visited in their daily life, especially the work places for commuters. For
the validation of estimated commuting travel demand, we compare
with the census employment statistics at the Jiedao level in the Beijing

2nd Economic Census in 2014. We find the Pearson correlation coeffi-
cient Cpearson=0.745, which indicates a good agreement between our
employment estimation and the survey data (see Fig. 2C) (Beijing
Municipal Bureau Statistics, 2016). The number of commuting and all
trips per hour are shown in Fig. 2D. The morning and evening peaks can
be observed from the commuting trips, while there are three peaks for
all trips during the morning, mid-day and evening on an average
weekday. While a travel survey from Beijing is not available for this
study, this method has been validated in many other cities with travel
surveys, and traditional travel demand models developed by planning
agencies (Alexander et al., 2015; Çolak, Alexander, Alvim, Mehndiratta,
& González, 2015; Toole et al., 2015). More details of the urban mo-
bility model results can be found in SM Note 1.

As previous studies have shown that exposure to PM2.5 can also be
positively associated with increased psychological distress and affect
human health (Sass et al., 2017), to compare the objective estimate
with individual subjective perception of air quality, we collected a
smart-phone based survey from individuals in Beijing in this study. To
our knowledge, this is the first survey in a Chinese city that is dedicated
to capturing the perceived air quality by local residents. In the per-
ceived air quality (PAQ) experiment, 860 individuals downloaded our
smartphone-based survey application to track their daily trajectory, and
256 of them finished the survey by rating the PAQ for home, workplace,
and worst spot during their commuting during the two week study
period in the winter of 2015 (although some of them didn't complete
the whole period). The perception runs from 0 to 5, with 0 being the
best air quality and 5 being the worst. When comparing the daily PM2.5

with the daily average PAQ for these respondents during the study
period, we find that they are highly correlated with a Pearson corre-
lation coefficient of 0.831. More detailed description of PAQ data can
be found in SM Note 2.

2.3. Modeling stay and travel exposure to PM2.5

With our inferred mobility at the urban population scale, we ac-
count the hourly dynamic stay of the population and the travel time and
route choice of commuters assuming all residents starts their daily trips
from home. We then estimate the stay exposure to PM2.5 of population
and the travel exposure to PM2.5 of commuters per hour in the summer
and winter, respectively. We define population density weighted ex-
posure (PDWE) to represent the total outdoor exposure of population
per square kilometer per hour. For a given zone z during an hour h, its
PDWE is defined as Eh, z= Ch, z ⋅ Ph, z/Sz, where Ch, z denotes the PM2.5

concentration during that hour, Ph, z denotes the dynamic population
staying in the zone during the same hour and Sz denotes the area of the
zone. The unit of PDWE is person ⋅ μg ⋅m−3 ⋅ km−2 ⋅ h. Unlike the po-
pulation weighted exposure (PWE) introduced by Nyhan et al. (Nyhan
et al., 2016), which is density-independent and tied to the total popu-
lation of the zone, PDWE highlights the areas with higher population
density and heavier air pollution. As shown in Fig. 1A, the size of zones
are widely different, which causes the total population of low density
zones in suburban area is higher than that of high density zones in the
central area. However, air pollution impose more serious threats to
zones with high density.

