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Abstract. In this paper, a model (called the elliptic model) is proposed to
estimate the number of social ties between two locations using population data in
a similar manner to how transportation research deals with trips. To overcome the
asymmetry of transportation models, the new model considers that the number
of relationships between two locations is inversely proportional to the population
in the ellipse whose foci are in these two locations. The elliptic model is evaluated
by considering the anonymous communications patterns of 25 million users from
three different countries, where a location has been assigned to each user based
on their most used phone tower or billing zip code. With this information,
spatial social networks are built at three levels of resolution: tower, city and
region for each of the three countries. The elliptic model achieves a similar
performance when predicting communication fluxes as transportation models do
when predicting trips. This shows that human relationships are influenced at least
as much by geography as is human mobility.
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1. Introduction

Although social networks have been known for years to play a key role in various
human phenomena [1, 2], for decades their study has been limited to certain kinds of
social relationships for which interaction records were available, such as authorship and
cooperation in science [3, 4]. Only recently has it been possible to map large social networks
representing a broader range of interactions in order to explore how their structures
influence processes occurring in these networks. The required large social network data
sets, usually coming from telecommunication records originating in e-mail [5], phone [6]
or online communication platforms [7], have been used to explore a wide range of topics,
such as adoption of innovation [8], social groups discovery [9]–[11], epidemic spreading
[12]–[14], social mobilization [15] or sentiment spreading [16].

Despite the publication of such studies, network data is not widely available to the
community due to legal, privacy or commercial issues. In addition, even with access to
the electronic records, extracting a meaningful social network may be difficult at a large
scale [6]. For these reasons, creating models that are able to mimic different social network
properties have recently attracted a fair amount of research interest [17]–[21]. While most
models try to generate synthetic networks with some desired characteristics (such as degree
distribution and clustering coefficients), we will focus here on reproducing a macroscopic
feature of real social networks: the number of social ties between different locations, i.e.
how many relationships exist between two cities, two regions or even two neighborhoods.
Throughout the paper, we will employ the term location to generically denote any of these
three spatial aggregation levels. The creation of social connectivity maps between locations
from widely accessible data, such as the population geographic distribution (which is
universally accessible for almost any region of the world through tools such as Landscan),
will prove useful for the study of information [22] or behavior spreading in social as well
as other networks[23].
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1.1. The effect of geography on social networks

Towards the end of the 19th century and the beginning of the 20th century, a considerable
amount of effort was dedicated to the development of telecommunication systems. Such
systems, whether they carried written messages (telegraph) or voice (telephone), were
designed to achieve a single goal: allowing people to communicate with those who are far
away (indeed the Greek prefix tele- means distant). Interestingly (and contrary to some
predictions from the beginning of the Internet era [4]) recent analyses of records from
such systems show that people do not commonly use them to talk to those far away, but
rather with people who are actually close by. In fact, it has been consistently found across
records from emails, phones and blogs that the probability of a communication occurring
between two people who are r kilometers apart from each other follows a decay function,
typically a power law [24]–[27].

Although the communication fluxes between regions have not been the focus of
much research yet, the above-mentioned new evidence shows that communication fluxes
behave in a similar way to trip fluxes and other phenomena driven by the distribution of
population across the geographical space. In transportation research, flux prediction is a
well-defined problem: given a set of locations {i, j, . . .} whose coordinates and populations
{ni, nj, . . .} are known, the goal is inferring the flux matrix T , where each element Tij
represents the number of trips from location i to location j. The problem was traditionally
approached using gravity models [28]–[30], which try to gather the effect of decaying
probability with distance ri,j following the equation

Tij ∝
nαi n

β
j

f(rij)

where α and β are fitting parameters usually estimated from training data, and f(rij)
increases with distance, typically following an exponential or power-law function. A
powerful idea was introduced recently by the radiation model [31], which claims that
it is not the distance that matters, but the number of opportunities between i and j,
which can be estimated by the population in the area. In short, the authors explain that
someone from rural Iowa is more likely to travel further to satisfy their needs than someone
in New York City, given the latter has a handful of options within a few blocks. While in
its original publication the radiation model included testing against a phone call dataset
(see figure 3 in [31]), the problem of predicting communication fluxes has not been the
main focus of any model to date. In this paper we will present a new model inspired
by this radiation model which is able to predict communication fluxes surprisingly well.
Actually, the accuracy is similar to that reached by current transportation models when
predicting trips.

