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Abstract

Cities today are strained by the exponential growth in population where they are
homes to the majority of world's population. Understanding the complexities under-
lying the emerging behaviors of human travel patterns on the city level is essential
toward making informed decision-making pertaining to urban transportation infras-
tructures This thesis includes several attempts towards modeling and understanding
human mobility at the scales of individuals and the scale of aggregate population
movement. The second chapter includes the development of a browser delivering vi-
sual insights of the aggregate behavior of populations in cities. The third chapter
provides a computational framework for clustering regions in cities based on their
attraction behavior and in doing so aids a predictive model in predicting inflows to
newly developed regions. The fourth chapter investigates the patterns of individu-
als' movement at the city scale towards developing a predictive model for a persons'
next visited location. The predictive accuracy is then increased by adding movement
information of the population. The motivation behind the work of this thesis is de-
rived from the demand of tools that provides fine-grained analysis of the complexity
of human travel within cites. The approach takes advantage of the existing built
infrastructures to sense the mobility of people eliminating the financial and temporal
burdens of traditional methods. The outcomes of this work will assist both plan-
ners and the public in understanding the complexities of human mobility within their
cities.
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Chapter 1

Introduction

1.1 Introduction and Overview

Cities today house over 50 percent of world's population, consuming 60-80 percent

of global energy and emitting almost 75 percent of greenhouse gases [50]. Some

have suggested that almost 70 percent of world's population will reside in cities by

2050 [50]. With the rapid urban population growth, cities' infrastructures are being

strained to the point of becoming a major hindrance to socioeconomic activity. Left

unaddressed, the problem threatens to weigh down the return on investment from

public projects being constructed throughout cities and adversely affect the quality

of life of all residents.

Understanding the complexities underlying the emerging behaviors of human

travel patterns on the city level is essential toward making informed decision-making

pertaining to urban transportation infrastructures [7]. Traditional methods of assess-

ing the social demand on transportation are expensive and take longer periods of

time to conduct [60, 54, 30]. Such assessments are usually in the form of surveys with

considerably small sample sizes compared to the total population of a city. Further-

more, such methods lack the accuracy and resolution in time to provide fine-grained

analysis of human travel with precise time resolution.

New road counter technologies such as pressure tubes, inductive loops and other

traffic counting techniques allowed for counting travelers with a finer time resolution;

17



however, the drawback is the spatial resolution of such techniques. They are usually

highly local and capture activity in a specific point in space that is miniscule with

respect to the city as a whole [46]. Therefore, such techniques suffer from an inability

to provide a holistic overview of the status of the system. In addition, deploying

new traffic counting technologies can be extremely expensive when considering the

mega-cities in the world.

An alternative approach toward capturing the social demand is by using data

generated from mobile phones to model and understand the behavior of human mo-

bility [60]. Data pertaining to mobile phone usage can be gathered at different levels

within the GSM network. Telecom companies usually do not keep track of all .the

data traffic running across their networks; however, they store certain information for

billing purposes and network development. The Call Detail Records, often referred

to as CDRs, are one type of information telecom companies keep for billing purposes.

Every time a user makes a phone call, sends a text message uses the Internet and

even passively when the mobile communicates to the cellular network access points,

the mobile network keeps a record of their usage information and location in the

CDRs [33]. Therefore, such big data set can be utilized as a proxy to understand the

social demand on transportation infrastructures.

The motivation behind developing the work of this thesis is derived from the de-

mand of tools that provides fine-grained analysis of the complexity of human travel

within cites. The approach takes advantage of the existing built infrastructures to

sense the mobility of people eliminating the financial and temporal burdens of tradi-

tional methods. The outcomes of this work will assist both planners and the public

in understanding the complexities of human mobility within their cities.

The nature of the code used in this thesis is divided into blocks that process data

of varying aggregations formats such as trips in the Origin Destination matrix or

set of inflows to a region or sequence of locations visited for a certain user under

study. For example, a clear pipeline that digests chunks of the data from various

formats is illustrated in chapter three figure 3-1. This thesis uses code blocks that

were implemented in the Human Mobility and Networks Lab (HuMNet) such as the

18



code to mine the raw CDRs for the trips in a city. The code is available on the

group's github account github. com/Humnetlab. Other codes in this thesis include

developing predictive models for inflows (gaussian process), predicting a person's next

location (dynamic bayesian network) or clustering attraction profiles (hierarchical

agglomerative clustering). The code blocks are available upon request on the author's

github account at github. mit. edu/f ha.

This thesis includes text and experiments from a subset of my publications while

at MIT [1, 2, 3]. The coauthors and collaborators of these publications deserve due

credit and thanks: May Alhazzani for the work on the urban attractors in chapter

three and the work on next place prediction on chapter four and Kael Greco for the

work on the City Browser in chapter two.

1.2 Literation Review

1.2.1 Browsing City Mobility Data

Several research activities have been investigating approaches towards modeling and

understanding mobility demand within cities. Traditional methods of demand mod-

eling inferred the collective behavior of demand on transportation infrastructures

through household or road surveys to gather information about user's behavior. An-

other approach has been to use theoretical models to estimate the number of trips and

their directionality based on land use models. These approaches can be unreliable and

can have financial and temporal costs. Today and with the emergence of pervasive

technologies around the world, research started investigating human behavior through

data gathered from mobile phones [26, 21, 32, 35]. Varying approaches have used the

data as a proxy to better understand human mobility. The focus on human mobility

ranges from decomposing the data onto the different dimensions to gain insights into

behavioral patterns by applying algorithms and processes on models built on the data.

Research investigating the dimensionality of the data includes work on utilizing the

spatial decomposition of aggregate activity to understand the dynamics of cities and
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universal patterns of human mobility [26, 10]. On the other hand, researchers have

developed techniques to gain more insights from the data by creating algorithms cap-

turing more of the hidden patterns [32, 17, 63]. For example, researchers have been

modeling the social network based on the data captured from users' interactions to

better understand whether the composition of social communities is correlating with

the geographical constraints [49]. Another approach was to capture users' trips from

the data set and aggregate trips to get insight on the flows of people around the city

towards understanding the dynamics of flows of people [11, 60]. Such understanding

can help identify flawed urban planning in cities [68].

1.2.2 Classification of Regions in a City

Multiple studies used human mobility behavior to classify urban areas. A recent study

investigated the relationship between land use and mobility[36]. The authors showed

that purposes of people's trips are strongly correlated with the land use of the trip's

origin and destination. Recently, the availability of dynamic sources of data allowed

for dynamic segmentation of the city according to human mobility behavior. Some

studies combined human mobility with land use or POIs data to segment districts in

urban areas according to their functions or use. The type of data used to capture

human mobility behavior varies between individuals GPS traces [69, 23], taxi pick

up/drop off locations as in [38, 45] , Call Detail Records (CDRs) as in [40, 59], social

media check ins as in [66, 39, 6] , and bus smart card data as in [29]. However,to our

knowledge, non of the previous studies quantified the attraction of places and used

attraction profiles to segment the city.

Survey travel data has been used to detect the centers (significant places) of a city

[71, 18]. A recent study proposed a method for measuring the centrality of locations

that incorporates the number of people attracted to the location and the diversity of

activities in which visitors engage [71]. The proposed method was tested on survey

travel data in Singapore to identify the functional centers and track their significance

over time. A similar approach focused on analyzing the aggregate behavior of the

population to predicted highly attractive events such as the times square during

20
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new years count down in new york [24]. Our method is based on validated origin

destination matrices mined from cell phone data that captures human mobility. More

significantly, our approach incorporate not just the amount of people a place attracts

but also on where do they come from and the road distance they traveled.

Network analysis methods were used to detect hotspots based on flow patterns

between locations[40, 621. A recent paper [40] used Origin Destination (ODs) matrices

extracted from cell phone data to identify the signature of mobility behavior as 4

main types of movements within the city: from hotspot to hotspot, to hotspots,

originating at hotspots and the random flows. They showed how different cities have

different mobility signatures. Additionally, a recent study used Taxi drop off/pick up

GPS traces in Shanghai to create a network of flow between places. They applied

community detection to extract sub regions and analyze the interaction between sub

regions and within each sub region.

Researchers adapted modeling approaches from Natural Language Processing (NLP)

in identifying functional zones in urban areas [65, 64]. One study applied a Latent

Dirichlet Allocation (LDA) model on Foursquare check ins to detect local geographic

topics that indicate the potential and intrinsic relations among the locations in ac-

cordance with users' trajectories. A recent study used LDA and POIs to detect

functional zones[65].

1.2.3 Prediction of Individuals' Movement

Humans are creatures of habit where various aspects of human behavior exhibiting

high periodicity. The nature of human movement is a combination of both periodic

movement such as home-work daily trips as well as random explorations to attraction

areas or social gatherings [12]. The random aspect of human mobility as well as

the heterogeneity of individual preferences make the problem of predicting the next

visited location of an individual a challenging one [27, 37, 70, 53]. Undoubtedly, the

decision making process of humans is highly influenced by their social interactions

[28]; statistically significant tests on the similarity of human mobility with respect to

the existence of strong social ties suggests that social ties are an important influential
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factor to the travel patterns of people [31]. This has provided an opportunity to

improve human mobility models by incorporating the patterns of movement of friends

[16].

Research towards predicting next locations of people have also shown to be very

successful on data with varying resolution in space and time [41, 52, 20]. Targeting

the locations of the social contacts showed to improve the prediction of the leisure

locations of an ego when using GPS-geo-tagged Twitter or GPS type of data [51, 16,

15]. However, here we show that the same approaches fail greatly with Call Detailed

Records (CDRs) from mobile phone data due to the sparsity of data on the temporal

dimension significantly reducing the amount of observed mobility of an individual.

1.3 Dataset

The dataset consists of one full month of phone calling records for the entire country

of Saudi Arabia, with 3 billion mobile activities to over 10 thousands unique cell

towers, provided by a single carrier. Each record contains an anonymized user ID,

the type of activity (i.e., SMS, MMS, call, data etc), the cell tower facilitating the

service, duration if its a phone call, and time stamp of the activity. Each cell tower

id is spatially mapped to its latitude and longitude. For privacy concerns, user id

information were completely anonymized at the telecom operator side.

