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Abstract

The benefits of bus automatic vehicle location (AVL) data are well documented (see
e.g., Furth et al. (2006)), ranging from passenger-facing applications that predict
bus arrival times to service-provider-facing applications that monitor network perfor-
mance and diagnose performance failures. However, most other researchers' analy-
ses tend to use data that they acquired through negotiations with transit agencies,
adding a variable cost of time both to the transit agencies and to researchers. Further,
conventional wisdom is that simple vehicle location trajectories are not suitable for
evaluating bus performance (Furth et al. 2006). In this research, I use data that are
free and open to the public. This access enables researchers and the general public
to explore bus position traces.

The research objective of this Master's Thesis is to build a computational sys-
tem that can robustly evaluate bus performance across a wide range of bus systems
under the hypothesis that a comparative approach could be fruitful for both retro-
spective and real-time analysis. This research is possible because a large number of
bus providers have made their bus position, or AVL, data openly available. This
research thus demonstrates the value of open AVL data, brings understanding to the
limits of AVL data, evaluates bus performance using open data, and presents novel
techniques for understanding variations in bus travel time. Specifically, this thesis
demonstrates research to make the system architecture robust and fruitful:

" This thesis explores the exceptions in the various datasets to which the system
must be robust. As academics and general public look to exploit these data,
this research seeks to elucidate important considerations for and limitations of
the data.

" Bus data are high-dimensional; this research strives to make them dually di-
gestible and informative when drawing conclusions across a long timescale.

Thus, this research both lays the foundation for a broader research program and
finds more visually striking and fundamentally valuable statistics for understanding
variability in bus travel times.
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Chapter 1

Introduction

The benefits of bus automatic vehicle location (AVL) data are well documented (see

e.g., Furth et al. (2006)), ranging from passenger-facing applications that predict

bus arrival times to service-provider-facing applications that monitor network perfor-

mance and diagnose performance failures. However, most other researchers' analy-

ses tend to use data that they acquired through negotiations with transit agencies,

adding a variable cost of time both to the transit agencies and to researchers. Further,

conventional wisdom is that simple vehicle location trajectories are not suitable for

evaluating bus performance (Furth et al. 2006). In this research, I use data that are

free and open to the public. This access enables researchers and the general public

to explore bus position traces.

The research objective of this Master's Thesis is to build a computational sys-

tem that can robustly evaluate bus performance across a wide range of bus systems

under the hypothesis that a comparative approach could be fruitful for both retro-

spective and real-time analysis. This research is possible because a large number of

bus providers have made their bus position, or AVL, data openly available. This

research thus demonstrates the value of open AVL data, brings understanding to the

limits of AVL data, evaluates bus performance using open data, and presents novel

techniques for understanding variations in bus travel time. Specifically, this thesis

demonstrates research to make the system architecture robust and fruitful:



" This thesis explores the exceptions in the various datasets to which the system

must be robust. As academics and general public look to exploit these data,

this research seeks to elucidate important considerations for and limitations of

the data.

" Bus data are high-dimensional; this research strives to make them dually di-

gestible and informative when drawing conclusions across a long timescale.

Thus, this research both lays the foundation for a broader research program and

finds more visually striking and fundamentally valuable statistics for understanding

variability in bus travel times.

This thesis exploits transit agencies publicly available General Transit Feed Spec-

ification (GTFS) data and their real-time AVL eXtensible Mark-up Language (XML)

feeds of bus Global Positioning System (GPS) coordinates. Here I specifically focus

on the Massachusetts Bay Transit Authority (MBTA) bus network centered around

Boston, MA using data from May 2011.

The computational architecture proposed here takes the data through many steps.

Each step is designed to accommodate and correct for any biases introduced along the

way. Figure 1-1 conceptually depicts the evolution and iterations of the data. Many

of the iterations occur before before I have access to them, represented by the boxes

reality, observation, and primary data. I am able to process and analyze the data

from inside of the AVL analysis box. Understanding the errors and biases introduced

by those iterations is essential to effectively projecting the AVL data onto the GTFS

data.

Once the data are accessible, my computational architecture robustly transforms

them into a form where they can be analyzed. Figure 1-2 shows how my system archi-

tecture interacts with various databases and datasets through computer algorithms.

There, databases are represented by cylinders, the programs and programming lan-

guages used to transfer and transform the data, and the arrows show the mechanism

for moving data around. Generally, tables and fields from a database are referred to

using f ixed-width text, and variables and functions from a program are referred to
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Figure 1-1: Schematic diagram of how the bus location data are generated and
analyzed.

using sans-serif text.

Both Figures 1-1 and 1-2 depict the projection of the AVL data onto the geometric

GTFS data, a procedure known as map-matching. After performing map-matching

of real-time coordinates to the shapes of the road network, I can analyze travel time

dynamics and, more importantly, estimate the time when each bus arrives and departs

to and from each stop. I characterize disruptions at the bus level by comparing the

statistics of travel times between stops, allowing us to detect the origin of delays in

space and time and the emergence of bus bunching. This architecture provides a

spatiotemporal analysis of the bus system performance.

Chapter 2 describes the dynamic bus location data and the static bus schedule

data and places the bus location data within the broader context of using location

data to study human mobility, and argues that it is necessary to also use the schedule

data. Next, Chapter 3 presents my robust system architecture for transforming the

static and dynamic bus data into a form that can be analyzed, especially my map-

matching and stop arrival and departure interpolation methods. Then, Chapter 4

presents analysis and visualization of the bus data. Finally, Chapter 5 summarizes

the thesis' findings and offers suggestions for further research.
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Chapter 2

Data

The central dataset of this research is the AVL data for the MBTA provided by

NextBus. This Chapter introduces the NextBus MBTA AVL data not only to inform

the below analyses but also to place the data in the broad context of human mobility

research. As with any research, the research questions that can prudently be answered

here are a function of the available data. As a number of scientists with backgrounds in

other fields move toward researching human mobility, it is important to condense and

codify the domain-specific knowledge necessary to make intelligent decisions about

what different data can be used for and where they fall in the broad context of human

mobility research.

Ultimately, AVL data are spatiotemporal tracing data. There is a wide range

of research, summarized below, that uses trajectory data to different ends as their

specifics allow. There are broadly two types of bus AVL data: location-at-time and

time-at-location data (Furth et al. 2006). Location-at-time data are observations,

usually collected using Global Positioning Satellite (GPS), of where the bus is at a

particular time. They tend to give a latitude-longitude coordinate and a timestamp

as a record on the bus' trajectory. Additionally, these data tend to be collected

periodically, such as observing the bus' position every three seconds. Time-at-location

data are the inverse. Time-at-location data are observations of when the bus passes a

certain location. These data could also be recorded as a latitude-longitude coordinate

and a timestamp, but the timestamps are not designed to be evenly spaced and the



coordinate likely identifies an important place, such as a bus stop or time point. So,

time-at-location data are more likely to provide a location identifier and timestamp.

Location-at-time data exist in an abstract trajectory space whereas time-

at-location data exist in human space. By trajectory space, I mean the mathematical

three-dimensional space of latitude, longitude, and time. By human space, I mean

roads, addresses, bus stops, and bus stations. More specifically, for buses, the hu-

man space is usually defined using General Transit Feed Specification (GTFS), which

describes route and schedule definitions and is robust enough to describe bus, rail,

gondola, and other transit systems. Obviously, trajectory space and human space

are related. Map-matching is the process of projecting trajectory space onto human

space. Geocoding is the process of projecting a street address in human space onto

trajectory space.

The NextBus MBTA AVL data are location-at-time data, and the buses are polled

for their positions every 60 seconds. Thus, the NextBus MBTA AVL data are native

to the abstract trajectory space. However, as is shown in Section 2.1, the NextBus

MBTA AVL data are not appropriate for the kinds of analyses generally done with

data in trajectory space, and, rather, need to be projected onto human space, specifi-

cally GTFS space. With the scope of the research established, Section 2.2 introduces

the GTFS data specifically and elaborates how I accessed them. Next, Section 2.3 dis-

cusses the NextBus MBTA AVL data and the data collection process for the NextBus

data. Finally, Section 2.4 summarizes the content of this Chapter.

2.1 Use of Position Tracking Data

Human mobility is about when where, why, and how people move from one place

to another. Unsurprisingly, location tracking data are the key data for most human

mobility studies. Again, AVL stands for 'automatic vehicle location;' it is not lexico-

graphically specific to buses. The amount of information AVL data carry is dependent

on what kind of vehicle is being located.

This Section begins by exploring the use of location-at-time data in trajectory



space by imagining the 'vehicle' as a person or personal vehicle, ultimately finding

that the NextBus MBTA AVL data are not appropriate for this use because they

do not directly observe the movement of people. That is, Section 2.1.1 shows that

the NextBus MBTA AVL data cannot be used for those purposes specifically because

they are bus data. Thus, the location-at-time data need to be projected into human

space. Section 2.1.2 shows that both the buses being buses and the polling time (60

seconds) of the NextBus MBTA AVL data prevent the data from being used for the

traditional uses for data in human space. Ultimately, I argue that the best use for the

NextBus MBTA AVL location-at-time trajectory space data is analyzing bus network

performance in the context of the GTFS-defined human space.

2.1.1 Tracking a Person or Personal Vehicle

This Section shows that location-at-time data that directly observe people have been

productively analyzed in trajectory space. That is, person and personal vehicle lo-

cation tracking data provide for many different kinds of analyses of human mobility,

and that those analyses do not necessarily require any information about the road

network or other geographical information.

Within the context of a personal vehicle, such as a non-commercial automobile

or bicycle, understanding where the vehicle is going is roughly equivalent to under-

standing where at least one person is going:

[Where is this car going?] [Where is this person going?]

So, from the perspective of understanding human mobility, non-commercial automo-

bile AVL data are valuable. However, they are only valuable if complete-if the entire

extent of the trajectory is observed. This is because the trajectory is, at most, con-

fined to the road network; these veicles are not running on any available schedule. For

example, with half-complete AVL trajectories, I can only predict the remainder of the

trip to accuracy proportional to the half-trip distance, subject to network topology

(prediction in a rural area with very few roads would be better). Answering either



[Where is the vehicle going?] or [Where is the person going?] is a complex, if possible,

task with partial AVL information when the vehicle is a personal vehicle.

AVL data for a personal vehicle capture direct observations of a human's mobil-

ity. Many researchers use these kinds of data, both those generated from observing a

vehicle and from observing a person individually. The data are used to approach ques-

tions like: how far do people usually travel; what is a specific person's normal mobility

routine; how predictable are people's mobility patterns; and what is the aggregate

origin-destination (OD) matrix of a city? Gonzilez et al. (2008) infer trip lengths

and origin-destination predictability from location data generated by cell phone use

histories. Song et al. (2010) looks at the distributions of travel distances, work that

could have implications in activity-based transportation modeling. Trasarti et al.

(2010) introduce a software package for visualizing GPS trajectories and calculat-

ing O-D matrices. Hariharan and Toyama (2004) use personal GPS trajectories to

extract 'destinations' and destination transition probabilities from GPS trajectories.

For Hariharan and Toyama (2004), a 'destination' is an important location such as

home or work. Their research require large amounts of data for a single person and

thus accordingly a stable unique identifier for each person who generates a location

history. Andrienko et al. (2007) expand upon that work by adding some visualization

tools and identifying common trips by algorithmically evaluating route similarity.

They prefer the term 'significant places' over 'destinations.' Liao et al. (2007a) and

Liao et al. (2007b) also explore algorithms for extracting significant destinations or

places and activities, routes, or routines from GPS trajectories using hierarchically

structured conditional random fields and Rao-Blackwellized particle filters, respec-

tively.

Attacking different problems requires different levels of pre-processing. Interest-

ingly, these research programs can take place in the abstract trajectory space. Loca-

tion tracking data only include latitude-longitude coordinates and timestamps; they

are a point in space and time. Yet, for many analyses, existence in abstract R2 is

sufficient.

For example, calculating trip length does not require projection to human space.



For a course-grained measurement, evaluating trip length requires identifying the

beginning and end of a trip (a non-trivial task in its own right), and calculating

the geodetic distance between them. Of course, that calculation is likely to under-

estimate the actual trip length. Roads and trails are unlikely to provide a straight-

line path from origin to destination. In the case of Gonzilez et al. (2008), locations

are approximated using the Voronoi cells defined by cellular phone signal towers. For

them, the spatial fidelity is at best hundreds of meters, so trying to get finer estimates

on the distance traveled is impossible.

Provided that there is at least one location data point between the origin and des-

tination, trip lengths can be calculated more accurately. Making the calculation one

level more detailed, researchers can sum the distance between intermediate location

points from origin to destination. This approach would theoretically perfectly capture

the contours and thus length of the trip. However, even GPS measurements are not

perfect and can have 1 m to 40 m of uncertainty (Quddus et al. 2007). Accordingly,

the GPS traces may not perfectly fit to the road taken. Calculating the distance trav-

eled as dictated by the road network requires inferring the position along the road

network that each GPS coordinate represents. Map-matching is this methodology for

projecting a location trajectory onto the road network.