The travel exposure to PM2.5 of a commuter depends on her selected
route, travel time, and PM2.5 concentration on the road segments. In
this work, we focus on commuters who travel between zones either
with cars or buses as they are the main travel modes for long-distance
above-ground commuting in Beijing. Based on the travel demand of
commuters inferred from mobile phone data and census data, we use
the travel mode share reported in the Travel Survey of Beijing Residents
to estimate trips made by passenger cars and buses per hour (Beijing
Transportation Development Research Center, 2007; Huang, Song, &
Tao, 2008). Regarding the traffic conditions in the road networks, we
derived vehicle trips from the vehicle usage rate per origin zone. We
then estimated the driving time per route by assigning the vehicle OD
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matrices to the road network using a traffic assignment model based on
user equilibrium (UE). Further details are discussed in Ref. (Çolak et al.,
2015; Çolak, Lima, & González, 2016). The road network is extracted
from OpenStreetMap (OpenStreetMap, 2016). The UE model gives each
OD pair its shortest travel time and paths. We validated our estimates of
travel times with Gaode Map (AutoNavi, 2016), a widely used travel
navigation platform in China. The Pearson correlation coefficient be-
tween the travel times estimated by our model and Gaode Map is 0.84
and the relative accuracy is 79.17% by regarding Gaode Map as the
ground truth. The comparison of the distribution of travel time in-
dicates good estimates, shown in Fig. S2B and. S2C in SM. For simpli-
city, we assume that buses use similar routes as cars, but with longer
travel times. According to a travel survey report, the travel time for a
trip made by bus equals to 1.57 times for a car trip on average (Beijing
Transportation Development Research Center, 2007).

With the traffic assignment model, each road segment in the road
network is associated with a travel time with traffic. Further, we can
estimate the PM2.5 concentration on each road segment by mapping the
grid map of PM2.5 concentration to the roads. When a road segment
covers more than one grid, the average concentration of all covered
grids is regarded as the PM2.5 concentration of the road segment (see
Fig. S3 in the SM). The estimated PM2.5 concentration of the road
network during the morning peak hour, mid-day, and the evening peak
hour in summer and winter are shown in Fig. S4 in the SM. Finally, we
calculate the route travel exposure to PM2.5 of a commuter by ag-
gregating the road segment exposure, EhT=∑r=1

RCh
rThr, where Ch

r and
Thr denote respectively the PM2.5 concentration and travel time on the
rth road segment in the route during the hth hour and R is the number
of road segments forming the route. The unit of travel exposure is
μg ⋅m−3 ⋅ h.

3. Results

3.1. Population density weighted exposure

As most travel activities happen during the daytime (e.g., work,
school), we calculate the stay exposure to PM2.5 in two periods, work
hours and non-work hours. The former covers hours between 9:00 am
to 5:00 pm; the latter covers the rest of the day. Fig. 3A illustrates the
average hourly PDWE during non-work and work hours in the summer
and winter. By observing the spatial distribution of PDWE, we identify
exposure by zones during non-work and work hours. The disparity of
PDWE between work and non-work hour is mainly caused by the travel
activities of residents, and the disparity between summer and winter is
mainly caused by the seasonal variations in PM2.5 concentration in
Beijing. Specifically, some central areas in Beijing experience more
severe PDWE during work hours than non-work hours as a significant
portion of the population is gathering into the central area of the city
during daytime for work and/or business. The disparity of stay ex-
posure in space and time is more evident in winter than in summer.

According to the urban mobility patterns, we select six re-
presentative zones in the city, marked with different symbols in Fig. 3A,
to uncover the PDWE. Fig. 3B displays the population density of stays
per hour in the selected zones (keeping the colors of the labeled zones).
The population density at noon is three times that of midnight in zone
Z2, which is located in the CBD of Beijing, the Chaoyang district.
Fig. 3C and D depicts the hourly PDWE of six selected zones during
summer and winter, respectively. In the summer, the worst PDWE in
zone Z2 reaches 3.5×106person ⋅ μg ⋅m−3 ⋅ km−2 ⋅ h. While in winter it
reaches 5.0×106person ⋅ μg ⋅m−3 ⋅ km−2 ⋅ h.

3.2. Spatial variation of travel exposure to PM2.5

The travel exposure captures the air pollution for each commuter
between home and work by car or bus. By combining the estimated
traffic flow, route, and travel times between each OD pairs with the
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PM2.5 concentration of the road network, we can estimate the travel
exposure to PM2.5 between any two zones in any hour of the day. We
select the trips between 8:00 am and 9:00 am, which reflects commu-
ters' trips and the spatial differences in their travel exposure. The map
in Fig. 4A depicts the number of commuters that travel across zones
during the morning peak hour. In Fig. 4B we show the average travel
distance of commuters living in each zone. As expected, suburban areas
display longer commuting distance as most jobs are centralized in the
city center. Fig. 4C and D display the average travel exposure of com-
muters in each zone during the morning peak hour in the summer and
winter, respectively. The commuting exposure in the summer and
winter show some discrepancies, especially in the southern area where
commuters experience higher travel exposure to PM2.5 in the winter.