The focus of the thesis is on the capital of Saudi Arabia, Riyadh. The dataset

for Riyadh consists of one month of Call Detail Records (CDRs) with around 1800

towers. The data provides CDRs for the duration of the month of December 2012

from a major telecom operator in the city. Phone activity for about 300 thousands

users during the one month period makes about 109M records in the CDRs. Each cell

tower ID is spatially mapped to its latitude and longitude where each voronoi cell in

figure 1-1 correspond to a tower. The spatial granularity of a cell tower varies across

the city; figure 1-1 shows the city of Riyadh and the voronoi cells of the towers in the

city, areas that are closer to the center of the city have smaller cells while as we move

away from the center, cells have larger sizes.
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Figure 1-1: Riyadh city and the coverage of cell towers.

Previous studies [44, 261 have shown that human connunication patterns are highly

heterogeneous; where some users use their mobile phone much more frequently than

others. The characteristics of the dynamics of individual communication activity

obtained in Fig 1-2 supports such hypothesis.

The dataset was provided by the Saudi Telecom Company (STC) under a nondis-

closure agreement for a project aimed at understanding Riyadh city dynamics and

thus the data is not available for public access. However, the algorithms and proce-

dures discussed in this thesis are applicable to any CDRs data due to them being a

generic type of data telecom operators use for billing purposes.

1.4 Thesis Outline

The rest of the thesis will show the applications of CDRs and other digital traces in

different aspects of mobility modeling. Chapter 2 discusses the development of the

City Browser, a tool used to browse through City Mobility data. The tool mines

the CDRs for insights inferred from the movement of people as well as their daily

home and work locations. The tool is composed of several components that interact

with a, visual interface for the delivery of information. Chapter 3 goes into further
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Figure 1-2: The distributions of (a) Length of sequences of locations Li0 ist and (b)

Number of visited locations N and (c) Degree distribution of the social network and

(d) Total activity of phone usage around a typical day.

detail in terms of mobility on the aggregate scale of the population. The chapter goes

into further detail in classifying regions with the city depending on how they attract

people. The chapter then moves to developing a predictive model for the estimation

of incoming flows for newly developed regions. The developed method is then shown

to perform better than a version of the gravity model chosen as the baseline model

for our study. Chapter 3 investigates mobility at the individual scale. The chapter

investigates how one can predict a person's next location given their movement history

as CDRs records. The chapter investigates how one can increase the accuracy of the

prediction by observing the mobility of others, this includes people of similar mobility

patterns. The developed Dynamic Bayesian Network (DBN) achieves accuracy better

than that of the a baseline of a Markov Chain.
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Chapter 2

The City Browser: Visualizing City

Mobility Dynamics through Massive

Call Data

2.1 Introduction

The motivation behind developing the browser is derived from the demand of a tool

that provides fine-grained analysis of the complexity of human travel within cites. The

approach takes advantage of the existing built infrastructures to sense the mobility of

people eliminating the financial and temporal burdens of traditional methods. The

outcomes of the tool will assist both planners and the public in understanding the

complexities of human mobility within their cities.

In this chapter we will present the City Mobility Browser, a tool that facilitates

a simplified understanding of human mobility across a city. The chapter is divided

into three sections: Section 2.2 presents the methodology of the browser, Section 2.3

describes the general architecture of the system, Section 2.4 describes each component

of the tool in detail, and Section 2.6 presents results of the case study of city of

Riyadh in Saudi Arabia. The contributions of this chapter can be summarized into

the following two points:
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" We propose an architecture that combines several known techniques for data

collection, storage and analysis in one framework in a meaningful context to

develop the "City Browser", that can aid in simplifying the complexity of human

mobility across a city.

" We examine the usefulness of the system through a case study of Riyadh, Saudi

Arabia. The case study contained 100 million real mobile phone activity and

demonstrates the process of analyzing massive amount of data and through

visualization, distilling the bits into actionable insights.

2.2 Methodology

The objective of the browser is to provide an understanding of the complexity un-

derlying human mobility within a city. The browser will capture the dynamics of

the distribution of the population to investigate aspects pertaining to flows of peo-

ple as well as the structure of the community. Investigating population localization

dynamics provides information pertaining to emerging zones with higher population

densities; certain dense zones emerge on daily basis like commercial areas on week-

days while others emerge as consequence of events that are not of periodic nature.

The browser will investigate whether the formation of periodic dense zones has an

influence on the segregating of the population of the city into communities. On the

other hand, it will provide information about how the city interacts with events in

terms of population commuting flows.

The approach towards simplifying the complexity of human mobility is staged

into four steps. Starting with step 1, the browser decomposes population distribution

across the spatial dimension on a time resolution of a day capturing the emergence of

dense zones (see Subsection 2.2.1). Step 2 then analyzes each individual in the CDRs

to capture their home/work locations (see Subsection 2.2.2). Step 3 as explained in

subsection 2.2.3 investigates the formation of communities within cities as a result of

their home/work choices. Step 4 estimates people flows within the city within a day

time scale (see Subsection 2.2.4).
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2.2.1 Spatial-Temporal Decomposition

The first phase of the methodology decomposes the population over the spatial di-

mension of the city on the day scale; it will capture time series information of densities

of people at every zone with time granularity in minutes. The technique quantifies

the magnitudes of mobile user activities within the defined time window, generating

time series data for user activity densities for each zone covered by a cell tower. Ob-

serving densities with such fine time granularity provides fine grained detail on the

emergence of such populated zones by identifying when, where and how fast different

dense zones emerge.

2.2.2 Home/Work Places Capturing

The second phase takes a larger time granularity spanning weeks to capture residential

and business areas. The approach towards that is by identifying locations where users

spend most of their time during day and night (i.e. home/work locations) across a

sufficient time interval. Aggregating the number of users spending most of their times

over a particular location captures zones that are emerging as a result of daily routine

activities like regular business areas and schools.

2.2.3 Community Detection

To better understand the influence of where people live and work, this phase in-

vestigates the formation of segregated communities based on their home and work

locations. The formation of a mobility community within the population indicates

that there is a subset of the population traveling within confined bounds of the city

and tend not to cross those bounds (i.e. a neighborhood or group of neighborhoods).

Such analysis can provide insights on the level of heterogeneity of trips' sources and

destinations.
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2.2.4 Flows Estimation

To better understand daily commuting within a city, this phase captures flows within

the city through the origin destination estimation algorithm. The algorithm captures

trips generated by users around the day and then aggregates the flows of people on

a specified time window. The results of the origin destination estimation algorithm

will provide information about how dense zones emerge in terms of the source of the

population visiting those zones.

2.3 General Architecture

The general architecture of the browser is composed of three major components; data

warehouse, modules and algorithms, and the visualization interface. The data ware-

house contains the needed data for the modules and algorithms to produce insights

and information visualized through the visualization interface. The general archi-

tecture is shown in the figure 2-1. The data warehouse contains data pertaining to

human mobile phone usage as well as GIS information of the city and traffic counts.

There are four major modules residing within the modules and algorithms compo-

nent that are spatial-temporal decomposition module, home/work capturing module,

community detection module and flows estimation module. Finally the visualization

interface takes the results produced by the modules and algorithms together with GIS

information of the city to provide a comprehensive dynamic view of human mobility

within a city.

2.4 Components

The City Browser is decomposed into components following the general architecture

described in section 4. This section will provide the details of each component. The

breakdown of the browser into components is to allow for a more scalable, modular

and simpler architecture for development. Each of the components is describes below.
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Figure 2-1: City Browser general architecture

2.4.1 Data Warehouse

The data warehouse houses several datasets containing information of the structure

of the city as well as the dynamics of it. It contains a geospatial database of the

city including the lookup table of the locations of the cell towers for the purpose of

mapping mobile phone activity to locations. In addition, it contains information of

the time series mobile phone usage data as well as traffic counts.

The major part of the data warehouse is mobile phone billing information, also

known as Call Detail Records (CDRs), which are records that telecom companies

usually keep for the purpose of generating bills for customers. The CDRs are gen-

erated by mobile switching centers (MSCs) within GSM networks and go through

several processing methods to be usable by telecom providers. The CDRs are finally

structured in a table-like format, withholding information about phone activity de-

tails. Each entry in the CDR.s table is a record representing an activity generated by

a user. Every time a user makes a phone call, sends a text message or accesses the

Internet, the CDRs keeps a record of the cell tower that was used to facilitate activ-
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ity. In addition, the data warehouse contains a lookup table for cell tower geospatial

information where each cell tower is mapped to its coordinates (i.e. latitude and

longitude). Each record within the databases is referred to as an activity and is de-

scribed by time t, user u and cell tower c and represented as a(t, c, u). For each user,

the dataset contains a series of activities captured and are represented as:

AU = {ao, al, a2, ...anlu = Uao = Uai = Ua 2 = .... = Uan}

where ao is an activity record and uao is the user generating activity ao. The data

warehouse also contains traffic volume counts at specific points on the road network.

Traffic counts are usually taken for a defined period of time where pressure tubes

are placed on certain links to count the number of times vehicles pass across them.

Furthermore, information about the geometry of the road network is housed within

the data warehouse as a spatial database. The road network spatial database contains

information about the geometry of roads such as number of lanes, category, length

and speed limit.

2.4.2 Modules and Algorithms

The Modules and Algorithms component is composed of four components: spatial-

temporal decomposition module, home/work capturing module, flow estimation mod-

ule, and community detection module. Each of the components is described below.

Spatial-Temporal Decomposition Module

The first step toward understanding the dynamics of a city on the day scale is to

look at the dynamics of population densities across the city through aggregate user

activities for each cell tower. This module breaks down the total activities of users on

both the spatial and temporal dimensions. A similar approach was developed in [11].

For each cell tower within the city, the module generates a time series data for activity

levels for a specified time granularity At. To capture the collective behavior of the

population across the city, the module captures the aggregate activity level of users
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at every cell tower ci within the city. The aggregate phone activity level denoted

AL(ci, At) at cell tower ci for a time window At is computed as follows from the

dataset.

AL(ci, At) = a(c, t, u)

cc, ,tcAt

Where a(c, t, u) is an activity generated through cell tower c at time t. Each time

series data for every location ci gives insights on the nature of the zone where the cell

tower resides in terms of its use. For example, work areas within cities are expected

to have a higher density of activity during work hours compared to residential areas.

The module also provides insight into collective population behavioral characteristics

showing when the city becomes alive in the morning. It also captures information on

how users are interacting with events in terms of localization or behavior of service

usage. The objective of developing this module is to provide a holistic overview of

the change in population densities across space and time.