Ultimately, for many applications, studies using direct observations of human

mobility do not require map-matching. Granted, the trajectories are often visualized

by superimposing them on a map, but the data structures of the trajectory and human

spaces are not more deeply linked. The patterns that those researchers are looking

for are geometric patterns, not geographic patterns.

Observing personal vehicles or people themselves directly leads to a wide range

of research opportunities. Those data typically do not require map-matching for

analytic purposes. These data naturally lend themselves to studying human mobility.

Unfortunately, there are important differences between these data and bus AVL data

that prevent bus AVL data from directly informing human mobility.



2.1.2 Tracking a Bus

Now, shifting the definition of 'vehicle' in AVL back to a bus operating a scheduled

service, the story is much different. 'Scheduled service' is in contrast to ad hoc

service, not in contrast to high-frequency service. Bus location trajectories do not

directly capture human mobility; rather, they observe the state of the transportation

infrastructure, where the bus service itself (and its relative timeliness, etc.) are a part

of the infrastructure. Like other studies that analyze transportation infrastructure,

bus location data need to be map-matched. The precision of map-matching is limited

by the polling time of location-at-time data. Ultimately, this Section demonstrates

that the NextBus MBTA AVL data, because they are bus data, are most useful in

human, not trajectory, space and that, because of the slow polling time, they are

most prudently projected specifically onto the GTFS human space.

Bus location data are very different from personal and personal vehicle trajectory

data. Here, the vehicle operator, through the lens of human mobility, is not a person.

They are not traveling for any purpose other than employment itself; they do not

have an origin and destination. Thus, if the bus is empty, it is not mobilizing any

humans. The position of an empty bus offers no insights into human mobility except

in that the bus is occupying road space (thus potentially affecting other travelers)

and to any regard emptiness is interesting. It is not answering when, where, or why

people are moving, and only vaguely how: not by bus. Accordingly,

[Where is the bus going?] # [Where is this person going?]

From the perspective of understanding human mobility, scheduled bus AVL data alone

are not valuable. However, in contrast to automobile AVL data, partial information

about where the bus is going is valuable. Much of a bus' public value come from the

fact that it is scheduled to perform a predefined route at a predefined time; where

the vehicle is going is a priori predictable. Analogizing buses to automobiles, asking

where a bus is going is like asking where the road on which a vehicle is traveling is

going because both can be looked up. This predictability is undesirable for human



mobility research. The value of the research described in the previous Section was

finding regularities in the seemingly unpredictable data. In this way, the bus is a part

of the infrastructure, not just a beneficiary of the road infrastructure.

Once the bus is seen as a part of the infrastructure, it follows that passenger, not

just bus, data are required to better understand human mobility. These data are

also collected by many bus systems as automatic fare collection (AFC) or automatic

passenger count (APC) data. AFC data come in various forms. At their most basic,

AFC data just count that someone has boarded a bus through the fact of their

paying a fare. With payment cards such as MBTA's CharlieCard, the data reflect

that a specific person, as identified by their card, has boarded the bus (Shireman

2011). Except in the few systems, like London's Underground, where users must

also "tap out" of the transit infrastructure (Brakewood 2010), AFC does not directly

capture alightings, only boardings. APC data, in contrast, reflect both boarding and

alighting. However, APC data are fully anonymous and are unable to track when

a specific individual enters and exits the transit system (unless there is only one

passenger). Obviously, the inclusion of APC/AFC data along with AVL data opens

a wider range of accessible research questions. However, APC/AFC data tend not to

be openly available to the public, and so are excluded from this analysis.

Absent APC/AFC data, AVL data only inform [Where is this bus going?] and

cannot get at [Where is this person going?]. The AVL data are not deterministic. Still,

they need to be understood within the framework of their schedule in both the spatial

and temporal dimensions. Thus, the AVL data need to be mapped onto the schedule

data, onto human space, and so GTFS data are necessary. This is an important

distinction between direct measurements human mobility and measurements of the

transportation infrastructure: measurements of the infrastructure need to be linked

back to the human space from the trajectory space.

Now that I have established that NextBus MBTA AVL data should be analyzed

in human space, I argue that they specifically should be analyzed in the GTFS hu-

man space. Ideally, the bus AVL data could be used as sensors of all levels of the

transportation infrastructure that they use and are a part of. Here, I show that,



unfortunately, they can only be used as sensors of the bus network itself. To do so, I

look at past research that uses vehicles as sensors of the transportation infrastructure,

moving from the most to least detailed studies of that infrastructure and show that

the bus AVL data are unsuitable for pursuing similar lines of study.

Some research teams have used vehicle location data to study traffic microstruc-

ture. Oehlerking (2011) use vehicle position data to calculate fuel consumption and

thus CO 2 emissions. They show that accurately predicting fuel consumption requires

location data at a period of once per second, though a period of once every 2-3

seconds can calculate consumption to an accuracy of 2-5%. High fidelity data are

required because fuel consumption is heavily dependent on the vehicle's acceleration

profile. Interestingly, this more abstract look at traffic microstructure does not re-

quire map-matching. However, map-matching also would not be useless: accurately

matching the GPS points to the road could help to more accurately calculate the

distances traveled between GPS points thus more accurately calculate the velocity

and acceleration.

Though bus AVL data could record their data frequently enough to be used for

these CO 2 calculations, many do not. For example, the NextBus MBTA data used

as a primary source in this research are only recorded every 60 seconds, an order of

magnitude off the requisite frequency. Interpolating the NextBus MBTA AVL data

up to the requisite frequency of 1-3 seconds would not be helpful. Modeling the CO 2

depends on integrating over the fine changes in acceleration over 1-3 second periods.

As the NextBus MBTA data are only collected every 60 seconds, that detailed infor-

mation is lost and cannot be recovered. Further complicating the calculations, many

city buses run on liquid natural gas (LNG) or overhead electrical lines, and those

data are not generally available. The bus AVL data used here are not appropriate for

studying traffic microstructure and CO 2 emissions.

Moving a level less detailed, most research in this category uses vehicles as sensors

of the traffic on road segments, generally called 'floating car' studies. There are a

large number of 'floating car' studies. Chen et al. (2007) use Beijing taxi data to study

travel time reliability over various time periods and scales. De Fabritiis et al. (2008)



implement a large-scale floating car study on the highway network around Rome. He

et al. (2008) and Van Zuylen et al. (2008) improve floating car data methodology

by more effectively treating road segments with traffic signals. Hellinga et al. (2008)

suggest a method for inferring the behavior of floating cars between their consecutive

polled positions. Toplak et al. (2010) propose a method for using historical floating car

data and road segment similarity statistics to fill in traffic predictions for segments

where data are very sparse. ITS Vienna Region (2012) uses real-time floating car

data for multimodal trip planning. Dong and Pentland (2009) use a large database

of historical vehicle GPS tracks to develop a traffic congestion prediction model.

Thiagarajan et al. (2009) take that research farther by developing a mobile phone

application called VTrack that simultaneously provides map-matching and routing

for the driver, identifies and reroutes the driver away from delay-prone segments, and

minimizes the power drain on the mobile device. Cathey and Dailey (2001) use buses

as a traffic sensor. However, Cathey and Dailey (2001) do not use GPS data; rather

they use time-at-location data in the form of 'time point' data which record when a

bus passes through sequential sensing gates in the road. They only study a bus route

that travels on the interstate, so the bus travel times are unaffected by stopping for

passenger boardings and alightings.

Floating car research does require map-matching. The purpose of floating car

research is to report on and possibly predict the traffic state on such-and-such road

segment. This pursuit lacks accuracy if the researchers cannot identify whether a

vehicle is on that road segment or not.

Unfortunately, the NextBus MBTA AVL data are not suitable for use as floating

car data either. As suggested by Cathey and Dailey (2001), AVL data is not appro-

priate to be used as floating car data for intracity driving. First, scheduled bus stops

would need to be removed from the data, as they do not reflect traffic conditions.

D'Acierno et al. (2009), for example, attempt to use bus AVL data as floating car

data in urban Naples, Italy by separately treating regions of the road that are in the

neighborhood of bus stops or traffic lights. However, their results are not conclusive

and have not been broadly adopted. Further, the infrequent 60 second polling on



the MBTA data precludes them from such analyses. Even with perfect information

about the bus' location, a city bus could not be used as a floating car. Some bus stops

are co-located with stop lights, and there is no iron-clad way of knowing whether the

length of a stop there is due to the traffic light or to serving passengers. Addition-

ally, after making a stop, a bus must often merge back into traffic, again slowing its

progress in a way not experienced by general traffic. Buses traveling in exclusive bus

lanes are also not suitable for use as floating car data, as general traffic are explicitly

excluded from those lanes. However, as practiced by Cathey and Dailey (2001), if

buses have long stretches where they behave just like other vehicles without stopping

for passengers, such as along highways, AVL data are appropriate. In sum, AVL data

are not necessarily the best to be used as city driving floating car data.

Thus, the NextBus MBTA AVL data, despite being location-at-time data, cannot

be used to directly study human mobility, traffic micro-structure, or traffic generally.

However, the NextBus MBTA AVL data can be used to study the status of the bus

itself as infrastructure. Consequently, this is where most of the research presented

here is pointed, and so I will provide a more thorough literature review of this subject

in Chapter 4. To study the bus infrastructure, I do need to map-match the bus AVL

data from trajectory space to human space. As I am not studying traffic generally, I

do not need to map-match them to the general road network, but rather only the bus

network. These data are generally provided in the General Transit Feed Specification,

the subject of the next Section.

2.2 General Transit Feed Specification

As argued above, the NextBus MBTA AVL data are best understood in the context

of the MBTA GTFS data. Fittingly, I introduce the MBTA GTFS data first here.

This Section covers the genesis and evolution of the GTFS and summarizes how to

access and generally understand GTFS data.

The General Transit Feed Specification (GTFS) "defines a common format for

public transportation schedules and associated geographic information"



(Google 2011). Simply, GTFS is a standardized machine-readable format for tran-

sit schedule data for multi-modal trip planning. It comprises of thirteen comma-

separated values files that are described as a relational database. GTFS data, when

complete, provide all of the data about planned bus service. They are the standard

against which the AVL data can be judged once the AVL data are projected onto the

GTFS data.

The inspiration for GTFS came from an entrepreneurial transit provider. GTFS

began when Portland's TriMet's Bibiana McHugh approached Google in 2005 to cre-

ate Google Transit for Google Maps (TriMet 2011). Thus, the original motivation

was to put schedule data into a format that Google could use to provide potential

passengers with schedule and trip-planing information. The specification was origi-

nally called the Google Transit Feed Specification, and after widespread acceptance,

the 'G' was changed from Google to General (Google 2011). GTFS is now the de

facto standard for schedule and route data (see e.g., Raschke (2011)).

The GTFS is well-documented by Google (2011). However, that description is

geared more toward transit providers to help them to put their schedule data into

GTFS format, not toward bus service analysts. Here I summarize the procedure

for accessing the MBTA data and key terms and tables in GTFS for analyzing bus

performance both to make GTFS data more accessible to the reader and to introduce

important terminology for the rest of the thesis.

Acquiring the GTFS data is easy. The MBTA publishes their GTFS data on their

website and maintains an archive of old GTFS files. I downloaded the data directly

from MBTA (2012). The collection of text-files is best leveraged as a SQL relational

database. I chose to use the open-source PostgreSQL database platform, commonly

referred to as Postgres (PostgreSQL 2011). Next, I used Bick and Damphouse (2010)'s

Python-based tool to import the MBTA GTFS files into the Postgres database. Bick

and Damphouse (2010)'s tool creates a database that conforms with an older form of

the GTFS standard, so I needed to make some changes so that it would conform to

the current standard set by Google (2011).

The GTFS itself elegantly represents transit schedule data. As the GTFS are a



relational database, it is useful to view the relationships between the files of GTFS.

Chen (1976) introduced the entity-relationship diagram (ERD), a helpful and popular

way of visualizing a relational database. Figure 2-1 depicts the full ERD of the GTFS,

plus two additions. I built the ERD using the open-source Java-based tool SQL Power

Architect (SQLPOWER 2011).

ERD notation conveys all of the characteristics of a database. Here, I introduce

the ERD notation as implemented by SQLPOWER (2011). In this notation, each

data table is represented as an individual rectangle. At the top of the rectangle

the table name is listed in a gray background. For specificity, I focus on the table

gtf-stop-times, depicted in the upper-left corner with the page rotated landscape

with the ERD text right-side up. In that box, the table title gtf _stop-times is shown

with a gray background at the top. The remainder of the rows in the box are the

data table field names, which label all of the data that are included in each record

of the table. Directly below the table title is the primary key, a collection of one or

more fields which when specified together identify a unique record. In SQLPOWER

(2011) notation, the fields which comprise the primary key are designated in two ways.

First, they are listed between the title and the horizontal line at the top of the table

box. Second, they have the notation [PK], short for primary key, or [PFK], short for

primary and foreign key. In table gtf stop-times, the primary key is composed of

two fields, trip-id and stop-sequence.