2. Model description

Formally, the radiation model, when applied to social relationships, estimates the
communication flux Tij between two locations i and j using the population in both
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locations, and the population within the circle whose center is i and whose radius is
equal to the distance between i and j. Its formulation is

T rad
i,j = Ki

ninj
(ni + si→j)(ni + nj + si→j)

where ni represents the population of location i, si→j the number of people who are not
in i but closer to i than j and the normalization Ki = ni(NT/N), where NT is the total
number of relationships to predict (which in general is considered to be available) and
N =

∑
i ni the total population.

It is straightforward to verify that T rad matrices are not symmetric in general. While
asymmetry is a desirable feature for mobility models (commuting origin–destination
matrices have strongly asymmetric suburbs–downtown fluxes) it is not when dealing with
communication fluxes, because the number of relationships people from location i have
with people from location j must be the same as the number of relationships people from
j have with people from i.

A natural modification of the radiation model to deal with communication fluxes
could be a simple symmetrization of the model, which we will denote radBI and whose
formulation is

T radBI
ij = 1

2
(T rad

ij + T rad
ji ).

As shown below, this model has a limited performance. This fact motivated us to
develop the new model presented in this paper. Our model, which we will refer to as
the elliptic model (EM), is oriented to deal with social relationships. The EM considers
that the probability of someone living at location i having an acquaintance at location j
is inversely proportional to the population of the area where both could meet, provided
their combined travel distance does not exceed a certain threshold. This area forms an
ellipse whose foci are in locations i and j. Among all possible ellipses the model selects the
smallest one containing the two rij radius circles whose centers are in i and j respectively
(see figure 1 for a graphical explanation and comparison to the radiation model). Thus,
the EM formulation is

T ellip
ij = K

ninj
eij

where eij is the population within the ellipse depicted in figure 1 (note that eij includes
ni and nj) and K is a normalization parameter obtained from the total number of

relationships to predict NT (
∑

i

∑
j T

ellip
ij = NT). Since eij = eji, T

ellip
ij = T ellip

ji and thus
our model produces symmetrical matrices T .

In order to compare the quantities involved in the model, one needs to consider the
sets Si→j and Sj→i, such as #Si→j = si→j and #Sj→i = sj→i. Let us address the case of a
very large city C ⊂ Si→j whose population nC ≈ eij. While the radiation model predicts
different fluxes depending on whether C ⊂ (Si→j ∩ Sj→i) or not (smaller when C belongs
to the intersection) the EM will provide the same prediction for both cases. In fact, since
eij ≥ #(Si→j ∪ Sj→i) + ni + nj (and usually eij ≈ #(Si→j ∪ Sj→i) + ni + nj) the role of
the union set is the main contribution of the model.

doi:10.1088/1742-5468/2014/04/P04022 4
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Figure 1. Model scenario: ni represents the population of location i while si→j

represents the population within the circle with its center in i with a radius up to
j. As long as the population is not homogeneously distributed si→j 6= sj→i, the
radiation model predictions will not be symmetrical. eij represents the population
within the smallest ellipse whose foci are in i and j and contains both previous
circles, as well as ni and nj .

Table 1. Characteristic properties of the social networks in the countries studied:
number of users (nodes) and relationships (links), average degree 〈k〉, average
clustering coefficient 〈c〉 and relative sample size of the users in the data set.

Country Users U Links E 〈k〉 〈c〉 N
Total population (%)

France 18.7× 106 81.3× 106 8.73 0.16 30.21
Portugal 1.21× 106 4.00× 106 6.57 0.26 11.21
Spain 5.92× 106 16.1× 106 5.44 0.21 13.45

3. Data description

To evaluate the performance of the EM, we compare it with a mobile phone data set
containing call detail records (CDRs) of a six-month period in three different countries:
France, Portugal and Spain. In total, over seven billion calls are considered to build the
social graph for each country, whose links are included only if there is at least one call in
both directions during the observation period. The result is an undirected graph (this is
a common technique in the literature to avoid both marketing callers and misdialed calls
[6]). In table 1, some characteristics of the networks are presented, such as high clustering
and relatively low average degree, which are expected from previous literature concerning
mobile phone networks.

doi:10.1088/1742-5468/2014/04/P04022 5
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Table 2. Number of locations considered in different geographic aggregation levels
for each country. At the finer level, mobile phone towers are available for France
and Portugal, and zip codes for Spain. Aggregation is based on administrative
boundaries: cities are cántons in France, concelhos in Portugal and municipios
in Spain, while regions means départements in France, andprovincias in Portugal
and Spain.