Capturing Home/Work Places Module

Expanding the time interval of the analysis, this module captures work zones as well

as residentail zones. This is essentially capturing places where the majority of daytime

calls are as a proxy to work locations. First, we segregate activity records on two time

windows to capture most visited zones at daytime versus nighttime for a particular

user u. Activities that would hold potential work locations are separated in a set as:

dayu ={ao, al, a2, ...an IU = Uao = Uai = Ua 2 = ---- = Uan

A tai G daytime}

Where ao is an activity record, Uao is the user generating activity ao and tai is time tag

of activity ai. Similarly, nightu is obtained with the same logic for nighttime activity.

Then, worku location for user u is chosen to be the most occuring location in dayu

and the same applies to homeu as it is chosen to be the most occuring location in
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night,.

After determining the work, and home, for each user. The aggregation of the

resulting zones where users spend most of their times during the day and night identi-

fies dense zones that pertain to business/residential areas since the module considers

larger time granularity for the analysis. Thus, this module quantifies the extent to

which a zone is considered as residentail/business zone.

Community Detection Module

Following on the output of section 2.4.2, this module will investigate whether there

are groups within the population forming communities that have similar home and

work locations. The module begins with the city-wide network of connected zones

G(N, E) where N is the set of cell towers within the city representing the zones and

E is composed of weighted directed edges defined as the number of users who have

a particular home/work pair, respectively, in the zones corresponding to the starting

and terminating nodes. The adjacency matrix A of the discussed network is as follows:

wo'O wo'il .

A 1 0 W , 1  .

Wm,1 Wm,2

Where w0,1 is the number of users having their home, as c0 and work. as c1.

The algorithm then uses a modularity optimization scheme, such that sets of nodes

are clustered in a way that minimizes internal arc disruption [13, 43]. Each resulting

community represents an area where a large fraction of users are mostly located during

the day and night.

Modularity is a standard objective function in the field of community detection;

it measures how well a partition of network nodes into communities reflects the char-

acteristics of the underlying network (in our case the commuting flow among zones).

The rationale behind modularity is that a group of nodes with connections mostly

directed towards its own members represent a community with higher modularity
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while a set of nodes with intra-community connections is what we would expect by

randomly rewiring all the links.

Communities resulting from modularity optimization of telecommunication data

have been empirically shown to be representative of the actual social and administra-

tive boundaries at the level of whole countries [17].

In the case of a city, we went further and studied communities at the level of the

neighborhood. The interesting results we obtained are discussed in Section 2.6.

Flows Estimation Module

To capture the directionality and mobility of the population across the city, the

browser houses an algorithm that provides information about the collective behavior

of human mobility through mining mobile phone activity. The module of estimating

the aggregate flows of people across the city from the CDRs is a three step algorithm

that has the CDRs as inputs and the aggregation of flows of people between locations

at every time window At as its result (i.e. Origin Destination matrix). A similar

approach was developed in [111. The module starts by arranging data on a user

level and considering each of their displacements as a potential trip. After that, the

resulting potential trips go through a filtration process that filters out noise in the

data from the potential trips generated. Finally the last step aggregates the resulting

trips on both the spatial and temporal dimensions to generate an origin-destination

matrix based on the provided time slice of interest.

The first step in the algorithm looks at phone activities on a user level and gathers

all activities generated for each user sorted in time as follows.

AU ={ao, ai, a2 , ...anlu = Uao = Uai = Ua2 = -.-- = Uan

A tao < tal < ta2 .... tan }

Where Au is the set of all activities generated by user u, ua, is the user generating

the activity ai and tai is the time tag of activity aj. Every consecutive records belong-

ing to the same user are merged into pairs of location records with their associated
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times representing a potential displacement of the user. The set of displacements of

a user are represented as given by:

D = {(cai, Cai+, tai, tai+ 2 ) |ao, al, C Au}

Where Du is the set of all potential displacements of user u, cai is the cell tower

facilitating the activity aj, tai is the time tag of activity a and uai is the user gen-

erating activity aj. The set of potential displacement considers each successive user

activity a potential trip though this includes noisy data such as users who did not

change their locations between the successive activities but where nevertheless served

by different nearby cell towers, a phenomena referred to as localization error. In order

to capture user trips in which a displacement actually occurs, we apply further filter-

ing on the set of potential displacements Du. The goal of the filtering process is to

eliminate all captured pairs of location records that are considered as noise in terms

of trip-capturing. The filtration process eliminates all records that are considered as

localization error, have very long time intervals or no movement detected. Entries in

the data that corresponds to localization error are filtered out by eliminating all trips

that are less than a specified distance of the maximum distance between any neigh-

boring cell towers within an urban setting. Given any two neighboring cell towers

that cai and ca3 , each element within D, must satisfy the below predicate.

distance(cai, Cai+i) > max[distance(ca, Caj)]

Where disance(cai, cai+) is the distance between the towers ca, and cam. The

filter eliminates potential displacements having a distance larger than that of the

maximum distance between any two neighboring towers in the city. In addition, each

pair of records satisfy tai+i - ta, > a, where tai is the time tag of activity aj. That is

a time difference between consecutive activity records being more than a threshold is

filtered out of the set of displacements D, for the purpose of reducing the uncertainty

in capturing the actual departure and arrival times for trips.

The result of the filtering process is the set of displacements Du containing all
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pairs of locations where movement was detected and reasonable time duration for the

trip was captured. After that, the final step towards the generation of OD matrices is

to aggregate the trips according to the specified time slice into the origin destination

matrix given by:

0 TO,1 TO,2 ...

OD(At)= T1,0  0 T1 ,2 -..

T 2,0 T 2 ,1  0 ...

Where each element Tij gives the number of trips captured between ci to c3 during

the time slice At. The value of Tij is computed by:

Ti,j (At) = Du(can, Can+1, tan, tan+i)

Where can E i, Can+1 E j and ta,+1 - tan E At. Thus, Tj quantifies the flows from

zone i to zone j during the time window At.

2.5 Visualization Interface

The visualization component shows the results of the modules and algorithms on two

time scales depending on the nature of their outputs. It will visualize population

density distribution and major flows of people across the city dynamically over the

span of a day while on longer time scales it will show a static map of the communities

forming around the analysis of dense zones.

The visualization will start by showing the spatial-temporal decomposition of the

population over the scale of a day. A dynamic visualization with time granularity

of 15-minutes will capture population density variations across the day and night.

The browser shows mobile activity over a dynamic period of time broken up into 15-

minute intervals as shown in figure 3. This visualization presents a rotatable, scalable

map onto which a shifting, three-dimensional grid is superimposed to show locational

agglomerations of cellphone activity. Grid sectors will rise and fall, and brighten and
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fade as people move across the city using their mobile devices.

On the same scale of a day, the visualization components shows the directionality

of human mobility through the output of flow estimation module as well as the car

counts stored in the data set. Major flows within the city showing the aggregate

behavior of commuting around the day are visualized with a time window of 15-

minutes. The component visualizes the generation of trips on each time slice by as

an arc that rose from originating to terminating cell tower. As shown in figure 6,

each arc embodies a variable number of trips, and to illustrate this we altered its

thickness and height in correspondence to the intensity of activity along that route

(on a logarithmic scale). The arcs are drawn over the same city base geography, on

top of the social interaction mesh from above, in an effort to reveal unseen connections

between the two results. In addition, car counts were built into the visualization as

half-spheres placed at their respective intersections. Each sphere changes shape and

color at an hourly rhythm in line with the measured volume.

On the longer time scale and towards visualizing the output of the community

detection module, the visualization interface overlays the community network over

the spatial dimension of the city to show if there are correlations between the for-

mation of communities and the urban fabric of the city. Nodes represent zones of

the city and arcs represent groups of people spending most of their times across the

day/night between connected nodes. The community detection module provides the

set of nodes that belong to the same community. To visualize the output of the

community detection algorithm, nodes belonging to the same community are colored

with the same color as shown in figure 5. Thus, areas where sub communities spend

most of their time during the day and night are bounded within zones of the same

color.

2.6 Case Study

Over the past decade, Saudi Arabia has taken strong steps towards developing a

diversified economy. Specifically on enhancing its Information and Communication
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Technology (ICT) infrastructure [4]. Today, Saudi Arabia has one of the highest

Internet penetration percentages in the gulf area with current penetration at 14.7

million. It is ranked among the highest countries worldwide in mobile penetration

rates with 188% of the population possess mobile phones [14]. The high penetration

rate of mobile in Saudi Arabia make it an ideal candidate for utilizing the Call Detail

Records (CDRs) as in situ sensors for human mobility.

The City Browser was implemented for the Urban Transportation System (UTS),

a system developed to provide city planners with insights with regards to the mo-

bility of the population. The project started with gathering information related to

the structure of the city as well as the dynamics of the population. The data gath-

ered includes Records CDRs spanning a period of the month of December, a spatial

database of the road network of Riyadh city and traffic counts data on different points

within the city. Currently, the data is housed within the data warehouse where sev-

eral modules and algorithms are using it to generate insights on the dynamics of the

city.

2.6.1 City Spatial-temporal Decomposition

The first step towards understanding the data in the city of Riyadh is to decompose

cellular activity on the spatial and temporal dimensions. The visualization in figure 2-

2 shows cellular activity through color, transparency, and height (in logarithmic scale)

gridded across the metropolitan expanse of Riyadh. As opposed to seeing the cell

towers as discrete points in the city, we show network traffic interpolated over a

100 by 100 grid. In this sense, each grid cell is assigned an intensity based on its

distance to surrounding antennas and their activity levels using a Gaussian smoothing

function. The temporal activity is interpolated in a similar manner, showing smooth

transitions between each time-slice in the dataset.The city's downtown core quickly

becomes clouded in smog of network activity early in the morning that hangs over

region for the entire day. Clear sub centers emerge that follow construction density,

and these sub-centers appear to be partitioned by the roadway network itself.

The city's shifting activity profile also highlights a rich temporal signature of
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Figure 2-2: Spatial-Temporal Decomposition out for a single time slice. The figure
denonstrates the time-cumulative spatial iuobile activity conducted between 9:45am
to 10:00am.

conniuicliation that is all Rivadli's own. Watching the oscillations of the activity

landscape. we see that Rivadh comes alive at around 6:15ain. We also see strong

regional delineation: the residential neighborhoods to the southwest and northeast

of the downtown core come alive well before the rest of the city, and experience the

strongest inter-hour fluctuations throughout the course of the day. Finally. we see

some peculiar discontinuities in aggregate talk throughout the &lay ahnost as if all

phone traffic was suddenly halved at strange intervals.