A line connecting two tables indicates that they are related. For example,

gtf-stop-times has relationships with the entities gtf-trips, gtfs-pickup_

dropoff-types, and gtf-stops. These relationships are foreign key relationships,

notated as [FK] or [PFK]. First, let's look at the relationship with gtf _trips. The

relationship is identifying, as indicated by the solid as opposed to dashed line, meaning

that the relationship is between fields that are part of their respective tables' primary

keys. Further, the relationship shows that for each single trip-id in gtf trips, there

are zero, one, or many records in gtf _stop-times with that trip-id. For short, this

is a one-to-many relationship. The one-to-many relationship is notated by the single

hash on the line between them on the gtf _trips side, indicating the phrase 'for each
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Figure 2-1: Entity-relationship diagram (ERD) of the GTFS files. Built using the open-source Java-based tool SQL Power
Architect (SQLPOWER 2011). This reflects the GTFS according to Google (2011) per the 6 September 2011 revision. Ad-
ditionally, the various lookup tables defined by the specification (e.g. gtfs-paymentinethods) and also a table of only the
unique shape ID's in order to represent the relationship between gtf trips and gtfshapes. gtf-feed-inf o does not have a
relationship with the other tables.
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single trip-id,' and the combination of an open circle or zero, a single hash, and

the fanning hashes (sometimes called crow's feet), indicating the phrase 'zero, one,

or many trip-ids,' respectively. The line between them give the phrase between of

'there is.' So, all together, the line between gtf _stop-times and gtf _trips indicates

that 'for each single trip-id in gtf _trips there are zero, one, or many records with

that trip-id in gtf _stop-times.'

There are two important additions to the ERD depicted in Figure 2-1 which are

not part of the official GTFS:

1. The ERD includes the look-up tables for pickup-dropoff-types, location_

types, location-types, route-types, directions, and payment nethods.

The values for these look-up tables are defined by Google (2011), but they

are not explicitly stated as additional tables.

2. I added the table gtfs-shape-ids. gtfs-shape-ids only contains the unique

shape-ids so that the relationship between gtf -trips and gtf _shapes may be

properly depicted. Otherwise, there is not a table in which shape-id alone is the

primary key, which prevents it from having a well-defined foreign relationship.

Only a subset of the tables of the GTFS are relevant to analyzing bus performance.

For my purposes, the trip is the most fundamental concept, so the gtf _trips table

is the central table. A trip is one scheduled run of a bus along a route of a specific

shape, also called a half-cycle. The unique trip-ids in gtf _trips can then be used

to look up everything about that run:

" The time when the trip is scheduled to begin and make all of its stops are

provided in gtf _stop-times. The gtf _stop-times table thus also lists all of

the stops that the trip is to make with the stop-id. The location and name of

each stop-id can then be looked up in the gtf _stops table. The MBTA uses

gtf _stop-times for both 'scheduled trips' and 'frequent trips.' The 'frequent'

trips stop-ids are defined in gtf _stop-times.

* 'Frequent' trips are reported in the gtf-frequencies table. These trips are

scheduled to take place continuously during the period defined by start-time



and end-time with a target headway of headway-secs. The MBTA does not

schedule many routes as 'frequent' service.

" The route that the trip is running. The route name and description can be

looked up in the gtf _routes table using the route-id.

" The direction of the trip. For example, the routes of the MBTA are either

inbound or outbound with respect to central Boston. The direction-id cap-

tures the trip direction as an integer whose value is reflected in the look-up

table gtfs-directions.

* The days on which the trip is run as indicated by the service. service-ids are

defined in gtf _calendar. gtf calendar defines the range of dates and the days

of the week that a particular service-id operates. The service-id is helpful

for separating weekend and weekday service.

" The shape of the route that the bus is running. The shape-id identifies the

shape of the route as defined in the table gtf-shapes. There, the shape is

denoted as a poly-line of latitude-longitude coordinates as shape-pt-lat and

shape-pt-lon, respectively. The order of the coordinates (thus defining the

poly-line) are represented by the shape pt-sequence. In the MBTA data,

each route-id has at least two shape-ids, one for each direction of travel,

but they can have as many as 20 shape-ids to capture the various large and

small deviations necessary. The shape variations tend to be identified by se-

quential shape-ids that also encode the route. For example, the shape-ids

for MBTA Route 1 are 10016 (inbound) and 10017 (outbound). There do

not seem to be any other regular patterns for which shape-id is inbound or

outbound, by odds/evens or otherwise, as the variations increase: for exam-

ple, for Route 66 the seven variations are 660015 (inbound), 660017 (inbound),

660018 (outbound), 660019 (outbound), 660020 (outbound), 660021 (inbound),

and 660022 (outbound). As the shape-ids capture the scheduled trajectory of

the bus, the AVL data, when map-matched, are projected onto the appropri-



ate shapes. Interestingly, there is not a relationship between gtf _shapes and

gtf-stops in the GTFS: the stop-lat, stop-lon coordinates also need to be

map-matched to the appropriate shape-ids as dictated by gtf _stop-times and

gtf -trips. However, the MBTA data do appear to use shape-pt-sequence to

show part of the relationship between gtf _stop-times and gtf _shapes. The

shape pt-sequence progress, using Route l's 10016 as an example, as

{10001, 10002,10003,..., 10012, 20001, 20002, ...}

Once the stop-ids are map-matched to the shape, I joined gtf-stops and

gtf-shapes to show that the stop at stop-sequence = 2 (in this case the

stop-id is 2168) lies between shape-pt-sequence 10012 and 20001. This sug-

gests that the ten-thousands place of shape ptsequence can be used to identify

stop locations, eliminating the need for map-matching the stops to the shapes.

This pattern holds broadly for the MBTA but would not necessarily hold for

another agency. Accordingly, this trick should not be used in a system architec-

ture spanning multiple agencies. gtf _stops and gtf _shapes were joined here

on shape-dist-traveled. The MBTA does not provide shape-dist traveled

for either table, but it can be inferred through map-matching and simple cal-

culation, respectively.

In short, a route is driven along a shape. One run of the route from beginning

to end is a trip. Along a trip, the bus makes stops. Trips can be defined with

scheduled stops along the route, as defined in gtf-stop-times, or a range of times

over which consecutive buses are to maintain a scheduled headway, as defined in

gtf frequencies. All of these attributes are interrelated.

The GTFS is a helpful way of conceptualizing transit data. However, there are

some difficulties in working with GTFS data. First, though GTFS is standardized,

there is substantial room for variation. Second, the GTFS can make maintaining a

database across multiple agencies difficult. Third, the GTFS itself is not static.

Though GTFS is the standard for reporting static transit data, there is still a lot of



room for variation. For example, many of the tables and fields shown in Figure 2-1 are

not required by Google (2011), such as the tables calendar-dates, f are-attributes,

fare-rules, shapes, frequencies, and transfers. Further, there are variations in

the underlying logic for the GTFS. For example, the MBTA does not ever schedule

dwell time, i.e., scheduled time to load and unload passengers, at stops. Also, the

MBTA s shape-pt sequence pattern with regard to stop locations and shape-id

naming convention may not be replicated elsewhere.

Maintaining a single database of GTFS data which spans long time periods and

multiple agencies is not trivial. Though generally static, agencies tend to update their

GTFS as they make adjustments to their service. For example, the MBTA updates

their GTFS quarterly. Incorporating these different versions is relatively simple. The

gtf _calendar provides fields for a start and end date to a service. Any attempt to

insert a duplicate trip-id, shape-id, etc. should be prevented by the SQL database

as it preserves key integrity (assuming that an INSERT SQL command is used, not

an UPDATE command). Combining the data from multiple agencies is more com-

plicated. Many tables do not already have the agency-id and f eed-version fields,

whether explicitly or somehow encoded into the existing primary keys, complicating

the task of differentiating which agency is operating which trips. Further, there is no

guarantee that any of the *_id fields would be unique after combining various agen-

cies. Managing a database across multiple agencies and multiple agency schedule

definitions is a non-trivial task.

Complicating matters still, the GTFS standard itself is evolving, with fields and

relationships being added and removed over time. As the GTFS changes, GTFS

databases need to be restructured and queries on those databases need to be rewritten.

Despite any challenges with using or maintaining GTFS data, they are an invalu-

able resource for bus AVL research. They are the data onto which the AVL data need

to be projected through map-matching.



2.3 Automatic Vehicle Location Data

There is not a generally agreed upon standard for AVL data, nor is there even a

standard for what data precisely should be included in AVL data. This Section

serves to both review different forms of AVL data, in Section 2.3.1, and introduce the

NextBus MBTA AVL data specifically, including an introduction to their collection,

in Section 2.3.2.

2.3.1 Types of AVL Data

As discussed at the beginning of the Chapter, there are two different types of AVL

data: location-at-time and time-at-location. Then, within these categories, there are

various formats for reporting the AVL data.

AVL data were historically collected through the use of special sensors positioned

along the bus route (Parker 2008). These data by definition were time-at-location.

Now, AVL systems tend to be Global Positioning System (GPS) based. GPS data

can be either location-at-time or time-at-location.

In addition to NextBus, there are many other different formats for reporting AVL

data. The European standard for AVL data is the Service Interface for Real time

Information (SIRI) (Raschke 2011). SIRI is XML-based and provides very complete

information, with the flexibility to provide time-at-location and location-at-time data.

OneBusAway (OBA) is an open-source AVL data service (Ferris 2011). OBA

provides the data in a variety of formats, including a format that is compatible with

SIRI (Ferris 2011).

The Chicago Transit Authority (CTA) developed its own data format to deploy

AVL data. It is an XML format that is very similar to the MBTA NextBus format,

though it does provide more information, including effectively map-matching ahead

of time by providing the shape distance traveled (Chicago Transit Authority 2011).

Further, the CTA publishes the XSD documents as well.

There is a wide range of AVL data types and formats.



2.3.2 NextBus MBTA AVL

This Section introduces the NextBus MBTA AVL data, covering everything from the

generation of position data inside of a bus to NextBus publishing the data through

the Internet. Understanding the data generation through publishing should help to

inform the challenges of integrating data from numerous transit agencies and the

irregularities that the system architecture must correct and that could affect results.

NextBus, Inc., a wholly owned subsidiary of Webtech Wireless (Webtech Wireless

2011), provides data for a large number of US and Candadian transit providers, as

is shown in Table 2.1. The NextBus service can involve a wide array of functions,

including bus arrival predictions and bus locations.

The NextBus MBTA AVL data go through many steps before I can access them.

As is depicted in Figure 1-1, the data pass from reality to observation to being the

prirwary data. Each of these steps affect the data and the inferences that can be

drawn from them. Understanding the errors and biases introduced by those iterations

is essential to effectively projecting the AVL data onto the GTFS data. Here, I trace

through the data generation process, elucidating impacts of each step on the data.

First, AVL data are generated by a bus driver driving the bus. In the MBTA

network, each bus is equipped with a GPS unit and a TransitMaster system (Barker

2011). The TransitMaster system, made by Trapeze ITS (2011), knows each driver's

driving schedule for the day (Barker 2011). Each driver signs in to the TransitMaster

unit at the beginning of the shift. The schedule information for the driver is integrated

with the GPS so that the on-board computer knows what route the bus is driving

to manage the bus's head sign and give accurate information about the route and

trip being traveled. When everything is working perfectly, the TransitMaster handles

the bus headsign text and on-board audio stop announcements, and reports the bus'

location back to MBTA every 60 seconds. Errors anywhere in this chain can lead to

errors in the AVL data. Trips could be missing because a driver did not sign in to

the TransitMaster, because the TransitMaster is not turned on or is broken, because

the GPS is not turned on or broken, or the link between them is not established or is



Tag Title Region
actransit AC Transit California-Northern
calu-pa California University of Pennsylvania Pennsylvania
camarillo Camarillo Area (CAT) California-Southern
chapel-hill Chapel Hill Transit North Carolina
charles-river Charles River TMA - EZRide Massachusetts
charm-city Charm City Circulator Maryland
oxford-ms City of Oxford Mississippi
collegetown Collegetown Shuttle Maryland
dc-circulator DC Circulator District of Columbia
da Downtown Connection New York
georgia-college Georgia College Georgia
glendale Glendale Beeline California-Southern
south-coast Gold Coast Transit California-Southern
lametro Los Angeles Metro California-Southern
mbta MBTA Massachusetts
mit Massachusetts Institute of Technology Massachusetts
moorpark Moorpark Transit California-Southern
brooklyn NYC MTA - Brooklyn New York
sria Pensacola Beach (SRIA) Florida
portland-sc Portland Streetcar Oregon
reno Reno RTC Washoe Nevada

Rutgers Univ. Newark College Town
rutgers-newark Shuttle New Jersey
rutgers Rutgers University New Jersey
sf-muni San Francisco Muni California-Northern
seattle-sc Seattle Streetcar Washington
simi-valley Simi Valley (SVT) California-Southern
stl Societe de transport de Laval Quebec
temple Temple University Pennsylvania
thousand-oaks Thousand Oaks Transit (TOT) California-Southern
ttc Toronto Transit Commission Ontario
unitrans Unitrans ASUCD/City of Davis California-Northern
umd University of Maryland Maryland
vista Ventura Intercity (VISTA) California-Southern
wku Western Kentucky University Kentucky

Table 2.1: The list of the agencies using the NextBus AVL data as of writing.
These data were found using the NextBus XML API with the command agencyList,
though the shortTitle attribute of each agency was excluded.



broken. The radio used for reporting the positions could also be broken. Trips could

also be missing because a trip was not run for any number of reasons, such as the

vehicle being needed elsewhere in the network. There is no way of knowing directly

from the AVL data why a trip is missing. These missing data mean that the NextBus

AVL data always may be under-estimating bus performance. An observed headway

of 20 minutes could mean that a third bus in between was missing, making for two

ten minute headways. Moreover, the GPS data have accuracy within 1 m to 40 m at

a 95% level (Quddus et al. 2007).