Country Towers/zip codes Cities Regions

France 17 475 3520 96
Portugal 2 209 297 20
Spain 8 928 5446 52

In addition to the communication records, our data include a location for each user: the
most used mobile phone tower in France and Portugal and the billing zip code in Spain. In
order to benchmark the multi-scale performance of the EM, three aggregation levels have
been used: country-wide fluxes, fluxes between cities and regions, and metropolitan fluxes
within cities. Table 2 presents the number of locations considered in each aggregation
level. When applying these spatial aggregations, the center of mass of the population is
used as the higher level location, instead of the centroid of the region polygon (defined
by administrative boundaries), in order to avoid undesirable effects in the fairly common
case of a big city located in a corner of a polygon.

4. Communication fluxes on a country scale

To validate the predictions of the EM at large scale, we consider connectivity matrices T
at two aggregation levels. At the region level, matrix T has thousands of elements while
at the city level there are tens of millions of fluxes to predict (see table 2). Input data
for the predictions consists only of the location’s coordinates and populations, and the
total number of relationships to predict NT. Like the radiation model, the EM retains the
advantage of being free of parameters, so no training data is needed.

In figure 2 we present a box-plot of the predictions from all the three models versus
real data for fluxes between cities. The results prove consistently that the EM outperforms
both the radiation model and its bilateral version. To present further evidence of the
performance of the EM, we include in table 3 the R2 of the predictions at both aggregation
levels. The results confirm that the EM outperforms previous models.

Overall, the accuracy of the predictions is similar to that obtained when applying
transportation models to trip prediction [31, 32]. This is an unexpected finding, since in
principle, while there is an increasing cost (like time or energy) associated with distance
when traveling, there is no such cost when making a phone call. While, as stated in the
introduction, there were previous reports illustrating that social ties depend on physical
distance, the capability of reproducing a significant portion of the distribution of social ties
between locations just by employing a map placing them and their populations, highlights
even more the importance of the geographical space when forming ties.

doi:10.1088/1742-5468/2014/04/P04022 6
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Figure 2. Predictions by different models versus real data. Fluxes between every
city are presented, considering 297 cities in Portugal, 5446 in Spain, and 3520
in France. Error bars plot 10%, 30%, 50%, 70% and 90% quantiles. The elliptic
model outperforms both the radiation and bilateral radiation models in all three
scenarios.

5. Communication fluxes within cities

While previous literature has already stated that distance influences the creation of social
ties between cities, our dataset allows us to study also urban relationships by using the
finer spatial aggregation level available: phone towers or zip codes. Predicting all possible
tower to tower relationships within the country would imply dealing with a T matrix with
up to 300 million elements, with only less than 1% of them being not null. Thus, the
prediction accuracy would be severely biased by the huge amount of zero cells. Instead,
we study the short-range accuracy of the model by applying it in each city where we
have at least 20 different locations (the upper limit being Paris, where we have over 1000
mobile phone towers). In total, the analysis includes 40 cities in France, 29 Spain and 20
in Portugal.

doi:10.1088/1742-5468/2014/04/P04022 7
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Table 3. R2 of the different country-wide predictions. Note that these R2 are
calculated without any logarithmic transformation on data or predictions. The
number of provinces considered is 97, 20 and 52, respectively. Since the number of
cities is up to two orders of magnitude larger, the flux matrix T is up to four orders
of magnitude larger. While elliptic model is always more accurate than previous
models, the improvement is especially remarkable in fluxes between cities.

France Portugal Spain

City Province City Province City Province

Radiation 0.534 0.615 0.621 0.776 0.556 0.588
RadiationBI 0.626 0.723 0.730 0.847 0.676 0.668
Elliptic 0.723 0.790 0.816 0.891 0.693 0.748

Table 4. Average R2 for urban fluxes prediction for every city in the data set
where there are at least 20 different locations (towers or zip codes). The number
of locations range from this minimum of 20 up to 1000 in Paris. This amounts
to 40 cities in France, 29 Spain and 20 in Portugal. Although the EM again
outperforms previous models, each performance is low when compared to country-
wide scenarios.

France Portugal Spain

Radiation 0.377 0.527 0.434
RadiationBI 0.436 0.608 0.498
Elliptic 0.653 0.658 0.501

Table 4 presents the results for the three algorithms in terms of average R2. These
results confirm that the EM still performs better, while the overall prediction accuracy is
smaller compared to the country-wide experiment. The loss of accuracy within urban areas
for any model purely based on distance is expected and observed in the transportation
field [32]. One of the main reasons for this loss of accuracy is the fact that the distance
is a poorer proxy for travel time or cost in cities. People in cities tend to be within
a daily radius of action and the decision of others they communicate with depends on
other metrics related to the different hierarchies that could define a social distance (e.g.
ethnicity, occupation, etc) [25].