2.6.2 Capturing Home/Work Places

A fundamental quality of mobility behavior is to analyze the eiergence of* zones

with higher densities along a wider time granularity to understand the distribution

of residential and business zones. Expanding our time intervals to capture broader

day and night variation we can begin to differentiate dense business areas and schools

versus dense residential neighborhoods.

The map in Figure 2-3 highlights the discrepancy between the purely day zones

shifting towards the red color and the purely night dense zones shifting towards blue
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Figure 2-3: Dense work zones during the day versus home locations during the night.
We observe high day-densities at the periphery where major universities are located.

color, showing some mono-centrically clustered day hotspots that follow the overall

spatial logic of the city. At the periphery we also see a number of universities show

up strongly as day locations. Lastly, we see high agglomerations of residences to both

the south and east of the city, with smaller pockets scattered throughout.

2.6.3 Detecting Mobility Communities

The work home dense zones visualizations shown in section 2.6.2 point to an or-

ganizational logic of the city. Conceptualizing the totality of day/night commutes

as a city-wide mobility network, we can conceivably break this network into sub-

communities by applying a regional delineation algorithm.

By overlaying the results of the community detection module on geography of the

city (see Figure 2-4), a number of interesting relationships are revealed between the

detected communities and the built form of the city. Most strikingly, the resulting

clusters closely correlate to the main arterials of city's roadway infrastructure. Mobil-

ity communities seem to be partitioned by the street network itself, underscoring the

city's dependence on highway infrastructure, while also supporting the commonly held

belief that heavily trafficked streets, on many levels, are instruments of segregation
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and control, or, perhaps mnore opt imistic ally: good streets make good neighbors.

2.6.4 Flow Estimation

The approach toward understanding flows that contribute dense-zone emergence on

snaller time granularity unveils rich information pertaining to the sources of dense

zones as well as the distribution of flow over tise. By collecting and filtering each

user's mobile activity as sequence of cell tower loctions and then aggregating collec-

tive users' trips, we are able to estinate flows in terms of origins and destinations of

trips. We've observed that these estimated flows contributed to the eemergence of high

density zones in the city of Riyadh; however this approach includes the added ben-

efit, of capturing travel demand at highly dynamic time slices ranging from seasonal

variations to hourly fluctuations. Such a high temporal resolution has the potential

to transform our understanding of urban nobility[56].

The resulting dynamic maps held a striking similarity to the local intuition of

vehicular flows across the city (see Figure 2-5). Overall flows correspond quite closely
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Figure 2-5: The extracted Origin Destination (OD) matrix across Riyadh at the time

slice of 9:30-9:45aim. The height of the line corresponls to the number of trips between

a specific OD.

to the underlying street network. Most notably. Figure 2-5 shows intense activity

along the city's main arterials; King Fahd Road andl the 'Northern and Eastern Ring

roads. This agrees with the local coinmnnitvs subjective understanding of commute

patterns across the city. But to further validate our results, we compared theim against

the best grounid-truth neasureients of roadway activity: car count volumes captured

by pressure-tube sensors placed at multiple intersection across the city.

2.7 Discusssion

In this chapter, we have presented a tool addressing the complexity of city human

mobility and showed its application to the city of Riyadh the capital of Saudi Arabia.

The browser is built to work with historical data and thus would provide an after-the-

fact analysis and does not, allow for the parsing and analysis of the data in real time. A

potential future work would be investigating the possibility of enabling the browser to

parse such big data in real time through establishing a live connection of data feed with

GSM network operators.The city mobility browser synthesizes and extends existing

algorithns to provide a holistic decomposition of the complexity of mobil ity across
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multiple dimensions. Although the browser captures the dynamics of the demand on

transportation, it does not map the demand over the road network of the city.The

visualizations provided by the tool give a dynamic qualitative understanding of the

spatial attributes of the city as well as its population directionality across different

times of the day. Future work could also enable the visualization interface to provide

quantitative analysis and a better understanding of emerging patterns.
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Chapter 3

Urban Attractors: Discovering

Patterns of Regions Inflows in Cities

3.1 Introduction

Understanding how different places in the city influence human mobility is significant

for urban planning tasks. A challenging one for large, complex and congested cities

is maintaining a robust transportation infrastructure. Understanding the patterns by

which places in the city attract visitors is essential for planning and modifying the

transportation system. Specifically, identifying the major regions that play a major

role in road congestions help identify the regions requiring higher accessibility in the

planning process. This issue is of a particular significance to the city of Riyadh, Saudi

Arabia where the largest metro project is being developed and promised to be running

in 2019 [5, 40]. Moreover, understanding how different types of places affects the flow

of trips in the city differently is essential in making decisions and policies related to

placing and modifying services in the metro system undergoing construction. For

instance, where to place an industrial area and how would it influence the flow of

trips during different times of the day. Researchers investigated a similar question

about where to place new business stores for higher profitability [34].

Today and with the ubiquity and pervasiveness of technology, data generated from

mobile phones enabled researchers to better understand the behavior of individuals
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across many dimensions [67, 8]. Most of the previous work on categorizing urban

areas aimed to classify districts by their functionality and land use (i.e. commercial,

educational, ... etc.). Some papers considered the human mobility aspects to classify

districts. A recent paper [65] proposed a topic modeling approach to classify districts

into functional; zones according to peoples socioeconomic activities mined from taxi

and public transport traces and points of interests (POIs) data. Another paper [451

proposed a land use classification approach based on the social functions of districts

analyzed from GPS taxi traces where districts witness change of land use class dy-

namically. While the work in [59] analyzed cell phone data to measure spatiotemporal

changes in population and classified land use based on similar cell phone activity pat-

terns. However, classifying urban places based on how attractive they are to visits

within cities has not been explored.

In this work, we present a computational framework for classifying urban districts

by their attraction patterns. we define attraction profiles in terms of statistical and

contextual features of regions incoming trips on a specified temporal window. Differ-

ent places in the city have different patterns of attracting visitors. Some places like

universities and hospitals attract a large amount of visitors who come from all over

the city and they travel long distance to visit those types of Attractors. On the other

hand, some districts in the city that provide local services such as restaurants, schools,

and small clinics only attract few people from nearby areas. We aim to automatically

identify pattern of attraction based on three main dimensions: how many visitors

a TAZ receives, how spatially spread the origins of the trips traveled to that TAZ,

and the shape of the distribution of the distance traveled by all visitors to that TAZ.

Additionally, we aim to understand what makes a district have a certain attraction

behavior. To do that we used statistical significance testing to automatically relate

the decomposition of POI types (services) in a district to its attraction pattern. We

know how each type of services is related to attraction behavior, that can be useful

for planning and locating services around the city while considering the attraction

that type of place is expected to cause.

The contribution to the literature can be summarized in the following points:
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" We propose measures of regions attractiveness by quantifying the spatial dis-

persion of where visitors come from and by using the distribution of distances

traveled by visitors on the road network.

" We propose a computational framework for detecting attraction patterns and

rigorously relating each POI type to each detected Attractor behavior.

" We provide a technique for predicting the inflows to newly developed regions

using a Gaussian Process.

3.2 Related work

Multiple studies used human mobility behavior to classify urban areas. A recent study

investigated the relationship between land use and mobility[36. The authors showed

that purposes of people's trips are strongly correlated with the land use of the trip's

origin and destination. Recently, the availability of dynamic sources of data allowed

for dynamic segmentation of the city according to human mobility behavior. Some

studies combined human mobility with land use or POIs data to segment districts in

urban areas according to their functions or use. The type of data used to capture

human mobility behavior varies between individuals GPS traces [69, 23], taxi pick

up/drop off locations as in [38, 45] , Call Detail Records (CDRs) as in [40, 59], social

media check ins as in [66, 39, 6] , and bus smart card data as in [29]. However,to our

knowledge, non of the previous studies quantified the attraction of places and used

attraction profiles to segment the city.

Survey travel data has been used to detect the centers (significant places) of a city

[71, 18]. A recent study proposed a method for measuring the centrality of locations

that incorporates the number of people attracted to the location and the diversity of

activities in which visitors engage [71]. The proposed method was tested on survey

travel data in Singapore to identify the functional centers and track their significance

over time. A similar approach focused on analyzing the aggregate behavior of the

population to predicted highly attractive events such as the times square during
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new years count down in new york [24]. Our method is based on validated origin

destination matrices mined from cell phone data that captures human mobility. More

significantly, our approach incorporate not just the amount of people a place attracts

but also on where do they come from and the road distance they traveled.

Network analysis methods were used to detect hotspots based on flow patterns

between locations[40, 62]. A recent paper [40] used Origin Destination (ODs) matrices

extracted from cell phone data to identify the signature of mobility behavior as 4

main types of movements within the city: from hotspot to hotspot, to hotspots,

originating at hotspots and the random flows. They showed how different cities have

different mobility signatures. Additionally, a recent study used Taxi drop off/pick up

GPS traces in Shanghai to create a network of flow between places. They applied

community detection to extract sub regions and analyze the interaction between sub

regions and within each sub region.

Researchers adapted modeling approaches from Natural Language Processing (NLP)

in identifying functional zones in urban areas [65, 64]. One study applied a Latent

Dirichlet Allocation (LDA) model on Foursquare check ins to detect local geographic

topics that indicate the potential and intrinsic relations among the locations in ac-

cordance with users' trajectories. A recent study used LDA and POIs to detect

functional zones[65]. Our work is different where we aim to analyze the attraction

behavior of a place using measures that has not been used in the previous work.

3.3 Urban Attractors Framework

In this paper, we propose a framework to categorize districts in the city according

to their attraction patterns. Additionally, the framework relates type of services in

the city to different attraction behavior. Figure 3-1 shows the general structure of

the process of analyzing attraction patterns in cities with the input datasets and

the outputs. The first step in the process is to extract trips information from Call

Detail Records (CDRs) of cell phones using the validated origin destination extraction

algorithm implemented in [58]. We use the ODs as a data source for estimating human
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mobility, where it provides the amount of trip from each pair of origin and destination.

From the ODs, we extract three statistical features that quantify how attractive a

place is: the number of trips a place receives, the spatial dispersion of the origins of

all incoming trips, and the distance distribution visitors traveled to visit the place

on the road network. We use these attraction features to classify all districts in the

city according to their attraction behavior. Finally, using a statistical significance

testing approach we relate the types of places that are significantly concentrated in

each types of attractors identified. In the following sections we explain each process

and its output in details.