Second, the MBTA sends the data to NextBus and NextBus prepares to publish

them. As stated above, each of the active MBTA buses report their positions every

60 seconds. Those positions are sent to the NextBus servers. Before publishing the

data, NextBus does some preliminary map-matching (Barker 2011). NextBus closely

guards all of their analytic and processing methods, regarding them as proprietary

secrets (Barker 2011), so it is difficult to say precisely how they map-match. My

intuition from examining the locations of GPS points is that NextBus matches them

to the general street network rather than to the GTFS shapes. Generally, this map-

matching is helpful for me and expedites the map-matching process because the AVL

points have moved closer to the road network. However, there are two common

problems that arise from this map-matching. First, matching to the street network

is problematic when the buses are traveling on exclusive busways. The exclusive

busways do not appear in the road network, and so the buses appear to be traveling

on neighboring streets, such as shown below in Figure 3-16, often going the wrong way

on a one way street or hoping from one side to the other. Second, the bus trajectories

can appear to wander to neighboring streets in regions where the street network is

particularly dense, such as shown below in Figure 3-15. The NextBus matching can

cause the bus to 'hop' to a neighboring street. There is no way of knowing whether

the bus actually took a detour or if NextBus erroneously matched the GPS point

from the data.

Finally, NextBus publishes the data through the Internet. At this point, the data

are freely open to the public, and any biases introduced into the data are caused by



those, like me, who access the data. So, now I shift from examining the process by

which the data become accessible to discussing how precisely I access and archive

them.

I access the data, as is shown in Figure 1-2, using the Java program ArchiveLiv-

eFeed. NextBus provides its data as a REpresentational State Transfer (REST) eX-

tensible Markup Language (XML) document through their Application Programing

Interface (API). This is commonly referred to as a REST-ful XML API. Unfortu-

nately, the schema information, in the form of a XML Schema Definition (XSD),

is not published. REST enables users to specify exactly which data they want

(e.g. MBTA instead of San Francisco's Muni) by specially formatting a Uniform

Resource Locator (URL) delivered through a HyperText Transfer Protocol (HTTP)

GET request. NextBus (2011) provides full documentation of the data and respective

commands that are available. For example, the base URL for the NextBus feed is

http: //webservices. nextbus. com/service/publicXMLFeed; to complete a query,

various constraints are placed preceded by a question mark ?.

The command for the raw AVL data (as opposed, for example, to stop predictions)

is vehicleLocations. To request vehicle locations for MBTA vehicles, ArchiveLive-

Feed sends HTTP requests such as:

http://webservices.nextbus.com/service/publicXMLFeed?

command=vehicleLocations

&a=mbta

&t=o

Breaking down the URL, ArchiveLiveFeed is using the publicXMLFeed service to

execute the vehicleLocations command for the mbta a(-gency, see Table 2.1), re-

questing the most recent locations of every active bus that has updated its position

since epoch t(-ime) 0. Epoch time is the number of milliseconds since epoch, Jan-

uary 1, 1970 UTC, so, assuming that every active bus has updated its location since

January 1, 1970, using 0 requests all active buses' last positions.

After successfully receiving that HTTP request, NextBus sends an XML document



<body copyright="All data copyright MBTA 2011. ">
<vehicle

id=" 2228"
routeTag="9"
dirTag="9_1_varO"

lat="42.3392193"
lon="-71.0513772"

secsSinceReport="16"
predictable=" true"
heading="310"
speedKmHr="0.0"

/>

<lastTime time="1324007633490"/>
</body>

Figure 2-2: A portion of a sample NextBus MBTA XML document, including all
of the possible tags and fields.

back to ArchiveLiveFeed. Figure 2-2 shows a portion of an XML document that

NextBus sends back.

Figure 2-2 shows the full richness of the data. There are body, vehicle, and

lastTime tags, with vehicle and lastTime both children of body. A vehicle has

the attributes id, a unique vehicle ID; routeTag, the route the vehicle is travel-

ing; dirTag, which here triply encodes the route ID, direction ID, and shape ID (e.g.

28_0-var3 is route 28 direction 0 (outbound) on the fourth (the index starts from zero)

shape variation (280022)); lon, the longitude; lat, the latitude; secsSinceReport,

the number of seconds between the query and when the bus was at that loca-

tion; predictable, a Boolean for whether stop predictions are available for the bus;

heading, a measurement of the direction in which the bus is pointed; and speedKmHr,

which would be the bus speed if it were not always zero. AVL heading data are no-

toriously unreliable, especially at low speeds (Furth et al. 2006). The lastTime has

one attribute, time, the NextBus server's epoch time when I queried it.



The time attribute of lastTime is very important for the Java program. As

explained above, t is one of the fields of the REST-ful, and using 0 effectively asks

for the most recent position of all of the active buses. The field t tells the server to

give all of the positions of active buses that were updated after t; so giving lastTime

in the XML document lets the user know when they last queried the server.

As mentioned above, NextBus does not publish an XSD for their XML feed. The

standard Java Architecture for XML Binding (JAXB) is cumbersome to use without

an XSD. So, instead of writing the XSD and using JAXB, I use the Processing XML

library to parse the XML document (Fry and Reas 2011). Then, the Java program

inserts the parsed data into the Postgres database where the GTFS tables live into

the rawdata table. Then, to ensure that I capture all of the bus positions, ArchiveLiv-

eFeed queries the NextBus server every 30 seconds, updating the t parameter at each

iteration using the value from the previous lastTime time. That is the full extent

of the functionalities of ArchiveLiveFeed.

Generally, ArchiveLiveFeed is robust enough to handle data from any of the agen-

cies listed in Table 2.1. However, there are differences in the data NextBus provides

for each of those agencies and across time for a single agency. The San Francisco

Muni, for example, encodes its dirTag differently and gives non-zero speedKmHr. The

MBTA dirTag has gone through at least two iterations, where the data 28_0-var3 was

encoded as 28_280022v0_0 prior to 15 June 2011. Additionally, for at least a month

and a half, the MBTA provided the GTFS trip-id as well, making the map-matching

problem much easier.

Though the NextBus data provide a lot of information, they are not complete.

Importantly, the NextBus location data do not provide information on when a bus

arrives or departs from a stop. Most bus performance metrics require information

on stop arrival times. As discussed above in Section 2.2, the GTFS data provides

the latitude and longitude coordinates that define the bus stops and the poly-line

shapes along which the buses travel. Thus, stop arrival and departure times have to

be interpolated after map-matching the bus locations to the GTFS shapes.



2.4 Data Summary

In this Chapter, I introduced the datasets used for this analysis. First, I discussed

location tracking data broadly in the context of human mobility and argued that bus

location data, absent passenger data, can only be used to monitor the bus performance

as a part of the infrastructure. I showed that, resultantly, I need a second dataset

with static bus schedule data. Then, I discussed the GTFS as the static bus schedule

data. Finally, I introduced the NextBus MBTA data, in addition to discussing AVL

data generally.
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Chapter 3

Data Processing and Cleaning

The previous Chapter covered the process of obtaining the location-at-time data that

live in trajectory space and of obtaining the relevant data defining the human space.

This Chapter serves to describe how I projected the trajectory space data onto the

human space through a fast, robust system architecture. This projection has two

steps. One, the trajectory data need to be map matched, a literal projection of

the trajectories onto bus route shapes. Two, the data are transformed into time-at-

location data by calculating the most likely stop arrival and departure times. The

purpose of this Chapter is to describe how I completed each of these tasks and to

advise on how the tasks might be done differently. Throughout, I note where the

system is robust to processing another city's data and where it is not.

As described above, part of the objective of this research is to make analyzing

AVL data more accessible to both practitioners and citizens. Accordingly, I will err

on the side of verbosity, describing many of the less technical details thoroughly so

as to gently initiate the uninitiated.

Taken together, these transformations prepare the NextBus MBTA AVL data for

analysis. This preparation is broken into four basic steps:

1. Determine what shape the trip is traversing

e With the trip-id and GTFS, this task is trivial, as shown in Figure 2-1.

The NextBus MBTA AVL feed provided the trip-id at least during the



period from May 1, 2011 to June 15, 2011. The analyses here focus on

this period. All of the NextBus MBTA AVL data have been archived since

March 1, 2011 through the time of writing.

e Without either, this is more difficult. Even determining when a trip be-

gins and ends can be non-trivial. However, as the MBTA NextBus feed

provides the vehicle-id, route-id, and direction-id, breaking the records

into trips should be possible. Some work has been done toward deter-

mining which trip a bus is traversing given its trajectory. In an earlier

version, the NextBus MBTA AVL data did not provide the route-id. In

response, Zeldovich (2010) developed a web-application that predicts the

route of MBTA buses in real time. Learning the trip-id effectively adds

the third dimension of time to the map-matching problem; time is the di-

mension that differentiates different trips on the same shape-id. Cathey

and Dailey (2003) and Biagioni et al. (2011) use both time and location

data to determine the trip-id. In the case where the route-id has many

shape-ids, either the time data could be used to learn the trip-id or

space data could be used to learn the correct shape-id. I do not present

a solution to this problem; it is an important area for further research.

2. Determine the best projection of each coordinate to its shape-id. This is the

map-matching problem. As described above, in the case where the shape-id is

not directly accessible from the AVL data, this step is concurrent with determin-

ing the shape-id. To simplify the subsequent analyses, the map-matching does

not simply transform the AVL data from one set of latitude-longitude coordi-

nates that do not necessarily lie on the shape-id to another set that do. Rather,

the latitude-longitude coordinates are translated to a distance-along-shape (or,

in GTFS language, shape dist traveled). Projecting to the distance-along-

shape is preferable because it is one- rather than two-dimensional, and it sim-

plifies calculating most statistics about a trip, including the bus speed and the

proximity of a bus to a stop.



3. Determine what stops is the bus is supposed to service and the locations of

those stops. With the GTFS data and an accurate trip-id, this problem is

also trivial. As the trip-id and GTFS data are necessary for the above stops,

I skip describing this step in detail.

4. Determine when the bus serviced each of the stops. Generally, this is done by

comparing the shape-dist-traveleds of the AVL trajectory with those of the

shape's stop-ids.

This Chapter describes these methodologies, tracing the data from a raw data

file to an analyzable format. First, Section 3.1 prescribes a map-matching procedure

for projecting NextBus MBTA AVL data onto GTFS data, or, using the terms from

Figure 1-1, it describes merging the raw AVL data and GTFS data into bus-on-

GTFS-shape and stop-on-GTFS-shape data. Second, Section 3.2 offers two different

methods for calculating bus stop arrival and departure times. These methods finish

Figure 1-1 by combining bus position and scheduled stop data into stop arrival and

departure data.

3.1 Map-matching

This Section covers the map-matching. First, Section 3.1.1 gives an overview of the

map-matching problem, map-matching terminology, and other approaches that have

been used to map-match location traces. Second, Section 3.1.4 shows the ways in

which the NextBus MBTA AVL map-matching fail so as to inform the decisions I

made in formulating my map-matching algorithm. Third, Section 3.1.5 describes

the map-matching procedure itself. Finally, Section 3.1.6 presents the results of my

map-matching algorithm.

3.1.1 Map-Matching Overview

Map-matching is the process of assigning a measured vehicle position to a road seg-

ment in a digital map (Hummel 2006). GPS devices have errors of 1 meter to 40



Figure 3-1: A full map of the area surrounding Harvard Yard in Cambridge, MA,
including the MBTA Route 1 inbound shape, stops, and sample bus GPS points.
Nodes are shown as circles, where black circles are intersections, gray circles are not,
and crimson circles are bus shape nodes. Edges are shown as lines, where red lines are
bus route edges. Bus locations are yellow diamonds, and bus stops are blue triangles.

meters (Quddus et al. 2007), so the task is not trivial. Others refer to the task as

snapping the GPS coordinates to the road. This overview is divided into two parts.

First, Section 3.1.2 summarizes the general terms and concepts of map-matching.

Second, Section 3.1.3 reviews previous map-matching literature.

3.1.2 Map-Matching Terms

The map-matching problem has been formulated and thought of in many different

ways. As is shown in Figure 3-1, map-matching is generally thought of as projecting

onto a graph of the street network. There are edges, shown in Figure 3-3, as defined

by the roads, and nodes, shown in Figure 3-2, as defined by street intersections and

termini. In the context of GTFS map-matching, the edges are referred to as shape
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MBTA Route 1.

segments, and the nodes are referred to as shape points. The task is to map the GPS

traces, in this case from buses shown in Figure 3-4, onto the road network. Finally,

in bus performance research, the bus stop locations, shown in Figure 3-5, also need

to be map-matched.