To better evaluate the spatial variation of travel exposure to PM2.5,
we define the travel exposure per kilometer in each zone as the ratio
between the total travel exposure and the total travel distance for
commuters in a given zone, namely exposure-over-distance ratio (EoD,
μg ⋅m−3 ⋅ h ⋅ km−1). EoD indicates the concentration of PM2.5 ex-
posures to the traveler per kilometer from the origin to the destination.
Trips with larger EoD are exposed to more PM2.5 than others even when
they have the same commuting distance. Fig. 4E and F illustrate the
EoD per zone in summer and winter, respectively. In the summer, EoD
displays higher values near the central area and lower values in the
suburbs. This is caused by the heavy traffic congestion in the central
area, as shown in Fig. S2A in the SM. Regarding the distribution of EoD
in winter, regions in the south show highest values due to the combined
effect of both higher PM2.5 concentration (shown in Fig. 1C) caused by
coal-burning plants in the south of Beijing and the heavy traffic con-
gestion near the central area. More results are presented in Fig. S5 in
the SM and an on-line travel exposure visualization platform.1

3.3. Environmental justice in PM2.5 stay- and travel-exposure

Environmental justice refers to “the fair treatment of all people with
variant races, cultures and incomes, in development of regulations and
policies.” (Brugge et al., 2015; Marmot, 2005; Pearce, Kingham, &
Zawar-Reza, 2006) Here we investigate the environmental justice for
commuters with different wealth levels, regarding their PM2.5 exposure.
We derive aggregated zonal housing price index from disaggregated
housing price data, obtained from an online housing property listing
platform in June 2016 (Homelink, 2016). We use housing price as a
proxy for wealth level and examine its relationship with commuters'
hourly stay-exposure during non-work hours (which are mostly stay-at-
home activities). We then compare their travel-exposures (EoD) across
space.

Fig. 5A shows the average housing price in each zone, revealing
higher housing value in the city center than in the suburbs. In each of
the sub-figures from B1 to C2, the community zones in Beijing are se-
parated into six groups by combing three levels of housing prices (i.e.,
low, middle and high) with two levels of PM2.5 exposure (i.e., low and
high). Fig. 5B1 and B2 display the relationship between the housing
prices and the hourly stay exposure of commuters during the non-work
hours in the winter, with the assumption that commuters go to work in
the morning and return home in the evening. We estimate that hourly
stay exposure to PM2.5 for commuters with low, middle and high wealth
levels are 111.82 μg ⋅m−3 ⋅ h, 103.87 μg ⋅m−3 ⋅ h and 98.66 μg ⋅m−3 ⋅ h
on average in winter of 2015. That is, commuters with lower wealth are
exposed to more PM2.5 than their counterparts with higher wealth by
13% per hour when they stay at home. Moreover, the different groups
of zones display clear differences. For example, 12.12% of the com-
muters in Beijing having high stay-exposure at home are with low level
of wealth. Most of these population live in the southern suburbs, de-
picted in dark red; another 12.34% of the commuters are with low level

of wealth but the PM2.5 concentration in their residential areas were
lower as they live in the north of the city. In short, for commuters in the
southeastern Beijing, those with lower wealth level experience higher
level of PM2.5 exposure than those with higher wealth levels. However,
for commuters residing in the northwest of the city, those with lower
wealth level are exposed to less PM2.5. This spatial disparity is mainly
caused by the industrial and economic activity distribution in the city
and can be mitigated by future spatial planning policy.