Origin Destination
matrix extraction Call Detail Records

(CDRs)

Attraction features
extraction

Attractors types :Clustering

Points of Interests
Attraction of a Predicting inflows (POls)

Figure 3-1: Discovering Urban Attractors Models and Data

3.4 Origin Destination Matrix Extraction

The aim of this process is to extract the number of trips between each pair of locations

in the city. Our primary source of data is one month (December 2012) of CDRs of

anonymous mobile phone users in The city of Riyadh, Saudi Arabia. Within the

CDRs, each record contains an anonymized user ID of the caller and receiver, the

type of communication (i.e., SMS, MMS, call, data etc), the cell tower ID facilitating
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the service, the duration, and a time stamp of the phone activity. Each cell tower

ID is spatially mapped to its latitude and longitude where each Voronoi cell in figure

3-2 correspond to a tower. The CDRs provide a proxy for tracking human mobility

behavior in the city. Computational steps are needed to extract clean trajectories

from the CDRs.

Methods of estimating validated ODs around the day range from very traditional

methods more modern ones. Traditional methods include running surveys within

cities and estimating the flows between locations of the city from the feedback of those

surveys. Such methods consume longer periods of time rather than being inaccurate

at times. In addition, traditional surveying methods usually span smaller population

sample sizes and thus are more prone to biases. Recent research in the domain of

ubiquitous computing provided alternative methodologies for estimating ODs faster

and more accurate. The methods proposed in [58, 57] uses mobile phone location

traces (i.e. CDRs) to estimate the flows of people between areas in the city. The

large amounts of phone data provide more sample sizes and more accurate information

compared to traditional methods. I use state of the art methods of extracting OD

matrices for the city of Riyadh between each pair of TAZes as shown in figure 3-2.

The output of this process is the OD matrix that provides information of the num-

ber of individuals traveling from location i to j at the cell value T. The spatial scale

we used is based on Traffic Analysis Zones (TAZes), which is the official segmentation

used in transportation planning. Conventionally segmenting the city into TAZes are

based on census block information such as population, where zones tend to be smaller

in denser areas and larger in areas of low density.

3.5 Attraction Features

We aim to quantify how attractive a place is through statistical features of the inflow

for that place. The first feature is the total amount inflow a place receives. As

the more visitors a place receives, the more attractive that place is. Additionally, a

place is more attractive if it attracts people from various places in the city. Some
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Figure 3-2: The ODs in Riaydh during the morning period. Each line represents a
trip from a source to a destination.

places only attract people nearby which makes them local in terms of from where

they attract people. On the other hand, some place attracts people from all over the

city such as universities and hospitals. Thus, we quantify how spatially dispersed the

original location of visitors using a spatial standard dispersion measure. Moreover,

we quantify the distance by which visitors traveled to visit the place on the road

network. If visitors are willing to travel long distances to visit a place, it makes that

place more attractive. In the following sections, we explain each characteristic we

used to describe the attraction behaviors of destinations.

Inflow magnitude

The amount of visitors a place receives is a strong indicator of how attractive the

place is. This feature measures the attraction force of a location where locations

that have high inflow (number of visitors) are major attractors in the city. Figure

3-3 shows the distribution of the number of TAZes according to their inflow amount.

The majority of TAZes have small to moderate inflow. However, there are few TAZes
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Figure 3-3: The distribution of total inflow received by TAZ's in Riaydh. the majority
of places receive small to medium inflow amount (number of visitors). Few places
receive very high inflow (colored red),which makes them highly attractive.

that have a very large inflow (colored red), which makes them extreme outliers. The

inflow magnitude of a location i is calculated from the OD matrix as follows:

it

linflalw; = Tit (3.1)
j= 1

Spatial dispersion

An important and novel feature to analyze the attraction behavior of a place is to

measure the spatial dispersion of where visitors come from. The spatial dispersion

quantifies how spread out the locations of the origins of trips are to the center of

mass of where visitors come from. A place is more attractive if it attracts visors from

various and spread out places in the city. Major attractors tend to attract people

from all over the city (large spatial dispersion), while insignificant attractors only

attract people nearby (small spatial dispersion).

We measure the spatial dispersion of visitors by calculating the weighted stan-

dard distance deviation, which is a standard method used to measure the statistical

50

0



inlo
I-

Destination

x

Inflow

Y1200

100 - .7

Bi A districtin Riyadh s downtown C) A district in a residential area

A) 4 KigKaldItrntoa ArotinRyd

6001

Z
4
00

1001

Destination

0inflow

2000

1 Goo

Figure 3-4: Spatial dispersion and the corresponding distance distributions of three
different examples of attractors. Example A is the international airport in Riaydh.
Example B is a place in the downtown area. Example C is a place in a residential area.

The top row shows the heatmaps of the origins of the inflow, where the heat color

corresponds to the amount of trips that orientated from that place. The bottom row

is the corresponding distance distribution of each example. The distance distribution

represents the distances traveled by all visitors, where each type of place has different

distribution signal.

dispersion of spatial data 1421. Mathematically, the weighted spatial dispersion (SD)

for a TAZ i is defined as follows:

SD. w(X, - Xc) 2 + (y,' - Y) 2
(3.2)

Where n is the number of source TAZes from where trips originated. X, and Y

are the spatial coordinates of the origin of a trip i. wu is the amount of inflow from

source TAZ i. Xc,Y. arc the coordinates of the spatial center of mass of all origins of

all the incoming flow calculated as follows:

n0 z = .X i E " w .-

X c = 
= 1 ,1 Y E.= -T i 1

(3.3)

Figure 3-4 shows three examples of places with different attraction behavior. The
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A) Global Attractors B) Downtown Attractors C) Residential Attractors

The airport Prncess Norah Unive r i vy
Aimain Uniersity

King Saud University

The national gaur hospitalan University

The dipolomatic quarter
-52 embassies

sSouthern industrial area

Figure 3-5: The three types of attractors detected

top row shows the heat maps of the inflow sources and their concentration. The

destination TAZ is labeled with a target sign on the maps. Example A shows the

heat map of the international airport in Riyadh city, where the heat is spread all over

the city, which indicates strong attraction. Example B is a TAZ in the downtown

area, where the inflow sources are moderately spread. Example C is in a TAZ in a

residential area., where it only attract visitors nearby with small spatial dispersion.

Distance distribution

One main property to describe the attraction pattern is the distribution of distances

traveled by all the trips that attractor received. The trip distance from each source

to the centroid of the attractor were calculated on the road network of Riyadh by

using the Dijkstra shortest path algorithm [19] to find the optimal routes between

all of the origin-destination pairs. This provides a more accurate estimation than

the Euclidean or Manhattan distance metrics as it accounts for the variation in the

geometry of the roads.

The bottom row in Figure 3-4 shows the distance distribution of all trips a TAZ

received. In example A the distance distribution for the airport is very unique. The

mean distance is very high (around 40 KM) and there is a shift in the distribution due

to the distant, location of the airport in the very far north of the city. On the other

hand, the distance distributions are different in example B and C. In B the mean is

moderate and there is a tail to the distribution that corresponds to the long distance
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traveled by visitors to visit that downtown place. For example C, we notice that

the largest amount of trips traveled shorter distances on average. We conclude that

for each attraction behavior the distance distribution signal differ. Thus, we capture

the mean and the standard deviation of the distribution which are the most critical

features to describe the signal of the distribution to distinguish attraction behaviors.

3.6 Clustering

To discover common patterns of inflow within cities, regions are clustered using the

attraction features of their incoming flows as discussed in the previous section. We

used a Hierarchical Agglomerative Clustering (HAC) approach to categorize TAZes

based on their attraction features. HAC classifies objects, where each object is repre-

sented as a vector of features that describe that object, based on specified similarity

metrics. Here, a vector xi represent the attraction features that describe TAZ i as

follows:

Xi = [inflowi, SDi, pi, oa] (3.4)

Where inf low is the inflow magnitude, SDi is the spatial dispersion of the inflow

sources, pi is the mean of the distances traveled to TAZ i, and oa is the standard

divination of the traveled distance distribution.

HAC starts by assigning each single object to a separate cluster, and sequentially

merge the most similar clusters until it results in one cluster. Thus, HAC requires

defining how to merge clusters and how to measure the distance between them.For

merging clusters, We used complete-linkage algorithm, which merges two clusters

based on their most dissimilar objects a follows:

D(X, Y) = max d(x, y) (3.5)
XEX,yEY

Where d(x, y) is the distance between two objects x E X and y E Y, and X and

Y are the 2 sets of clusters. Complete-linkage algorithm is conservative when merg-

ing clusters, thus it tends to find very compact clusters, which fits our objective in
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Figure 3-6: The attraction features of the three clusters

in finding closely related attraction patterns. For measuring the distance between

clusters' objects d(x, y), we use correlation distance metric defined as follows:

d(x, y) = 1- ) (3.6)
(x - T) 12|(y - y) 112

Where 7 and Y are the mean of the elements of vector x and y correspondingly,

and (x - 7).(y - 7) is the dot product of the vectors (x - .) and (y - y).

Correlation distance works well for finding unbalanced clusters sizes as we expect

to have small number of places behaving very uniquely as strong attractors and larger

number of places that are not as attractive. Additionally, the correlation score can

correct for any scaling within a feature, while the final score is still being tabulated.

Thus, different features that use different scales can still be used.

HAC provides a hierarchy structure of the classified regions in the city. To de-

termine the number of clusters k that best divide the data, we calculate the total

within-cluster variation for each possible k from 1 to 20. The varience ratio drops

as k increase until it doest decrease significantly. We select the k that correspond to

the point where the variance stops decreasing significantly. The method is known as

the elbow curve method. The classification process all TAZes in the city of Riaydh

produce three types of attractors that have distinct features. The following section

extends the findings on the behavior of region clusters in the city.
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3.6.1 Attractor Types

Districts in Riyadh city are classified into three main types of attractors based on

distinguishable attraction behavior. Figure 3-5 shows the 3 types of attractor classes

detected, where the colored polygons are the TAZes that belong to the labeled type of

attractors in Riaydh. The global attractors are the ones that have significant influence

on the whole city, hence the name. Unlike the remaining clusters, the locations of

these places seem to be random around the city. The second detected type is the

downtown attractors, which play a significant influence ,after the global, on human

mobility. They are mostly clustered in the downtown area of Riyadh. Lastly, the

residential attractors, are the least influential attractors in the morning period of

typical weekdays. They are mostly located on the outer places of Riyadh city. In the

following sections we describe each type of attractors and their behavior.