There are many different procedures for map-matching. Broadly, all of the proce-

dures are a combination of point-to-point, point-to-curve, and curve-to-curve match-

ing, which are depicted in Figures 3-6, 3-7, and 3-8, respectively. Each method is what

it sounds like: in point-to-point matching, each GPS coordinate is simply matched

to the nearest node; in point-to-curve matching, each GPS coordinate is matched to

the nearest edge; and in curve-to-curve matching, the trace history is used to find

/ A
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the best fit to the shape of the road. Most map-matching algorithms involve a com-

bination of these methods; curve-to-curve matching itself explicitly involves at least

point-to-curve matching if not also point-to-point matching.

Generally, regardless of the map-matching type, GPS coordinates are not just

matched to the best fit. Rather, some coordinates are discarded because they do not

fit well. For example, a GPS coordinate located in Connecticut would be thrown

out when matching the Boston bus data. Usually, a maximum threshold distance is

specified, and points that lie outside of the threshold are discarded.

Figure 3-6:
matching

Figure 3-8:
matching

Point-to-point map-

Curve-to-curve map-
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Figure 3-9 displays the codependent relationship between point-to-point and

point-to-curve matching. As in Figures 3-1 through 3-8, the red lines indicate bus

Figure 3-7: Point-to-curve map-
matching

-

Figure 3-9: A comparison of point-to-
point and point-to-curve map-matching.
Point 1 does not successfully match.
Point 2 matches as point-to-curve. Point
3 matches as point-to-point.



shape edges, the crimson circles indicate bus shape nodes, and the yellow diamonds

indicate bus AVL points. The dashed purple lines define the region, determined by

some arbitrary threshold distance from the poly-line, outside of the acute angle within

which a point must lie to be successfully matched to the shape. The two rectangular

regions are regions in which a point may successfully project onto an edge by point-to-

curve matching. The pie-shaped region is a region in which a point may successfully

project onto a node by point-to-point matching. Thus, point 1 does not successfully

match; point 2 matches as point-to-curve; and point 3 matches as point-to-point. This

Figure shows that while point-to-curve matching generally projects points onto the

shape more precisely, point-to-curve matching also needs point-to-point matching to

pick up regions inside of reflex angles. If point-to-point matching were not used here

to complement point-to-curve matching, point 3 would not be successfully matched.

In sum, map-matching uses point-to-point, point-to-curve, and curve-to-curve

matching. These methods are generally dependent on one another. Some points

that are too far from any roads in the human space data are discarded.

3.1.3 Map-Matching Literature

There are a wide range of methodologies for combining point-to-point, point-to-curve,

and curve-to-curve matching. Map-matching algorithms tend to be differentiated

depending on the desired numerical calculation speed of map-matching and the polling

frequency of the location data. First, the desired speed of map-matching affects

the algorithm used. If pure speed is the most important characteristic, point-to-

point matching alone is used; however, this is rare. More commonly, algorithms

are separated by the polling time of the GPS coordinates. The polling time is the

frequency with which GPS points are recorded. Polling times tend to be either on

the order of seconds (one coordinate every 1 to 5 seconds) or minutes (one coordinate

every 30, 60, or 120 seconds). Conservatively estimating city driving speeds at 30

kph, this is a difference between getting one point every 8 to 40 meters and one point

every 250 to 1,000 meters-quite a significant difference.

Most map-matching literature concerns high-frequency GPS polling, which is what



automobile GPS routing uses. As discussed in Section 2.3.2, the MBTA data are

polled every 60 seconds, so my treatment of high-frequency polling will be brief.

Quddus et al. (2003) give a helpful tabular summary of different map-matching al-

gorithms, and Quddus et al. (2007) provide a formal and more up-to-date review of

various map-matching techniques. However, most of those techniques seem to have

been supplanted by Hidden Markov models (HMM) using the Viterbi algorithm in-

troduced by Hummel (2006) (see e.g., Dong and Pentland (2009) and Thiagarajan

et al. (2009) for examples of HMM used for map-matching). Thiagarajan et al. (2009)

use an interesting hybrid of cell phone GPS and the WiFi access point fingerprint to

reduce battery drain.

Less map-matching literature is devoted to low-frequency GPS polling. Many of

the sophisticated high-frequency methods, such as Quddus et al. (2003), rely heavily

on the immediate past of the trace, heavily weighting the probability that a vehicle

has stayed on the same road. With low-frequency polling, the vehicle may have made

two or more turns between polls, making such probabilities all but useless. Yang

et al. (2005) and Wu et al. (2007) both approach the low-frequency polling map-

matching problem by first collecting the subset of likely matches, found by point-to-

point and point-to-curve matching, for each GPS coordinate and then searching for

the most likely route through them. Yang et al. (2005) note that there could be many

routes between two coordinates and suggest using the shortest path, calculated using

Djikstra's algorithm, between them as the most likely route. My algorithm borrows

heavily from Yang et al. (2005).

Map-matching buses is then a different subject still, as alluded to in Section 2.1,

discussing what bus GPS data can and cannot be used for. Specifically, it is generally

not a mystery where a bus is going to go: it has a route that it is assigned to follow and

times when it is supposed to travel along that route. In GTFS terminology, the bus

has a trip-id. Buses may have to make detours for various reasons, but the general

assumption is that they will follow their route. This difference greatly simplifies the

map-matching process from projecting onto a graph as defined by the road network

to projecting onto a poly-line as defined by the GTFS data. Bonzon (2007) exploits



this for his map-matching of the Lausanne, Switzerland bus lines near EPFL by only

searching over the bus route. Bonzon (2007) has a very elegant algorithm which

is accessibly described. However, Bonzon (2007) polls every 3 seconds, and so some

different tactics are needed for the NextBus data. Some work has pushed to eliminate

the need for GTFS shape definition information by learning the shapes from historical

GPS data. Biagioni et al. (2011) develop a system architecture that estimates the

route shapes from the bus GPS traces themselves, in addition to map-matching and

completing trip prediction on the GPS points. Biagioni et al. (2011) also use high-

frequency GPS data and use a HMM for their map-matching and trip prediction

algorithms.

Given that the data only need to be mapped to one poly-line, some may sug-

gest simply using PostGIS (Refractions Research 2011), an open-source GIS-specific

database software built on top of Postgres, to snap the GPS coordinates to the GTFS

poly-line. However, I do not think this gives enough control over the map-matching

process and could lead to confusing results when a route overlaps with itself.

Map-matching involves projecting location coordinates onto a road network. Map-

matching the NextBus MBTA AVL data is a unique problem because the data have

a long polling time and because I know a priori where the bus is traveling.

3.1.4 Data Errors and Biases

As a result of both the way that the bus GPS positions are handled and the uncer-

tainties endemic to GPS data, some points either cannot be successfully projected

onto the shapes or project onto the shapes in an illogical way. There are a number

of different ways in which the bus AVL data match to their GTFS shape poorly. I

describe these symptoms here so that I can look for diagnoses in the data generation,

publishing, and archiving processes described above. Further, these errors are used

to inform the map-matching algorithm, described below in Section 3.1.5, capturing

exceptions that the algorithm needs to handle. The errors are GOESBACKWARDS,

NOMATCH, TOOFEWPOINTS, and DOUBLETRIP, and they can be interpreted

literally. They are discussed in detail below.



I found these errors by inspecting the quality of map-matching visually. To accom-

plish this, I developed a simple tool that reads a file dump of trips with errors in them

that is generated by the map-matching algorithm. The tool is built in Processing (Fry

and Reas 2011), an open-source Java-based programming language designed for vi-

sualizations, and uses the unfolding library (Nagel 2011) to access OpenStreetMap

contributors (2011, 2012) maps which are licensed under CreativeCommons (2012).

An earlier version of the tool used ModestMaps for the maps instead of unfolding

(Carden 2011,2012); I moved to unfolding because ModestMaps did not support us-

ing OpenStreetMap for map tiles at the time, though ModestMaps does as of writing.

The tool operates by reading two text files: one that defines the shapes and a

second that gives the AVL points. These text files are generated by SQL SELECT

statements on the database. The tool allows the user to play through the trips

uninterrupted, pause play to investigate interesting cases, move time in one-step in-

crements while paused, zoom in and out, manipulate the map center position as a

'slippy-map,' increase or decrease the number of AVL points displayed at one time,

and take a snapshot of the current scene. The tool automatically changes the zoom

level and map centering to follow the AVL points' trajectory, though, as mentioned

above, these attributes can be customized.

The maps generated by the tool, used in Figures 3-10 to 3-17, denote the bus

shape by a gray line and the shape segment to which a GPS point was matched with a

magenta line. AVL points that successfully match to the shape are shown with a green

circle; AVL points that were not successfully matched are colored red, orange, or pink

depending on if they are a GOESBACKWARDS, NOMATCH, or TOOFEWPOINTS,

respectively. Finally, the tool displays the shape-id in the upper-right corner of the

map. The arrows showing the direction of travel and numbers indicating the order of

the AVL points are added manually to snapshots of the map program.

There are four general error types in the NextBus MBTA AVL data:

1. GOESBACKWARDS: As depicted in Figure 3-10, GOESBACKWARDS is an

error when the bus travels backwards along the shape. The shapes are signed

poly-lines and in the map-matching process, the AVL points are projected to a



distance along that poly-line. Being a bus service, the bus is expected to have

a non-decreasing distance along shape across its trip. There are a few reasons

that a bus may go backwards:

4 2

Figure 3-10: Example of the map match error Goes Backwards shown in red. Specif-
ically, this is a 'jump back' error. Map tiles @OpenStreetMap contributors (2011,
2012), CC-BY-SA (CreativeCommons 2012).

(a) 'Jump back': Some buses appear to 'jump' backwards. Figure 3-10 is

an example of a bus 'jumping' backwards. In these cases, the bus shows a

point backward along the shape within about 20 seconds of another point

that is farther along the shape; thus it has 'jumped' backwards in less than

20 seconds. This situation is especially odd because the bus locations are

only polled every 60 seconds. The obvious solution is to throw out the first

point with the intuition that the quickly following point is a correction of

the first one. This is the solution adopted in Figure 3-10. However, time

is confusing here. Up to now, the time I have referred to is the 'real' time

calculated by subtracting the secsSinceReport attribute of the vehicle

record in the XML document from the t attribute of the query, or 'query'

time. In 'real' time the bus jumped back, but in 'query' time, they are

in the correct order (both distance on shape and 'query' time increase



monotonically). This confusion of times throws into question all of the

reported times. It is not clear which time is correct.

(b) 'Small movement': Some buses appear to move a very small distance

backwards, less than 10 meters. These cases are likely due to GPS errors

and so are recoded as WAS-GOESBACKWARDS with a distance along

shape identical to the point they moved slightly back from. By label-

ing them as WASGOESBACKWARDS, I give more information for future

analyses so that these records can be excluded if so desired.

(c) 'Going backwards': Some buses appear to actually be moving back-

wards along the shape, with a sequence of two or more consecutive points

traveling backwards along the shape. Many of these are very early in the

morning and appear to be the bus driving to the beginning of its route.

Others just turn around in the middle of a route and then 'disappear' from

the trip. Clearly, in these cases the bus is not providing bus service dur-

ing these periods of going backwards, so the points are thrown out of the

dataset.

2. NOMATCH: As depicted in Figures 3-11 thru 3-16, NOMATCH is an error

where the distance between the AVL point and its projection onto the shape

is too large. The threshold distance is a normative choice. There are many

different cases where buses get NO-MATCH errors:

(a) Before Beginning: One very common NOMATCH occurs when there are

points before the beginning of the shape. Figure 3-11 shows an example

of this case. This error is likely the result of a disconnect between the

TransitMaster definition of the shape and the GTFS definition of the shape.

Even though these points are deemed too far from the shape, they can be

used to estimate when the bus started its trip when there are not any well-

matched points close to the beginning of the shape. Many other researchers

have had problems with matching the beginning of trips (Furth et al. 2006).

(b) Entering Shape: A less common NOMATCH comes from a bus entering
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Figure 3-11: NOMATCH because
point is before the beginning of the
shape, shown in orange. Map tiles
@OpenStreetMap contributors (2011,
2012), CC-BY-SA (CreativeCommons
2012).
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Figure 3-12: NOMATCH because point
is before entering the shape, shown in or-
ange. Map tiles @OpenStreetMap con-
tributors (2011, 2012), CC-BY-SA (Cre-
ativeCommons 2012).

a shape somewhere in the middle of the trip, as shown in Figure 3-12. This

bus trip has a single point too far from the shape just before entering the

shape.

(c) After End: Another very common NOMATCH happens when there are

points after the end of the shape. Figure 3-13 shows an example of this

case. This error is very similar to the before the beginning error, and so

similarly, these points can be useful for determining when a bus finishes its

trip when those data are unavailable. Many other researchers have cited

problems with collecting data on the end of the trip (Furth et al. 2006).