In contrast, the relationship between the housing price and the
commuting travel exposure (EoD) displays large spatial disparity, as
shown in Fig. 5C1 and C2. The travel exposure to PM2.5 per kilometer
for commuters with low, middle and high wealth levels were 1.47
μg ⋅m−3 ⋅ h ⋅ km−1, 1.56 μg ⋅m−3 ⋅ h ⋅ km−1 and 1.55
μg ⋅m−3 ⋅ h ⋅ km−1 on average in winter of 2015. This indicates that the
commuters with lower wealth were exposed to 5% less PM2.5 than
commuters with higher wealth level when traveling the same distance
for commuting trips. The primary reason is that the lower wealth re-
sidents are living in the suburban areas where traffic is less congested
than the city center, as shown in Fig. S2A in the SM. We also estimate
that 9.43% of the commuters had both low wealth and high travel
exposure per kilometer during their commuting trips. They were con-
centrated in the southern areas, colored in dark red. For commuters
residing in southern Beijing, those with low wealth level were exposed
to more PM2.5 for both stay-at-home activities and travels in the winter.
Moreover, 46% of the commuters have middle wealth level and ex-
perienced high travel exposure (EoD) to PM2.5 (as shown in the in or-
ange zones). Their high EoD is mainly caused by the heavy traffic
congestion within the 5th Ring Road in the south of Beijing. The results
from the summer are presented in Fig. S6 in the SM.

3.4. Perceived air quality experiment as a comparison

To compare the spatial correlation of perceived air quality (PAQ)
and the objective estimates of PM2.5 exposure, we then model the po-
pulation density weighted air quality perception (PDWPer) with PAQ
data on the same day (February 17th, 2016) by replacing the PM2.5

concentration in PDWE with the average perception in each zone, si-
milar to the calculation of PDWE with mobile phone data discussed
previously. PDWPer is calculated only using the perception of partici-
pants and the static population density from census data. Only 97 in-
dividual samples for PAQ were completed for this day (February 17th,
2016) among the 256 individuals who responded for the 2 week study.
The PDWPer at home and work are illustrated in Fig. 6A and B, re-
spectively. As the sample size of the PAQ data is limited, the PDWPer
does not cover all areas in Beijing. Fig. 6C and D illustrate the PDWE of
the worst hour during the non-work and work hours on the same day,
respectively. Although the subjective perception of the participants
does not contain the concentration of pollutants, we compare the ex-
posures inferred from mobile phone data with PAQ data by normalizing
both datasets. The r2 between exposure from mobile phone data and
PAQ equals to 0.43 at home and 0.33 at work, as shown in Fig. 6E and
F. The r2 is relative low possibility due to the following two reasons: (i)
the participants' perception to air quality might be different, as sensitive
people are more vulnerable to the air pollutants; (ii) the limited number
of reports per user per day loses the variation of air quality in time. In
summary, given the small sample size of PAQ and the relative con-
sistency between the two estimates from PAQ and mobile phone data,
we show that when survey data are expensive to collect, combining air
quality monitoring of PM2.5 concentration and large-scale mobile phone
data can be a good alternative to estimate exposure to air pollution
without surveys.

4. Discussion and conclusion

Exposure to air pollution threatens public health, increasing mor-
tality and morbidity. Within the same city, levels of exposure to air1 http://www.mit.edu/~yanyanxu/exposure/
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Fig. 5. Relation between PM2.5 exposure and housing prices A Average housing prices of each zone in thousand of US$ per square meter (k$ ⋅m−2) in June 2016. B1,
B2 Average housing price (of June 2016) and individual stay-exposure during non-work hours in the winter of 2015 for each zone. Darker color refers to lower
housing price and the green color refers to lower exposure. We classify zones into six groups based on housing price and exposure levels. C1, C2 Exposure-over-
distance (EoD) for commuters during the morning peak hour v.s. the average hosing price in the same zone. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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pollution differ in space and time. Among various pollution metrics,
PM2.5 concentration is the major concern for the public in Beijing as it is
the main cause of haze and affects the heart and lungs when inhaled. On
certain days, schools need to be closed and people are encouraged to
stay at home to avoid exposure to severe haze.