Global Attractors

The most significant type is the global attractors, colored green in Figure 3-5. These

types of attractors are not common and show outliers behavior in terms of attraction

characteristics. The most distinguishable feature of global attractors is the extreme

spatial dispersion of the incoming flows, as visitors come from all over the city to

visit these places, as shown in Figure 3-6 B. Additionally, the amount of visitors they

attract range from high to extremely high as shown in A. We use inflow per squared

meter due to the unbalanced sizes of the TAZes. Additionally, the mean distances

traveled by visitors to these locations is extremely high, which makes these places

highly attractive and unique. We call these places global attractors because they

strongly influence human mobility over the whole city. Global attractors always offer

some unique services that makes them distinguished from other regions where visitors

only find such services in those regions. Significant places in the city like the airport,

major universities, and hospitals ,that occupy whole TAZes by their own and are easy

to identify from the map.Figure 3-5 A shows annotation of these major places in the

city of Riyadh.
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Downtown Attractors

The second type of attractors is the downtown attractors, colored blue in Figure 3-

5.It contains places that are mostly clustered in the center of Riyadh city. These are

TAZs that have relatively high inflow. However, because of their central location in

the city, visitors from allover the city have short routs to access these places. They

have smaller average distances compared to the other types as shown in Figure 3-6.

Due to the same reason, the dispersion of the origins of inflows is relatively small.

The major feature of these places is that they attract a lot of visitors but because of

their ideal location they are very accessible.

Residential Attractors

Residential attractors, colored red in Figure 3-5, are the least significant in terms of

attraction power. They attract a very small number of visitors. However, as they are

located in the outer sides of the city far from where most of the population resides, the

few visitors these places attract travel long distance on average to visit them. Also,

it is why the dispersion of the small number of visitors is higher than the downtown

attractors as shown in Figure 3-6.

3.7 Prediction of Inflows

The goal here is to fit a model that can predict incoming flows into a region in a city

to aid the process of city planning. I used the validated estimates of flows discussed

earlier in this chapter to develop a probabilistic model that can predict those flows

given the flows of other regions of similar attractions. Then, I compare the results

of my approach to the gravity model which is a common method to estimate trips in

the domain of transportation engineering.

Given people's flow data in the city, I went through various attempts at modeling

the problem starting with a Dirichlet-Multinominal model where the Dirichelet distri-

bution has a simplex of the types of places (attractions) and the distribution models

the variability of regions in terms of the places that are in them, the multinomial
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would then model the flows. The model didn't fit the problem quite well where I

then moved to an implementation of a Gaussian process for the problem. My initial

attempts suffered accuracy issues and computational challenges that didn't end as I

wished. Then I moved on to developing a spatial Gaussian process model that learns

the pattern of inflow of those regions that have similar attraction profile and use the

model for prediction. The intuition behind the modeling approach is that inflows of

people are usually driven by the places in a destination region and similar regions

exhibit similar spatial inflow signatures [3, 64]. For example, to model the inflow for

a university in a city, we fit a model on the other existing universities in the city and

use the model to predict the inflow. Therefore, we utilize our prior knowledge about

the visitors of universities where they usually come from similar locations.

3.7.1 Gaussian Process Model (GP)

The Gaussian Process model parametrizes the incoming flows to regions with similar

attraction profiles by their geographical coordinates. We define a set k as the set of

regions with similar places of interest. In the universities example, the set k represents

the set of regions having universities in them. A sample of the data is included in

table 1. Each row in the data has the form [lati, loni, lik] meaning that we have an

inflow of lik people from the geographical coordinate [lati, loni] where i is the index

of the region that is the source of the flow and k is an index of regions with similar

attraction places.

i loni lati lik
1 46.5766 24.7173 45
2 46.5194 24.7461 68
3 46.5920 24.7166 6

Table 3.1: sample of inflow data for regions set k from region i

The first step towards this problem is to define a Gaussian process for the input

data {X1, X2 } C X where xi represents a row of the parameters discussed above that is

[lati, lon] and lik is the flow from that point. The Gaussian process is parameterized

by a mean function m(x) and a covariance function or kernel k(x, x') where we get a
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finite set of functions equal to the number of points we have. The Gaussian process

is then given by

f(x) ~ gP(m(x), k(x, x')) (3.7)

Where the mean function and kernel function are given by

m(x) = 0, k(x, x') = o2 exp (

To implement the model, I used the Matlab GPML toolbox developed by Carl Edward

Rasmussen and Hannes Nickisch [48] which is an implementation of the topics covered

in their book [47]. The method allows for various choices of mean functions, covariance

functions, likelihood functions and inference methods. For the purpose of this project,

I used a Gaussian likelihood and used exact inference for the parameters. Exact

inference is computationally feasible in this model as the number of points is ~ 1500

which is the number of regions in the city of Riyadh shown in Figure 1. My choice

of the hyper parameters o and 1 was based on experimentation of the output of the

model where I found o- = 1,1 = 0.01 to be performing reasonably well.

3.7.2 Results

This section includes the results of the implementation of the model on the city of

Riyadh in Saudi Arabia. I will be estimating the flows into King Saud University

shown in red in the figure below. To do that, I will develop a GP for spatial inflow

to the regions in the set k defined as the regions with universities in them and shown

in the green color in the figure below.

Figure 2-a shows the mean predictive after training the GP on the inflows to

regions in the set k. The model captures the main sources of inflows to universities.

We can see that there is a major inflow to universities from the south-western region

of the city which is known to be highly residential. The significant inflows in general

significantly overlap with highly residential regions. Figure 2-b shows the variance

around the mean predictive of of inflow. The variance is relatively low inside the
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Figure 3-8: The figure shows (a) log
for the inflow to regions in the set k

of predictive mean and (b) predictive variance

boundaries of the city where we have inflow data and is highest outside the city

where no inflow data is available. I will use the value of the mean predictive when

predicting inflows to King Saud University.

The metrics I used in quantifying the accuracy of the model are the Root Mean

Square Error (RMSE) and the Mean Error (ME) given by

RMSEj (Lij - Iij )2
n) n 

Es=Lij -Iij|

where Lij is the predicted flow to location j from location i and lij is the actual flow.
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The ME is more interpretable for me to evaluate the model in terms of the average

error of flow quantities but I also used RMSE to evaluate how far the predicted flows

are from the actual values.

3.7.3 Baseline model

For the purpose of evaluating the performance of the model compared to existing

methods, I compare the results of the model to the gravity model as the baseline

model used in the domain of transportation engineering [22]. The model is given by

Li - = Oi T

where Oi is the total outflow from a location i and T is the total inflow into location

j and dij is the street distance between the i and j regions and a is a calibration

parameter to be estimated. There are many versions of the gravity model, variations

are always in the number of calibration parameters. This is a result of the lack of

generalization of the model between cities which is a drawback of gravity models

resulting in the disadvantage of overfitting the data. In our example, I chose a mod-

erately complex version where I have one calibration parameter a = 4.8 for the city

of Riyadh.

Figure 3 shows plots of the predicted flows using the Gaussian process in (a) and using

the gravity model in (b) versus the actual inflow values to King Saud University. The

figure shows that the predicted inflows using the GP are closer to the y = x line than

that of the gravity model. Table 2 shows the performance of the Guassian process

compared to the gravity model in terms of ME and RMSE where we find that GP

has a ME of 10.5 people and a RMSE of 54.58 compared to that of the gravity model

have a ME of 212.05 and a RMSE of 900.52.

The modeled GP estimates inflows more accurately than a gravity model fitted on

the city of Riyadh. The initial results found in this report suggests that probabilistic

models enabled by the abundance of phone data can sometimes provide better deci-

sion tools for urban planners than existing models in the literature of transportation

60



a 10

10

o 10

C

Ef 10
0

0

10

10

- K

GP predicted incoming flow L.

Figure 3-9: Performance of (a) Gaussian process (GP) versus (b) gravity model (GM)
for predicting the inflow to King Saud University

method ME RMSE
Gravity model 212.05 900.52

Gaussian process 10.5 54.58

Table 3.2: ME and RMSE for GP and gravity model in predicting inflows to King
Saudi University

engineering. I chose this project to experiment with the potentials of such models

in city planning problems compared to traditional methods. I think it is worthwhile

to extend the work to other cities and regions of other functionalities for further

investigation of how GPs compare to gravity models.

3.8 Discussion

In this chapter, we presented a computational framework to discover different attrac-

tion patterns of districts in cities and to predict the inflow to newly developed regions.

We proposed 3 dimensions to define attraction of a district : total number of trips

the district receives, the spatial dispersion of the origins of trips, and the shape of the

distribution of all distances traveled by visitors to reach that district. Additionally,

we presented a method for understanding the relationship between the decomposition

of the types of POIs in a spatial zoena and its attraction behavior. We applied the
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methodology and discussed the results on the data set from the city of Riyadh the

capital of Saudi Arabia.

The chapter shows the results of implementing the discussed modules that mined

data from mobile phones to provide a coherent understanding of the dynamics of

the interaction between the flows of people to a district and types of services (POIs)

that are located in that district. We detected three attraction patterns in the city of

Riyadh according to the morning mobility dynamics.

The chapter then proposes a probabilistic modeling approach for predicting the flows

between regions in a city using phone calling data. The modeled GP estimates inflows

more accurately than a gravity model fitted on the city of Riyadh. The initial results

found in this chapter suggests that probabilistic models enabled by the abundance

of phone data could provide better decision tools for urban planners than existing

models in the literature of transportation engineering. Such predictive models can

help decision makers estimate the inflow to a location prior to making decisions on

the functionality of a region or the residential population capacity.
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Chapter 4

City Scale Next Place Prediction

from Sparse Data through Similar

Strangers

4.1 Introduction

Research towards predicting next locations of people have shown to be very successful

on data with varying resolution in space and time [41, 52, 20]. Targeting the loca-

tions of the social contacts showed to improve the prediction of the leisure locations

of an ego when using GPS-geo-tagged Twitter or GPS type of data [51, 16, 15]. How-

ever, here we show that the same approaches fail greatly with Call Detailed Records

(CDRs) from mobile phone data due to the sparsity of data on the temporal dimension

significantly reducing the amount of observed mobility of an individual.