(d) Leaving Shape: Another less common NOMATCH comes from a bus

leaving the shape without completing the trip, as shown in Figure 3-14.

This bus trip has a single point too from the shape just after leaving the

shape.

(e) On a Parallel Street: Some buses appear to hop onto a neighboring



N
Figure 3-13: NOMATCH because point
is after the end of the shape, shown in or-
ange. Map tiles @OpenStreetMap con-
tributors (2011, 2012), CC-BY-SA (Cre-
ativeCommons 2012).

Figure 3-14: NO-MATCH because point
is after exiting the shape, shown in or-
ange. Map tiles @OpenStreetMap con-
tributors (2011, 2012), CC-BY-SA (Cre-
ativeCommons 2012).
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Figure 3-15: NO-MATCH because
points are on a parallel street, shown in
orange. Map tiles @OpenStreetMap con-
tributors (2011, 2012), CC-BY-SA (Cre-
ativeCommons 2012).

Figure 3-16: NOMATCH because bus is
on an exclusive bus-way, shown in orange.
Map tiles @OpenStreetMap contributors
(2011, 2012), CC-BY-SA (CreativeCom-
mons 2012).

parallel street for a little while, as is shown in Figure 3-15. Sometimes the



bus will even appear to be traveling the wrong way on a parallel one-way

street. Ultimately, there is no way of knowing whether this error is a result

of the bus actually taking a detour, a GPS problem, or NextBus' prelim-

inary map-matching without directly contacting the service provider. If

the data span many providers, contacting the service providers is not a

reasonable mechanism for resolving errors. Rather, these data should be

discarded. If the bus did take a detour, then the dataset should reflect

that the stops passed while on the detour were not served; however, I have

not implemented this.

(f) On an Exclusive Bus-way: In some cases, the bus will appear to jump

around to many different places while it is traveling on an exclusive bus-

way, as is shown in Figure 3-16. There, the bus is entering the Harvard

Square bus station, which has both an above- and underground exclusive

bus-way. This error is likely to be caused by either GPS errors as the

bus travels underground or the NextBus preliminary map-matching. It is

impossible to tell in what directions the data have been distorted by either

mechanism, so rather than accept their best projection to the poly-line,

I discard them. Additionally, it would not be trivial to algorithmically

determine regions of the shape where the bus is on an exclusive bus-way,

though one-dimensional clustering could help.

3. TOOFEWPOINTS: Some bus trips have very few AVL points in them and

are often traveling the wrong way on the shape. TOO-FEW-POINTS where the

bus is headed in the correct direction is shown in Figure 3-17. These trips likely

reflect that a vehicle was reassigned or that the TransitMaster is exhibiting

other erroneous behavior; these trips should be discarded entirely.

4. DOUBLETRIP: On a few rare occasions, a trip appears to be run twice in

a day, sometimes by the same vehicle and sometimes not. The second time

is usually hours after the first, and the first is at the scheduled time. One

example of this error occurred on Sunday before Memorial Day, suggesting that
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Figure 3-17: Example of the map match error Too Few Points, shown in pink.
Map tiles @OpenStreetMap contributors (2011, 2012), CC-BY-SA (CreativeCom-
mons 2012).

sometimes trips are doubled as emergency service to accommodate crowds. It

is not obvious how to handle these cases. Throwing out the second trip would

underestimate the service level on that route and so is undesirable. The simplest

solution would be to define a new trip-id, such as XXXXXXX. 1 for the second

run. However, that solution would violate the integrity of the GTFS database.

Ultimately, there are so few instances of this occurring that it is a relatively

unimportant error for the map-matching procedure to handle. But the effects

of double trips are significant. Stop arrival times are often approximated as the

first time the bus passes into the stop region, and stop departure times as the

last time it moves out. So if the same trip is run twice in a day, it could appear

that the bus dwells at each stop for hours and then travels back in time to get

to the next stop.

Though map-matching buses seems much simpler than map-matching an automo-

bile that can go anywhere, there are a variety of data errors that the map-matching

procedure needs to tolerate and handle. The existence of these errors shape the

map-matching algorithm.



3.1.5 My Map-Matching Procedure

My map-matching algorithm is built specifically to robustly tolerate the errors dis-

cussed in Section 3.1.4. The purpose of this Section is to describe my map-matching

methodology.

The map-matching procedure begins with my Java program, depicted in Figure

1-2 as MapMatch, querying the SQL database for a Java RecordSet. The RecordSet

returns records with the fields vehiclelD, triplD, latitude, longitude, realTimestamp, and

tripDay sorted first by vehiclelD then by realTimestamp. The procedure then

1. Breaks the RecordSet into chunks of records, each representing a single trip as

defined by triplD, tripDay, and vehiclelD. Two records are labeled as originating

from the same trip if they have the same triplD, tripDay and vehiclelD.

2. For each trip

(a) Match the coordinates (composed of the latitude, longitude and realTimes-

tamp of each record) to the corresponding shape as closely as possible,

noting whether each record was matched to the shape well or not. This al-

gorithm, described in Algorithm 1, hierarchically uses point-to-curve then

point-to-point matching as shown in Figure 3-9. To speed matching, Point-

Match assumes the coordinate will match to the shape well, and so only

looks forward along the shape. This procedure is described in Algorithm

2, GoodMatch. If a good match is not found, the algorithm looks from the

beginning of the shape and considers any possible match, not just those

near the shape. This procedure is described in Algorithm 3, AllMatch.

(b) Investigate whether the poor matches are actually better than first esti-

mated and vice versa. This procedure is broken into Algorithm 4 and

Algorithm 5. This step directly addresses the errors, whereas the previous

step is only structured to enable this one.

(c) Write each record back in the database with its best match to the shape

and a code that notes whether it should be regarded as a good match for



analytic purposes or not.

input : trip = ((latitude, longitude, timestamp)}, shape =

((latitude, longitude, sequence) }
output: PointMatchedTrip

1 foreach coordinate in trip do
2 populate candidates with GoodMat ch(coordinate,shape);
3 if found at least one candidate then
4 choose winner and code as GOODMATCH;

// Code for GoodMatch() is in Algorithm 2
5 else

6 find the coordinate's best match though bad match using
AllMat ch (coordinate,shape) ;
// Code for AllMatch() is in Algorithm 3

7 end
8 end

Algorithm 1: The PointMatch algorithm

Map-matching at the trip level takes place in two stages:

1. As winning candidates are read in from PointMatch (Algorithm 1), they are

classified by ReadTrip using their score (i.e., distance from the shape) and their

relationship to the directly previous matched coordinate, as described in Algo-

rithm 4.

2. Then the errors are checked by TripFixer to see if their information can be used

to reclassify them as good matches, as described in Algorithm 5.

There are four different possible causes for a coordinate not matching to the shape

well. Two of them suggest that the point should be matched to the shape regardless

and two that they should not:

" Do NOT match to the shape:

- The bus took a detour

- The GPS is malfunctioning

" Do match to the shape:



input : coordinate, shape
output: candidates

1 while more shape segments and (just added a candidate or candidates is
empty) do

2 increment the shape segment;
3 if coordinate projects onto this segment within threshold then
4 add this projection to the list candidates;
5 else if distance from coordinate to first node of segment then
6 add this node to the list candidates;
7 else if within a reasonable distance of the first node that the bus could

have driven then
8 note that, though not a new candidate, pretend as if there was a new

candidate;
9 else

10 no reason to keep searching if there are candidates;
11 end

12 end
Algorithm 2: The GoodMatch algorithm

input : coordinate, shape
output: candidates

1 while more shape segments do
2 increment the shape segment;
3 if coordinate projects onto this segment at all then
4 1 add this projection to the list of candidates;
s end
6 add the first node of the segment as a candidate, regardless of the

distance;
7 end

Algorithm 3: The AllMatch algorithm



- NextBus map-matching distorted the bus position

- The bus is before the beginning or after the end of the shape, just outside

the threshold to be a GOODMATCH

The trip-level map-matching tries to take this into account. However, as the present

time my procedure does not match points that are likely a NOMATCH because of

NextBus map-matching. This deficiency is partially because it is difficult to prove

that the NextBus map-matching is the culprit. However, some errors, such as those

seen near the Harvard Square bus station where buses are traveling on exclusive bus-

ways shown in Figure 3-16, are regular enough to make this diagnosis. For example,

one could employ one-dimensional clustering to see if there is a region of the shape

to which points are never successfully projected and reasonably hypothesize that

NextBus map-matching caused the problem.

input : coordinate
output: RECORD-CLASSIFICATION

if distance from shape is outside of a threshold then
classify as NOMATCH;

else if the shape-disLtraveled has decreased relative to previous coordinate
then

if only went backwards a little bit then
classify as WASGOESBACKWARDS;

else
if this is the beginning of the shape and the previous coordinate alst
went backwards then

classify as GOODMATCH;
/* B this lo1Ln i th i di

y g c.', e prev o-VVus0%. coor nate was mlarked~ asi

GOODMATCH, so:
classify previous as GOESBACKWARDS;

else
classify as GOESBACKWARDS;

end
13 end
14 else
15 classify as GOODMATCH;
16 end

Algorithm 4: The ReadTrip algorithm



input : PointMatchedTrip
output: TripMatchedTrip

1 if PointMatched Trip has very few coordinates then
2 all coordinates are marked as TOOFEWPOINTS;
3 else if there are any NOMATCH or GOESBACKWARDS then

// Try to fix these errors

// Fix the beginning of the trip

4 if there are not any GOODMATCH at the beginning of the trip then
5 if a NOMATCH is near the beginning then
6 classify that NO-MATCH as GOODMATCH to capture the

beginning;
7 else if a GOESBACKWARDS is near the beginning then
8 classify that GOESBACKWARDS as GOODMATCH to capture

the beginning;
9 end

10 end
// Fix the end of the trip

11 if there are not any GOODMATCH at the end of the trip then
12 if a NO-MATCH is near the end then
13 classify that NOMATCH as GOOD-MATCH to capture the end;
14 end

// matching a GOESBACKWARDS does not make sense
15 end

// Fix any remaining GOESBACKWARDS
16 if there are still some GOESBACKWARDS in PointMatched Trips then
17 if there is a sequence of multiple GOESBACKWARDS then
18 classify all in sequence as GOESBACKWARDS;
19 end
20 if the GOESBACKWARDS is a 'jump back' then
21 use the one that is later in time as the GOODMATCH;
22 end
23 end

// Fix any remaining errors
24 if still any GOESBACKWARDS or NOMATCH then
25 finalize their current category;
26 end
27 else

// The trip is good

28 the PointMatchedTrip is good to begin with, TripMatchedTrip <-
PointMatchedTrip

29 end
Algorithm 5: The TripFixer algorithm.



Good
Match

Was
Goes
Back-
wards

Was
No

Match

Goes
Back-
wards

No
Match

Too
Few

Points Total
01 98.7% 0.4% 0.0% 0.1% 0.7% 0.1% 100.0%
66 97.5% 1.2% 0.0% 0.9% 0.3% 0.1% 100.0%
80 96.5% 0.5% 0.0% 0.5% 2.3% 0.2% 100.0%
85 99.4% 0.2% 0.0% 0.1% 0.2% 0.1% 100.0%
86 96.5% 0.3% 0.0% 0.6% 2.5% 0.1% 100.0%
87 97.1% 0.6% 0.0% 0.8% 1.2% 0.2% 100.0%
91 97.0% 0.3% 0.0% 1.3% 1.3% 0.2% 100.0%
94 97.5% 0.3% 0.0% 0.2% 2.0% 0.0% 100.0%
96 96.6% 0.2% 0.0% 0.1% 2.9% 0.1% 100.0%

Total 97.6% 0.6% 0.0% 0.5% 1.2% 0.1% 100.0%

Table 3.1: Map-matching success rates
May 2011. Total sample size across all of

on the reported months for the month of
the routes is N=930,109.

3.1.6 Map-Matching Results

Ultimately, the map-matching algorithm is very successful, as is shown in Table 3.1.

Across 10 routes in the month of May 2011, over 97% of the points were successfully

matched to GTFS shapes. Additionally, the map-matching algorithm is fast; all of

the results reported in Table 3.1 required less than twenty minutes.

3.2 Data Interpolation

The data interpolation is thought to be the most important step of the entire process

and the crux of Furth et al. (2006)'s argument that location-at-time data cannot be

used to monitor bus network performance. The stop arrival and departure times are

interpolated from the observed data. I use two different interpolation methods. The

first, described in Section 3.2.1, is naive interpolation. Dietmar Bauer, my collabora-

tor, created the second interpolation, described in Section 3.2.2, which uses quadratic

optimization techniques.



3.2.1 Naive Interpolation

The naive interpolation is calculated in a simple SQL SELECT statement by linearly

interpolating the time at which the bus arrived and departed from the stop as the

time at which it was 50 meters before and after the stop, respectively. 50 meters is

an arbitrary measure. Accordingly, the first and last stops only have a departure and

arrival time, respectively. For trips when the bus does not appear both before and

after a stop, the naive method does not extrapolate an arrival or departure time for

that stop. Resultantly, many trips do not visit stops at the beginnings and ends of

the shapes, a common problem in AVL studies (Furth et al. 2006).