Today, massive mobile phone data can help us better understand
and simulate human mobility at the metropolitan scale. Still, previous
works that model population exposure to PM2.5 using mobile phone
data only account for stays of the mobile phone users in each zone
(Nyhan et al., 2016) or estimate exposure to air pollutants using the
dynamic stay locations of sampled mobile phone users (Dewulf et al.,
2016; Nyhan et al., 2018). The former study models the exposure of
population in each zone at aggregated levels; the latter one focuses on
the individual exposure and uses mobile phone data to track the sam-
pled users. Both cases consider only the actual mobile phone users in-
stead of the total population and ignore the individual travel exposure,
which is nearly 10% of the total exposure if the resident spends 2 hours
of travel per day.

By introducing the population census data, we expand the mobility
of mobile phone users to the population at scale and incorporate their
associated travel times. We estimate the PM2.5 concentration in space
and in the road networks. Without having to rely on costly travel sur-
veys, we can estimate for the entire population their daily stay- and
travel- exposure. In addition, we investigate environmental justice re-
garding the relationship between personal exposure to PM2.5 and their
level of wealth using housing price as a proxy. We find that commuters
residing in southern Beijing are both economically disadvantaged and
suffer higher static and travel exposure in the winter. This information
is useful for policymakers to plan a more equitable and sustainable city.
Mitigation policies may include subsidizing installation of air purifiers
for low income population, regulating heavily polluting factories, and
planning for urban greening projects focusing on PM2.5 control (Brugge
et al., 2015;Yang, Chang, & Yan, 2015). Finally, we compare exposure
during stays from two diverse data sources, one passively collected via
CDRs and one actively collected via a PAQ survey. We show that the
PM2.5 exposure modeled by mobile phone data is also supported by the
PAQ survey. All of the results and plots in this work are implemented
using Python.

The mobile phone data used for the inference of urban mobility only
cover about 0.5% of the population in Beijing. Despite expanded with
the actual population in census data, the small sample size might cause
bias in the estimation of travel demand at urban scale. On the other
hand, the low frequency of mobile phone usage may cause the loss of
visited locations if the user doesn't interact with the cell phone in these
places. However, these two shortcomings could be improved con-
veniently at low cost by expanding the sample of users and the duration
of the datasets as the data of all mobile phone users have already been
stored by telecommunication operators. Due to the lack of ground truth
data (such as traffic counts or travel survey data), we are not able to
directly validate our estimated travel demand in Beijing. The frame-
work to generate the mobility model has been proved successful in
other cities, e.g., we have validated the mobility model in Boston with
the United States National Household Travel Survey (NHTS) and the
Massachusetts Travel Survey (MTS) (Alexander et al., 2015; Çolak et al.,
2015), in Bay Area with the Bay Area Transportation Survey (BATS)
(Çolak et al., 2016). While mobile phone data is blind to the travel
mode, in contrast with the Taxi GPS data and transit smart card data, it
is still one of the best options to investigate the urban mobility in big
cities, due to its high penetration rate. In addition, the location-based
service (LBS) data collected from the mobile applications are also va-
luable resources to reproduce human mobility. Especially in China the
high adoption rate of Wechat (the multi-purpose messaging, social
media and mobile payment app) and its accurate positioning could
better estimate both individual and aggregated mobility pattern of
population. However, the LBS data are actively collected under the
permission of users and thus lack of universality compared with the

passive cellular data.
Future investigations in the following aspects would improve the

estimation accuracy of population exposure to PM2.5: (i) modeling the
infiltration of vehicles and buildings would improve the estimation
accuracy of personal exposure. The PM2.5 concentration observed from
the monitoring stations are adopted to model the population exposure
without accounting for the ambient PM2.5 infiltration; (ii) a chemistry-
transport model would further improve the estimate of PM2.5 con-
centration and other pollutants in the road networks with the con-
sideration of land use and topography; (iii) an individual mobility
model with higher resolution of data in the road segments would pro-
vide a more precise representation of personal exposure.
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