We propose a new model that tackles the problem of sparsity in the data in

order to improve the accuracy of next location prediction in highly sparse datasets in

general, and motivated by improving the usability of CDRs in particular. In sparse

phone calling data, despite being massive, we observe that a mutual availability of

locations logs from social contacts is very rare since users have few records. While

coupling friends records have increased the accuracy in predicting the next location
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of GPS-tagged records, here we show that this is not the case with lower resolution

datasets like phone activity records. This chapter presents an alternative mechanism

of developing a Dynamic Bayesian Network in a way that reduces effects of the sparsity

in the data and improves the accuracy of predicting the next location in 5 - 6%

over the baseline case. This framework is targeted for human mobility prediction on

very sparse temporal datasets with spatial accuracy of cell towers. The chapter will

compare the performance of the proposed model to a Markov Chain (MC) as a baseline

where it was suggested as one way of approach the theoretical predictably limit of

human movement [41, 25]. I also compare the results of the model to the ones of [51],

which incorporates social contacts information and has time as an observed node on

the model. Finally, we relate the model's results to the results of a theoretical upper

bound of predicting human movement proposed in [55] in the evaluation section. The

contributions of this chapter can be summarized in the following points:

" Investigate approaches towards limiting the negative effects of sparsity on next

location prediction in CDRs. The chapter propose several human mobility sim-

ilarity metrics used to identify other users with similar mobility characteristics

(i.e. similar strangers).

" Model human mobility as a Markovian process and propose a Dynamic Bayesian

Network model that incorporates the mobility patterns of similar strangers to-

wards better predicting next locations given the whereabouts of similar strangers.

" Provide a case study of the model on sparse mobile phone calling logs on the

city scale in the city of Riyadh, Saudi Arabia. The case study shows an improve

of 5-6 % in prediction accuracy compared to the baseline model.

4.1.1 Dataset Sparsity

The data is ordered as sequences of locations 11, 12, 13, l4, 15, 16...-n for each user i, where

we have the corresponding times for those locations as t1 , t 2 , t3 , t 4 , t5 , t6 ... tn. We also

denote the length of the sequence as LhiSt and the length of the unique locations a user
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has been to as Li. For example, a users with a visit sequence of (100, 200, 100, 200)

will have Lhi8 t = 4 and Li = 2. In the context of sparse datasets, individuals will

have missing location information for most of the time as discussed in the following

section.

Previous studies have shown that human communication patterns are highly hetero-

geneous [27], with some users using their mobile phone much more frequently than

others. Figure 1-2 (a) shows the distribution of the number of records for the pop-

ulation of users where the majority of users have a few number of activity records.

Thus, the majority of the users in the data have a small number records introducing

sparsity in the data that we will use to learn and predict their mobility patterns. The

sparsity extends to the availability of the data given an hour of the day and day of the

week for a user. Thus the data suffers from low granularity in terms of the number

of records as well as low granularity in location data given time of the day and week.

The number of visited locations shown in figure 1-2 (b) where the majority of users

are seen in a few number of places and this effect is partially due to the few number

of records in addition to the fact that users are mostly seen at home. Figure 1-2 (d)

shows the levels of phone calling activity along the day with peaks during the day time

and a minimum during the night where there is less data to model movement. Figure

1-2 (c) shows the degree distribution of the social network resulting from reciprocal

phone communications showing that the majority of users have fewer contacts.

The aforementioned characteristics of the dataset introduce challenges when using

the social circle of an individual in predicting their next visited locations. This is due

to that fact that the probability of two users being observed (i.e. have their location

traces logged) at the same time for users i and j is (*Lhour2 which is very small
(husin a month) 2hc svr ml

given the small empirical values of Li and Lj shown in figure 1-2. This implies that it

is harder to learn from the mobility of such users in ways similar to methods of adding

friends' movement [51]. Such methods will be severely limited by the availability of

contacts mobility data to learn from. In addition, the dependency of such models on

the time of day and day of the week adds more dimensions to the data which is not

in the favor of reducing the sparsity of the data.

65



A- 0 5 B., 1.G12.- 0 ------ .--0 L0 .

009

the 0Rd, # gsa

ds03 in as

-02 Ta

o92 e 092

L))

00 11, .0 1 2.0 V C 0.5 1I Ii 1 . 01 02 03 14 0.1,

Spatiotem poral distance Spatiotemporal distance Spatial cosine distance

Figure 4-1: Kernel density estimeation of the joint distributions of distance against

the RussleRao (RR) distance in (a), against RR distance in (b) aind the Cosine

distance against RR in (c). The distances are calculated for every pair of users in the

dataset in all three cases.

4.2 Temporal and Spatial Similarity

To overcome the sparsity of the data, we propose to add information of users who

are not necessarily within the social circle of the user we are modeling. Our approach

is to employ similarity measures on both the temporal and spatial dimensions of

the data to find users who will potentially help in predicting the location of a given

user. To that end, we couple users who have the maximum temporal, spatial and

spatiotemporal similarity scores; Such individuals most similar to the target user are

identified as the similar strangers in the data. We discuss each of these similarity

mnetrics in the following sections.

4.2.1 Temporal Closeness

To gain more insight about the nobility patterns of an individual with respect to

other patterns in the population, we need to have as much information as possible

about the mobility patterns of the population surrounding an individual. However,

the limitation is that it is infrequent to find location data for m-ultiple users on the

same hour. In order to overcome this problem, we quantify how two sequences of

location data overlap by a temporal closeness measure. We model the location data

as two boolean vectors of length n, where ni is the length of the time period in
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hours. Each vector cell is 1 if location data for that particular hour is available and 0

otherwise. Then, we employ Russell Rao (RR) distance measure that calculates the

distance between the two vectors as follows:

RR distance = - C11  (4.1)
n

where cl1 is the number of times where we have location information for two sequences

and n is the number of hours in the training time interval. This distance measure

will be very small (i.e. close to zero) if both users have location data all the time

and will have a value of one if they have location data that don't overlap on the time

dimension. Thus, by picking the lowest RR between two users, we are maximizing the

availability of location information between two users. Figure 4-1 B and C show the

distribution of the temporal RR distance between individuals in the CDRs population,

the plot suggests a vast majority of very high distances between individuals in terms

of mutual data availability which is essentially the limiting factor of observing the

location of an individual with respect to the social contacts or any selected set from

the population.

4.2.2 Spatial Closeness

This metric measures closeness between individuals' mobility by measuring the simi-

larity of individuals' spatial distributions. For each user, we construct a vector that is

of the length of possible locations visited in the city denoted k ~ 1800 and each cell in

the vector holds the probability of a person being observed in that location. Then we

employ the cosine distance measure to quantify the similarity of the locations visited

by two users with vectors u and v, as follows:

u.v
Cosine distance = 1 - II 2 1IIv1 2  (4.2)

The cosine distance gives an indication of the similarity of places where individuals

stay. Figure 4-1 C shows the kernel density estimation of the joint distribution of
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the temporal distance against the spatial distance of the visited locations. The figure

shows that it is very rare to find users that have high mutual availability of location

data while it is still common to find people having similar spatial distribution of their

visited places. In general, individuals that have very low spatial scores are individuals

that share the same visited locations with relatively similar weights. For example,

people living within the same vicinity as well as people working in the same area are

expected to have scores that are on the lower scale of the spatial distance. Next, we

introduce a measure that combines the temporal and spatial closeness together.

4.2.3 Spatiotemporal Closeness

This metric selects an informative subset of the population by combining the spatial

and temporal aspects of location traces through measuring the association of obser-

vations between two individuals. Given two users a and b and their corresponding

locations logs denoted as lj and lb corresponding to user a and b at time t, respec-

tivly. We construct a contingency table of locations; each cell in the contingency table

denoted as Cjj has a count of the number of times users a and b have been in the

associated locations given the same hour.

T

Cs~y= [ =i X 11b=jci~j li t
t=1

Given the contingency table, we measure the degree of association between users a

and b using a chi-squared test on the table C. Then, we calculate the q distance of

association as follows:
2

Xn (4.3)

Where X2 is the chi squared test value of the contingency table C and n is the

sample of data in the table. This measure will have a lower distance if users a and

b move in a synchronous manner and have mutually available data. Hence, the mea-

sure combines metrics discussed above. For example, people with synchronous daily

home-work trips will have a lower spatiotemporal distance given the data to capture
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that is available. Figure 4-1 A and B show the joint distributions of the spatiotempo-

ral distances, the 0 association measure captures the level of predictability of a user

from another utilizing both the spatial and temporal information of their sequences.

The model proposed handles human mobility as a Markov process where people tran-

sition between locations with associated probabilities called transition probabilities.

Each individual's transition between locations is intuitively related to how the rest

of the population is moving in an urban setting. The model aims at utilizing such

information to better predict human movement in the CDRs. This section will de-

scribe a baseline model and our improved methodology using a Dynamic Bayesian

Network (DBN) incorporating the mobility information of users with similar behavior

or similar strangers that we quantify using the closeness measures we defined in the

previous section.

4.2.4 Dynamic Bayesian Networks

We approach the problem by proposing a DBN with T slices where each slice corre-

sponds an hour of the day. Figure 4-2 shows the schematics of the model. The nodes

1i depend on the last visited location a user was observed as well as the location of

the closest sequences depending on the distance measure used. The model has no

dependency on the time of day and day of the week to maximize availability of data

per hour as will be discussed in the evaluation section.

1, 12 . .I

1 ) .1 .2 .. 2 .9

%/ ;/ 
/  

/ Y2 2/ YT YT~ YTr

Figure 4-2: Dynamic Bayesian Network where 1i is location of a person at time i and
yI represent location of the jth coupled person at time i.

The location sequence yi, Y2.... V correspond to the J closest individual in dis-

tance spatially, temporally or spatiotemporally as discussed earlier. The DBN allows

for the coupling of more users as desired.
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Learning

The DBN will use the data of the user that we intend to model in addition to the

data of the coupled users to model a user. We consider having the observations

it E {1, 2...ki} in the set of ki cell towers visited by an individual at time t. In

addition we consider the observations yt E {1, 2...kj} in the set of kj cell towers

visited by the jth closest user. Then the joint probability distribution of the model is

of this form:

m

P(li:T, Yl.T, ... Y"T) = P(il:T) P(Yi:T li:T)
i=1

T T m

= ljp(tl lt - 1) H F p(y Il t )
t=2 t=1 i=1

Where the model structure is shown in figure 4-2. The parameters of the model

correspond to the transition probabilities of an individual captured by p(lt lit - 1) in

the model as well as the the observational probabilities of other individuals captured

by p(y'llt) in the model.