3.2.2 Resampling Interpolation

Many works have used statistical techniques, such as Kalman filters, to smooth AVL

data (e.g. Cathey and Dailey (2003)). Assuming that there is non-zero distance

between all consecutive AVL points, naive interpolation assumes that the bus is always

moving. Even the Kalman filter works to smooth the velocity profile over the bus trip.

While this method would intuitively more accurately capture the bus speed along the

trip, part of that smoothing would serve to eliminate times when the bus stops. The

most important attribute of bus performance is knowing when it is stopped at its

designated stops. These problems are exacerbated for AVL with infrequent polling.

To combat the biases introduced by any graph smoothing technique, Dietmar

Bauer, my collaborator, suggests explicitly modeling bus movement to re-sample the

trajectories. Specifically, Bauer suggests using non-parametric techniques to better

represent dwell time at stops.

Whereas linear interpolation and other smoothing techniques assume that the bus

is always moving, Bauer takes the opposite approach and assumes that the buses do

stop. The re-sampling method uses a combination of historical data and current

observations. The historic data are used to see where along the shape a bus is more

likely to be. The bus locations are sampled evenly in time, every 60 seconds, so the

histogram of bus observations along the route reflect the probability of observing a



bus in that location. Logically then, buses spend more time in locations they are

more likely to be; the probability of a bus being somewhere is inversely proportional

to the dwell time of buses being in that segment.

These probabilities can then be used to reconstruct the actual velocity profile

of an individual bus trajectory. The average travel velocities and dwell times close

to stops (i.e., within a region of 15m about the stop) can be inferred by using this

proportionality. Even in cases where the trajectory does not have any observations

near a stop, the probability function can be used to estimate the bus' dwell time at

the stop. If there are observations near a stop, they can be used to more tightly

constrain the most likely dwell time.

The historical information can be incorporated using a simple model for the pro-

gression of buses along the shape. Bauer suggests a simple two mode model for the

bus trajectory: buses are either dwelling at a stop or traveling at constant speed (the

buses do not accelerate). The model then fits the trajectory data as to the best pos-

sible re-sampled trajectory that incorporates only those two modes. The calculated

parameters in this model are the trip start time, the dwell times at the stops, and

the average velocities between each of the stops. These are the most important out-

puts from translating the location-at-time data to time-at-location data. The model

finds the best fit between the raw trajectory' observation and the historically most

likely trajectory, with the important restriction that observed dwell times are always

respected.

The model reconstructs the most likely trajectory of the trip. The fit of the tra-

jectory is calculated by comparing the observed travel time between two consecutive

AVL observations and the modeled travel time between those points in the shape.

The model parameters are chosen so as to minimize the squared sum of these devi-

ations plus the sum of squared deviations from the most probable stop dwell times,

while respecting any observed stop dwell times. The solution to this least square

problem thus delivers as an output the trajectory describing the progression of the

bus along the shape which subsequently can be sampled at given time or location

points. These re-sampled trajectories are used for most of the analyses in Chapter 4.



Chapter 4

Data Visualization and Analysis

Scagnetti and Schechtner (2010) suggest that, in most cases, the beauty and technical

content of a visualization are inversely related to each other. Though my research may

not yet transcend this axiom, I do approach the AVL data from both perspectives.

Keeping the two separate, I provide visualizations that give an impressionistic account

of the bus systems in Section 4.1 and provide new methods to analyze variations in

bus travel times in Section 4.2.

4.1 Visualization

Often, the purpose of a data visualization is more to strike the viewer with awe and

wonder for the data rather than to concretely convey insights from the data (Scagnetti

and Schechtner 2010). Similarly, I present impressionistic displays of the AVL data

in this Section.

Fry and Reas (2011) provide an invaluable tool for data visualization in the Pro-

cessing language. All of these visualizations are built using the Processing language

and use Nagel (2011)'s unfolding Processing library to render and manipulate map

tiles. Many other visualizations require a simple static map that is individually man-

ually downloaded rather than dynamically calling the tiles ad hoc. Because the un-

folding library load the map tiles, the visualizations can be used for bus location

data anywhere in the world without making adjustments to the programs other than
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Figure 4-2: A depiction of the data for 1 March 2011 at 5:30pm across the MBTA
network zoomed in to show central Boston and Cambridge. These data are raw
AVL data. Buses are color-coded by speed, with red the slowest and green the
fastest. The speeds are capped at 30kph, so the brightest green represents speeds
of 30kph and higher. Map tiles @OpenStreetMap contributors (2011, 2012), CC-
BY-SA (CreativeCommons 2012).

routes. However, with large networks like the MBTA, displaying "all" buses can

result in an indistinguishable mess of arrows.

4.1.2 System Visualization

The simplest visualizations of the archived data for MBTA's bus service do not re-

quire, though they would benefit from, map-matching. For example, as is shown in

Figure 4-2, I can visualize all of the bus' trajectories and speeds only using their

latitude-longitude positions.

Figure 4-2 depicts the data for 1 March 2011 at 5:30pm across the MBTA net-

work zoomed in to show central Boston and Cambridge. These data are raw AVL

data. Buses are color-coded by speed, with red the slowest and green the fastest.



The speeds are capped at 30kph, so the brightest green represents speeds of 30kph

and higher. Generally, this visualization will show the buses in slightly inaccurate

positions because they have not been map matched and will underestimate the speeds

of the buses because they are unable to travel in straight lines.

Figure 4-2 is a snap-shot from a Processing sketch designed to visualize a day

of bus trajectories. In the sketch, time progresses forward as a movie, but the user

can zoom and pan the map interactively, pause the progress of time, and step time

incrementally. The default is to zoom out only far enough to see all of the AVL points

with the map centered on the center of the four extreme latitude-longitude coordinate

boundaries. The image for Figure 4-2 was captured by zooming in to central Boston

and then pausing the flow of time.

4.2 Analysis

In addition to visualizations, the map-matched and interpolated data can be used to

analyze bus network performance. A wide body of research exists on using archived

AVL data to understand and improve bus network performance. However, there are

still areas where those methodologies could be improved.

For simplicity, I focus on one route for this Section. Specifically, all examples

and analyses will be completed on MBTA's Route 1, which is depicted in Figure 4-3.

Route 1 runs right through MIT, making it a favorite example of MIT transportation

researchers. Route 1 is a high-frequency route with scheduled headways of 7.5 minutes

during the evening peak period. These analyses were all completed using MATLAB,

the only non-open source package used.

This Section is broken into two subsections. First, Section 4.2.1 reviews the lit-

erature on using archived AVL data to study bus performance and reproduces a few

analyses using the NextBus MBTA AVL data. Second, Section 4.2.2 introduces new

insights and analyses that my collaborators and I have developed.
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Figure 4-3: A map of MBTA Route 1 including the locations of key stops. Map
generated by Baldwin (2006).

4.2.1 Traditional Analyses

Furth et al. (2006) provide an invaluable review of the analytic methods developed

for archived AVL data through the time of its publication. Furth et al. (2006) divide

bus service into two groups: scheduled service, where fewer than 6 buses service the

route per hour; and walk-up service, where 6 or more buses service the route per hour.

For scheduled service, adhering to the schedule is the most important metric because

the buses come infrequently. For walk-up service, the most important attribute is

maintaining even spacing between buses so as to minimize expected wait time; it is

not too disruptive to passengers for a bus to leave a stop a few minutes early or late

with regard to the schedule if there is another bus a few minutes behind it.

Furth et al. (2006) suggests that there are four different analyses that one can

do with archived AVL data alone (i.e., without AFC/APC data). First is run-time

analysis, which looks at the distribution of the time it takes for buses to complete

their trips. Second is schedule adherence; as could be expected, this only applies to

scheduled service. Third is headway adherence, which predictably only applies to
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Figure 4-4: Space-time diagram of route 1 inbound on May 2, 2011. The blue lines
represent the traces of buses and the green stars show scheduled bus stops.

walk-up service. Finally, passenger wait time can be calculated for walk-up service

without passenger data if it is assumed that passengers arrive at the stops randomly.

The NextBus MBTA AVL data can be used for any of these analyses. One popular

analysis that Furth et al. (2006) mentions is the space-time diagram, which can be

used for both schedule and headway adherence analyses. Space-time diagrams plot

the positions of buses throughout the day with distance along the shape as a function

of time. Figure 4-4 shows the space-time diagram for MBTA Route 1. In Figure 4-4,

we can see that there is poor headway adherence during the evening peak period,

especially at 6pm (hour 18 of the day), as the bus trajectories are not evenly spaced.

This phenomenon is generally called bunching. Bunching is undesirable because it

increases the passengers' expected waiting time.

However, the space-time diagram has a few drawbacks. First, it captures only one

day of service on one direction of one route; the space-time diagram is not appropriate

for looking at general trends in service reliability across a month across the entire

MBTA bus network. Even looking at the whole day of the space-time diagram is



a little daunting. Second, the space-time diagram does not endemically have any

statistics in it that could alert a transit provider that one part of one space-time

diagram is particularly interesting.

One important study published after Furth et al. (2006) is Byon et al. (2011).

Byon et al. (2011) suggest an index for measuring how bunched a bus route is. Then,

Byon et al. (2011) plot the index in a grid to span across the shape distance and time

of day. By this point, it should be clear that AVL data are very high-dimensional.

There is an observed headway for each stop of each trip of each direction of each route

for each day of the year. The plot that Byon et al. (2011) suggest has four dimensions

plotted: distance along the shape, time of day, bunchiness, and day of the year.

Liao and Liu (2010) provide a schematic for a computational system architecture

and software tool for understanding bus network performance. This work is meant

to be a competitor to the popular TriTAPT system developed by Delft University.

Liao and Liu (2010) similarly have a SQL-based database server design. However,

Liao and Liu (2010) use timepoint data (e.g. time-at-a-location data) rather than

trajectory data. They generate interesting results from looking at the times when the

bus needed to operate the wheelchair lift.

4.2.2 Analyzing Variation in Travel Time

In this section, I show analyses that my collaborators and I developed. These analyses

were completed on the NextBus MBTA AVL data for the weekdays of May 2011 along

Route 1.

Ideally, we would like to find a metric which can be mapped, producing both an

informative and striking visualization of the AVL data. Then, we would like to study

whether and how good and bad service spread through the bus network to see if

and how good and bad service on one route affects service on another route. These

analyses aspire to that ideal.

To look at bus performance metrics on a map, the data can only be two dimen-

sional (distance along shape and a color), or, if played as a movie, three dimensional.

Yet, even if there were a one-dimensional perfect statistic that captured the day-



to-day and diurnal variation in service levels along the shape, plotting it on a map

would not be trivial because that distance along shape is also occupied by the other

shapes of that route, and perhaps even the shapes of other routes. Displaying service

performance for many routes on a map is problematic.

With regard to that goal, the results presented here are only preliminary and,

hopefully, foundational. Yet, the results are interesting and insightful in their own

right. In short, our analyses try to move beyond only identifying a service disrup-

tion toward identifying why service was disrupted and where the disruption started.

Accordingly, the analyses focus on variations in travel times between stops.

Modeling the Spread of Travel-Times

This work was predominately done by my collaborator Peter Widhalm. In order

to build a model for travel time prediction and planning, Widhalm analyzes the

correlations between bus speeds along different segments of the route. In this analysis,

Widhalm chops the shape into 10m segments and calculate the bus speed for each

segment.

Correlation of Speed

9.

Driving direction

Figure 4-5: Correlation matrix of speeds on the MBTA Route 1 during the month of
May 2011. White indicates high absolute correlation and black indicates low absolute
correlation.



Figure 4-5, shows the correlation matrix for the Boston to Cambridge direction

where white indicates high absolute correlation and black low absolute correlation.

This Figure shows that there are discrete segments of the shape over which bus speed

is highly correlated, seen in the white-to-gray squares. Interestingly, there is very little

correlation between these blocks. This suggests that regions of the road have traffic

patterns that are independent of one another. Also, the dark bands that separate

different segments of high correlation are located at bus stops and stop lights. This

makes sense; whether or not a bus has to stop at a stop light is independent of its

speed anywhere else along the route; it is random. So, from the bus' perspective, the

traffic state has reset each time that it goes through a major stop or stop light.
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Figure 4-6: Spread of predicted travel times under different assumptions about the
speed correlation structure.

Widhalm then sought to leverage the highly-correlated segments to make accurate

predictions about the half-cycle time (time it takes to make one trip) for the route.

Figure 4-6 shows the results. Figure 4-6 shows the spread (here as the difference

between the 90th and 10th percentile values) of the half-cycle times under various

assumptions: at the far left, assuming that every 10m segment of the shape is fully

correlated with (dependent on) every other; next to the right, the observed spread

of the half-cycle times; next to the right, assuming that every 10m segment of the

shape is fully independent from every other; and at the far right, assuming only

full correlation inside of the segments observed to be highly correlated in Figure 4-



5. This result suggests travel time variation can be well modeled using only local

dependencies.

Travel-Time Matrix

Building on Widhalm's analysis, I try to determine the causes of travel-time variation.