5.1. Correction ε as a model improvement for urban areas

When applying the EM based on figure 1 to urban relationships one should be aware that
a tower k whose distance to tower i is rik = rij + ε, where ε� rij, will not be taken into
account when predicting Tij. Since towers tend to be closer to each other in urban areas,
we propose the correction in figure 3 for urban environments. The variation consists of
including a correction parameter ε so that the ellipse is now the smallest one containing
the two circles of radius rij + ε centered in i and j. After studying several values of ε, we

doi:10.1088/1742-5468/2014/04/P04022 8
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Figure 3. Model modified for intracity predictions, adding the correction term ε.
Each gray line represents a certain city in the dataset with the blue line and the
shadow representing the general trend. We find predictions improve when some
correction term is included, reaching a maximum around ε = 1 km.

found that the prediction accuracy peaks near ε = 1 km for nearly all the cities (as shown
in figure 3).

There may be several interpretations for such a maximum: one could argue that it
comes from the location error, known to be close to the average distance to neighbors
from the Voronoi tessellation [33], which is around 1 km on average for our dataset. This
agrees with the fact that the optimal ε is a fixed value and does not depend on the distance
r between i and j. On the other hand, when applied back to country-wide scenarios we
found the correction term does not improve the predictions and no peak emerges near
ε w rVoronoi or elsewhere, reinforcing the hypothesis that within cities we are reaching the
boundaries of the resolution of our location data.

Another way to evaluate the performance of the different models is to compare them
against empirical data in terms of the link-distance distribution P (r), which represents the
probability of observing a relationship between two people living r kilometers from each
other. Figure 4 shows the improvement in P (r) when applying the ε = 1 km correction.
Without the correction term, short-range relationships are over represented, while the
EM with the correction fits almost perfectly with the distribution obtained from the data.
Note that although radiation model predictions also improve, it still predicts shorter
relationships than those observed in the data.

Table 5 shows results of the corrected model for urban environments in terms of average
R2, which confirm a significant performance increase when applying the corrected model
with ε = 1 km across all cities in the data set.

6. Conclusions and further research

In this paper the problem of predicting communication fluxes between different locations
has been successfully addressed. A new model has been proposed to calculate the
communication fluxes using only population distribution data. This data is publicly

doi:10.1088/1742-5468/2014/04/P04022 9

http://dx.doi.org/10.1088/1742-5468/2014/04/P04022


J.S
tat.M

ech.(2014)P
04022

The elliptic model for communication fluxes

Figure 4. Left: fraction of relationships P (r) within distance r in the real dataset
compared to predictions by both elliptic and bilateral radiation models where
ε = 0 for Porto (Portugal). Right: the elliptic prediction gets very close to the
data when using ε = 1 km. Although the radiation model predictions also improve,
they still predict shorter relationships than those observed in reality.

Table 5. Average R2 of the predictions for the corrected model with ε = 1 km,
compared to the original (non-corrected) model.

France Portugal Spain

Elliptic ε = 0 0.670 0.645 0.494
Elliptic ε = 1 km 0.846 0.740 0.688

available worldwide through projects which provide population estimates for almost every
square mile on earth.

The presented model successfully takes into account the symmetry of the communica-
tion fluxes, in order to predict the number of social ties between geographical locations at
different scales, ranging from neighborhoods to regions. Interestingly, we have shown that
geolocated population data is as useful to predict communication fluxes as it is to predict
trip fluxes.

The proposed model is readily available to be used by researchers in different social
sciences studying various phenomena where human ties are known to be crucial, such as
information propagation or disease spreading. Overall, our model implies social ties are to
a large extent driven by geographical factors. While there may be other factors influencing
very long distance relationships (e.g. time zones, or natural, national [34] and language
borders [35]) the available data did not allow us to check them, so that further research
would be needed along this line.

In order to enhance the employment of the EM by the research community,
implementations in three widely used programming languages have been made available
on our homepage [36], together with an interactive tool usingdépartments in France as an
example scenario.

doi:10.1088/1742-5468/2014/04/P04022 10
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[31] Simini F, González M C, Maritan A and Barabási A-L, A universal model for mobility and migration
patterns, 2012 Nature 484 96
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