This effort is two-fold. First, I examine the variations in travel times between the

stops of a route. Second, I look at the day-to-day variations in travel times between

nearby stops.

First, I study the variations in travel times between the stops of a route in a

diagram which I call the travel-time matrix. Creating the travel-time matrix involves

many steps.

To make the travel-time matrix, I begin by calculating the observed travel times

between each pair of stop-sequences for each direction of the route. For routes with

more than one shape for each direction, this can be somewhat more complicated,

though they generally share most of the same stop-ids. If a shape has different stops

than another shape, then the stop-sequences can be used to determine the overlap

of the shapes and appropriately re-number the stop-sequences of the shapes. These

calculations are completed with a simple SQL SELECT statement.

Next, the stop-sequences from one direction are mapped onto the stop_

sequences of the other. Often, this is simple because two stops are directly across

the street from each other and are not near any other stops, removing any space for

ambiguity. Fittingly, the first pass at pairing stops is completed by searching for the

stop-id from the opposite direction shape(s) that is nearest to each stop. These

pairs are accepted if they are within a threshold distance and neither stop has com-

petition to be in another pairing. Where this does not achieve a one-to-one pairing,

whether because of multiply assigned stops or no assigned stops, I manually inspect

the pairs and use judgment to assign pairs. The final pairs are then used to re-code

the stop-sequences for at least one of the directions. Often, both directions are

recoded because at least one stop of each direction does not have a mate, and so the

total number of stops (counting each pair as a single stop) in the route is larger than



the total number of stops in either direction.

Finally, I calculate the statistics. At this point, the data are arranged as records

of a departure time from a stop, for example stop 12, and an arrival time at another

stop, for example 2; they are a pair of stops and a departure and arrival time. For

each pair of stops, I calculate the mean, trimmed mean, median, standard deviation,

trimmed standard deviation, and spread of the travel times between them. I then refer

to these as the 'global' statistics (i.e., the global median) because they are calculated

across the entire day. Then, I divide the day up into half-hour windows (e.g., 5:15pm

to 5:45pm) and calculate the same statistics for each pair of stops. Though the

standard deviation of travel times between 5:15pm and 5:45pm can be understood

without context, though some suggest using the coefficient of variation instead, the

mean travel time between stops during the period from 5:15pm to 5:45pm requires

context. So, the global mean, median, and trimmed mean are subtracted each of their

respective time-window counterparts.

It may be possible to look at the travel times with respect to the scheduled travel

times; however, these analyses were generally not as fruitful. Specifically, the travel-

time matrices calculated with respect to scheduled travel times did not exhibit the

kind of structure that these travel-time matrices have. Rather, they only show that

longer trips are generally later (trip length is proportional to lateness), not that a

specific stop or part of the route disproportionately contributes to delays.

Here, I show two pairs of travel-time matrices. Each matrix shows the value of

a statistic through color for each from-to stop combination. The 'from' stops are

shown on the horizontal axis, and 'to' stops are shown on the verticle axis. Figures

4-7 and 4-8 show the trimmed mean and trimmed standard deviation for travel-times

during the half-hour around 9:00pm, and Figures 4-9 and 4-10 show the same for the

half-hour around 5:30pm. In each Figure, the direction from Cambridge to Boston,

as shown in the lower-left corner of Figure 4-3, is in the upper-left half of the travel-

time matrices and vice versa. That is, the diagonal from lower left to upper right of

blank squares is the dividing line between traveling in one direction and the other.

These blank data points represent the travel times from stop 1 to stop 1, and so on.
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Figure 4-7: The travel-time matrix
of the difference between the trimmed
mean during 8:45pm to 9:15pm and the
trimmed mean across the entire day.
Time is reported in hours.
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Figure 4-8: The standard deviation of
the travel-time during the same time pe-
riod. Time is reported in hours.

Other stop combinations are blank because a stop exists in one direction but not the

other. In each pair of travel time plots, I show the difference between trimmed means

(during this time period and all day) and the standard deviation of trimmed travel

times.

The pair of Figures 4-7 and 4-8 show the travel time variability during off-peak

travel, specifically between 8:45pm and 9:15pm. There, the travel-times are about

average; the difference between the trimmed-mean in this period and the global

trimmed-mean is about zero for all stop pairs in both directions, with some of the

longer trips (those that are farther from the diagonal dividing directions) even clock-

ing in a little faster than average. Additionally, there is relatively little variation in

the travel times during this period, though the variability does increase for the longer

trips, which is logical. Further, there is a little structure in the variability matrix,

with the variability suddenly increasing at certain stops, seen as rectangles of similar

colors in Figure 4-8.

However, the travel-times are much more interesting during the peak period. For

the peak period, I use the half hour around 5:30pm, as shown in Figures 4-9 and 4-10.
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Figure 4-9: The travel-time matrix
of the difference between the trimmed
mean during 5:15pm to 5:45pm and the
trimmed mean across the entire day.
Time is reported in hours.
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Figure 4-10: The standard deviation of
the travel-time during the same time pe-
riod. Time is reported in hours.

These figures show that service disruptions (marked by the black dashed boxes) in the

Cambridge to Boston begin at stops 17 and 30. Similarly, in the Boston to Cambridge

direction, travel times are significantly affected after stops 12 and 21 (marked by

gray dashed boxes). Examining Figure 4-3, it shows that stops 17 and 30 in the

Cambridge to Boston direction are located just over the Harvard Bridge into Boston

and at the Boston Medical Center, respectively. Stops 12 and 21 in the Boston to

Cambridge direction are located at Hynes Convention Center and MIT, respectively.

The structure seen in both the trimmed mean and trimmed standard deviation plots

at these points indicate that the buses are on average being significantly slowed with

respect to the average travel time, though not always at the same magnitude.

Though the standard deviation of the travel times is high, this does not necessarily

mean that the route has uneven headways because there is not information about the

autocorrelation between successive headways. These stops are leverage points in

Route 1 where bus service disruptions are introduced. However, as these data are

averaged across the entire month of May, it is not possible to determine on what

time scale these disruptions occur. This again raises the complications of working
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Travel Times between Three Consecutive Stops

6-

5 10 15 20 25 30 35
First Stop in Sequence of Three

Figure 4-11: Mean daily travel-times between three consecutive stops on Route 1
during the evening peak period of 4:30pm to 6:30pm for May 2011.

with such high-dimensional data. I can, however, determine the time scale of the

disruptions by pairing these plots with another set of plots.

Travel-Time Variability by Day

Here I focus on the Cambridge to Boston direction, especially the disruption observed

at stop 17 during the evening peak period. Specifically, I look at the daily service

variability over May 2011 weekdays. In order to make the statistics more robust, I

increase the time period to 4:30pm to 6:30pm. There are 16 trips scheduled for this

period each weekday. Outliers were removed.

For this analysis, I focus on short trips just off of the diagonal so as to focus on

stop 17. Specifically, I look at the travel time between three consecutive stops. In

Figure 4-11, the daily average travel time between the stops is shown as a function

of the first stop in the sequence of three. For example, the value for stop 5 reflects

the travel time from stop 5 to stop 8. Each line captures the average travel time for

each weekday of May. The day colors are assigned from red to green as ordered by
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Figure 4-12: Daily standard deviation of travel-times between three consecutive
stops on Route 1 during the evening peak period of 4:30pm to 6:30pm for May 2011.

the observed average travel time from stop 15 to stop 18, with the longest travel time

the brightest red and shortest travel time the brightest green. The days hold this

assigned color through Figures 4-12 and 4-13.

In Figure 4-11, there is a noticeable jump in absolute travel time and the spread

of the daily travel times for traveling between stops 14 and 17. The travel times

fall again and fall back together only at the travel time between stops 18 and 21.

There is a similar, though less pronounced, split at stop 30. Interestingly, as was seen

in Widhalm's work in Section 4.2.2, travel times in one region of the route do not

necessarily predict travel times elsewhere; though the days are sorted by color at stop

15, they do not retain this sorting anywhere else in the shape.

Figure 4-12 shows the daily standard deviation of travel times in the evening peak

period. Each day is captured as a single line, colored as in Figure 4-11. Comparing

Figures 4-11 and 4-12, it is clear high standard deviations do not necessarily mean

high local travel times. Further, there is not a universal bump in standard deviation

approaching stop 17, whereas there is a universal bump at stop 30. Together, this

suggests that perhaps there are certain days when there are large service disruptions
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Figure 4-13: The percentage of bunched headways as a function of the stop along
the route separated by day. Headways are considered to be bunched if they are less
than or equal to two minutes.

around stop 17, and not that bunching significantly increases at stop 17. We can

investigate this by looking at the bunchiness at each stop individually.

Looking again at bunching as a possible cause of disruptions at stops 17 and 30, I

consider the daily headways of the same cohort of buses at each stop in Figure 4-13.

Here, the days are colored similarly as in Figures 4-11 and 4-12. In Figure 4-13, I

show the percentage of bunched headways as a function of stop sequence. I define

a headway to be a bunched headway if the observed headway is two minutes or less

(26.7% of the scheduled headway). Each solid line is a day. Additionally, I calculate

aggregate statistics across the days: the mean in dashed black, median in dashed

gray, and 15th- and 85th percentiles in dash-dot gray. We also show the average

percentage across all observations independent of day in the dotted blue. This line is

different because some days have different numbers of trips.

Here in Figure 4-13, bunching increases loosely linearly as the bus moves along the

route. However, there are not any points where service consistently degrades daily,

whether due to a systematic increase in the travel time or a systematic increase in



the variability of travel times.

4.3 Analysis Discussion and Conclusion

Ultimately, this collection of figures shown in Sections 4.2.2 and 4.2.2 summarize

many aspects of the service disruptions experienced by the MBTA Route 1 during the

month of May 2011. These figures are successful in that they manage to display the

variation in the data across many different dimensions. The figures show variation in

bus performance along the shape, through the diurnal cycle, and in daily differences.

Additionally, the figures analyze both absolute degradation of travel time and travel

time variability across each of these cuts. These figures are not successful in that there

are so many of them; indeed the travel-time matrices shown here are a small subset of

the total number of generated travel-time matrices. Each figure requires concentrated

effort to understand and interpret, and, moreover, the figures are best understood in

aggregate. That is, while these figures are powerful for understanding variability in

bus travel times, they do not achieve the goal of finding a one-dimensional parameter

to plot on a map. Indeed, the results of these figures do not even obviously lend

themselves to automated interpretation.



86



Chapter 5

Conclusion

This thesis expands the usefulness of bus AVL data by demonstrating how publicly

available AVL data, such as the NextBus MBTA AVL data used here, can be used

to evaluate bus performance. Using these data lowers the entry cost to doing AVL

research, ultimately enabling studies that span multiple cities and a large timescale.

The thesis discusses the datasets used. I demonstrate that the NextBus AVL data,

which capture the bus' location as a GPS coordinate at set intervals, are best used for

evaluating bus service, and that, resultantly, GTFS data are also necessary. Further,

I provide a useful primer for using GTFS and NextBus AVL data.

Next, I successfully integrate the AVL data and GTFS data. My map-matching

algorithm is able to robustly handle a wide range of erroneous behavior that the

GPS trajectories may exhibit. The map-matching algorithm and its computational

architecture, built in Java, are robust and fast. Errors in map-matching can be quickly

and clearly investigated using a tool developed in Processing. With my collaborators,

I introduce a new method for inferring bus stop arrival and departure times using a

non-parametric model.

Finally, I present new analytic methods for bus AVL data. Some of these analyses

are deeply technical, others only leave the viewer with an interesting new perspective

of bus movement. The technical analyses demonstrate a suite of analyses that can be

used to diagnose points along a route that disproportionately contribute to service

disruptions.



This thesis demonstrates the power and versatility of low-frequency bus AVL

data to understand variations in bus transport travel times. The thesis uses Bostons

MBTA bus service as a case study, presenting here the results for Route 1. I show

that the AVL data can be used to find parts of the route on which service deteriorates.

Additionally, I am able to identify regions of the route wherein service is very stable

and highly predictable. Travel time distributions are very accurately reconstructed

by only using dependence on travel time within these regions. Further, I am able to

investigate possible reasons for service to deteriorate in those regions.

In the future, researchers should expand these analyses to the entire MBTA net-

work to detect weak points of the system. Future research could find critical stops that

cause the system to collapse and then propose and simulate improvement strategies.

Additionally, future research could expand beyond examining bus performance

with respect to current ridership to examining bus performance with respect to po-

tential ridership. Wu and Murray (2005) use population density data to evaluate the

Columbus, OH bus network's ability to effectively satisfy travel demand. This model

could be improved by integrating both AVL data and cell phone tracking data. With

accurate passenger origins and destinations from the cell phone data and accurate

bus performance data from the AVL, the research presented here could be used to

evaluate how effectively the Boston bus network distributes travelers.

With this information, future research could better understand the disaggregated

(i.e. individual level) demand for transportation in the greater Boston area and

then propose adjustments to the existing system those satisfy those demands. Sim-

ilarly, potential riders can then better understand how well the system can meet

their requirements theoretically increasing the likelihood that they will chose public

transportation.
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