The DBN uses a maximum likelihood estimator to learn the transitions of a per-

son and the observational probabilities of the locations of others. The parameter

corresponding to the transition probabilities is a matrix of size k, x k, where each cell

corresponds to the transition probability between two places.

Tr(a, b) = p(lt = allt_1 = b)

Where Tr is the transition probability matrix of size k, x k1.

In addition, the DBN learns the conditional probabilities of the location of a user

given their similar strangers using a maximum likelihood estimator as well. The

model will learn m observational matrices each corresponding to a couple of the user

and similar stranger i:

Ob'(a, k) = p(y' = alit = k) for i = 1...m
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Where Ob' is a kj x k, matrix.

Inference

After the DBN learns the transitions and observational probabilities, we then can

infer the most probable next locations. To get the most probable sequence of locations

visited given the locations of the most similar strangers at different times of the day,

we use a MAP estimator to find l1 by finding the argmax in the following:

1* = argmaxp(i: y1.t, .-.. y1:t 11I:t 1 1

Where the predicted locations depend on the parameter Tr(a, b) of transition proba-

bilities between locations a to b and the parameters for the observational probabilities

Ob' for each similar stranger.

4.2.5 Markov Chains (Baseline Model)

The model developed by Lu et all shows that a Markov Chain approaches the limits

of predictability in human mobility using mobile phone data of a user alone, we will

use the model as the baseline model. The Markov Chain is similar to the employed

DBN where we consider having the observations lt e {1, 2...ki} in the set of ki cell

towers visited by an individual at time t. However, the approach doesn't make use of

social contacts or similar strangers mobility patterns. Figure 4-3 shows an example

user with three locations and transition probabilities as shown on the edges. The

Markov Chain only learns from individuals historical records and thus doesn't couple

information of others. The joint probability of the model is given by:

T

P(l1:T) = fJp(ltJlt_1)
t=2
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The Markov Chain learns the transition probability matrix of size k, x k, where each

cell corresponds to the transition probability between places:

p(lt = allt_1 = b) = Tr(a, b)

Similar to the DBN model, Tr is a transition probability matrix of size k, x k, esti-

mated using a maximum likelihood estimator.

1.0

&1.0 
5

L1 L2 L3

0.5

Figure 4-3: Example of a person moving between three locations

Using the learned parameters, we use a MAP estimator to estimate the most

probable locations by looking for the sequence that has the highest probability *.t.

t

l1:t = argmaxp(i1:t) = arg maxfp(ltlt - 1)
11:t 11:t =

Hence, the baseline model only uses transition probabilities to estimate the most

probable sequence of locations *t.

4.3 Evaluation

In order to evaluate the proposed methodology, we compare the accuracy with existing

methods of coupling with social contacts 151] as well as the Markov Chain baseline

model described above. The accuracy of the model is given by:

T

E 1t=l*
y = 1accuracy= T
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Where it is the true location of a the predicted user at time t and 1* is the predicted

value. We split the data into three training periods (the first one, two and three weeks

of the data) and then testing with the remaining data. Then we predict the location

sequence for the remaining time in the period where we testing data that is three,

two and one week respectivly. Table 4.1 shows that coupling with social contacts

location observations doesn't improve the accuracy in sparse data compared to other

data sources [51]. Furthermore, our method of coupling with non-social contacts that

are closest spatially, temporally or spatio-temporally improves the accuracy of the

DBN. The differences in the change in accuracy between the the distance measures

is minimal as shown in the table. Note that we present the results of coupling with a

Algorithm 1w 2w 3w

Markov Chain (baseline) 53.46% 53.48 % 54.12%

Sadilek et all. 52.80% 54.19 % 55.42%

DBN (RR distance) 57.11% 58.66% 59.88%

DBN (Cosine distance) 57.14% 58.61% 59.82%

DBN (0 distance) 56.82% 58.63% 60.03%

Table 4.1: Accuracy achieved with different learning periods of first week (1w), first
two weeks (2w) and first three weeks (3w). In addition, the table shows how the
proposed approach compare to existing methods in the literature.

single closest similar stranger and still get significant improvements compared to the

methodology of [511 that couples all of the social contacts of a person. While coupling

with the social contacts is intuitive, it does suffers greatly when the data is sparse

and doesn't perform well with CDRs.

4.3.1 Accuracy by time of day

The average accuracy of predicting the location of users varies according to the time

of day as shown in figure 4-4. Both algorithms have higher accuracies where people

are usually at home relative to the remaining hours of the day where the average

accuracy drops, indicating a less predictable movement. The coupling of mobility
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information of closest person on the spatio-temporal 0 distance allows for the DBN

to increase the predictability during the day times, while not influencing the accuracy

significantly during the late nighttime (i.e. 12am to 8am). In addition, the average

accuracy of predictions fluctuates in varying degrees around the day; one reason is

that phone calling is lower during nighttime compared to the rest of the day. As also

shown in Fig. 4-4, the scarcity in the data during the nighttime causes the average

prediction to have the larger confidence intervals.

0.75
MC (baseline)

0.70 DBN-0 distance

0.65 -

S 0.60
<

0.55

0.50

0.45 I

0 5 10 15 20
Time of day

Figure 4-4: The average accuracy of the DBN- distance compared to the HMM
(baseline) at different hours of the day with 95% confidence interval.

4.3.2 Accuracy and mobility entropy

The population of users doesn't move in a similar fashion. There are individuals that

visited way more locations relative to others. In order to capture the randomness of

the location sequences of people, we calculate the entropy of the observed location

sequences. Given a sequence of mobility observations, its entropy Se'I is defined as:

Seal- -E P(x') log 2 P(x') (4.4)

74



U
1.5-- 160

4 :

: * e* ::: : : * : .* **: 1403.5* 0

030 1 0 25 30a0 3 4
3 ...... ...... 00 0000 0001000

2.5 *600 ........... 0 .g e e..0
....- 0 .. :::::.0 00 00 0 e 0

* *.. .0 ... * * * * * * * * * * - 8

2-.

000~ ~ ~~~ 0 0 0 0 0eOO@000*00

0e* .. 0000000000060000. .**e*

0.5 .: : 00 0 ~ e e e 60
1.5 ~~~0 0 *0g000 000 0000000

* ,*....900006.00 0 0000000*

* 000000000 0 0 0 000*O0000

..8 .. .. 1, 0 1, 0 00 30 35 4

Figure 4-5: The Entropy and the number of uniquely visited location. The entropy

of a location sequence (i.e. user's mobility data) increases as the user explores more

locations. The figure shows that the majority of the user population visit few locations

and have relatively lower entropy.

Where xi is an observed location sequence for user i, x' is the sequences of lengths

1, 2, ... n in Xi. The entropy accounts for the observed sequences of movement within

the traces of a person; enabling us to account for the spatial and temporal patterns

of individual movements[55]. Figure 4-5 shows that there exists a positive correlation

between the number of places in which a person was seen and their respective Sreal

value. It also shows that the majority of users visit very few locations (i.e. Li < 5),

which makes their entropy lower and therefore more predictable.

The greater the randomness in a location sequence, the lower the predictability

of the user that generates it. Figure 4-6 shows the negative correlation of the predic-

tion accuracy and the entropy of the user's data Sreal. Taken together these results

demonstrate that reporting accuracy of a method as a single number for the entire

population is not very informative given the high variability within the population's

behavior.
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4.4 Discussion

This chapter proposes a Dynamic Bayesian Network for predicting human mobility

using CDRs as a target case. The model utilizes information from similar strangers

that behave similarly in space and time but do not necessarily share a social link.

The results show that humans exhibit higher mobility randomness during the day

compared to the night; the proposed DBN-# model performs better than the baseline

during the later parts of the day when human mobility exhibits more randomness and

the coupling with similar strangers proves to be more useful at those times.

While we use CDRs as a proxy to traces of locations, we have shown here that without

sampling these sources are very sparse and aren't optimal to recover human mobility of

the entire dataset. Furthermore, phone communication is also an imperfect indicator

of a social link, failing in some cases to indicate homophily or a type of relation

resembling social media connections. On the other hand, these datasets spans over

huge sample of the population worldwide.
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Chapter 5

Conclusion

The increasing availability of massive passive data opens several venues to study and

research the behavior of humans in cities. In this thesis, the second chapter of this

thesis investigates how visualizing massive passive data provides insights on patterns

of mobility in cities. Chapter two included the application to the city of Riyadh the

capital of Saudi Arabia through the UTS project. The project developed the Mobility

Browser for the city of Riyadh. It included implementing several modules that mined

data generated from mobile phones for insights about dynamics of the interaction

between its social structure and transportation infrastructures. The Riyadh city mo-

bility browser synthesizes and extends existing algorithms to provide a decomposition

of the complexity of mobility across multiple dimensions.

The visualizations provided by the tool give a dynamic qualitative understanding

of the spatial attributes of the city as well as its population directionality across

different times of the day. The city mobility browser is envisioned to be a tool that

can provide planners, engineers and the public with an easy to understand analysis

while capturing fine grained details about the city. Future work could also enable the

visualization interface to provide quantitative analysis and a better understanding of

emerging patterns.

Chapter three presented a computational framework to discover different attrac-

tion patterns of districts in cities and to predict the inflow to newly developed regions.

We proposed 3 dimensions to define attraction of a district : total number of trips
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the district receives, the spatial dispersion of the origins of trips, and the shape of the

distribution of all distances traveled by visitors to reach that district. Additionally,

we presented a method for understanding the relationship between the decomposition

of the types of POIs in a spatial zone and its attraction behavior. We applied the

methodology and discussed the results on the data set from the city of Riyadh the

capital of Saudi Arabia.

The chapter shows the results of implementing the discussed modules that mined

data from mobile phones to provide a coherent understanding of the dynamics of

the interaction between the flows of people to a district and types of services (POIs)

that are located in that district. We detected three attraction patterns in the city

of Riyadh according to the morning mobility dynamics. Most interesting, the Global

attractors, which attract a large portion of the visiotrs traveling relatively high dis-

tances and coming from all over the city. These attractors have places of interest that

are the destination of large student bodies, factory workers, hospital associates, and

embassies. The second type of attraction behavior is that of the downtown area in

Riyadh, which attract high inflow of people but with moderate distance and spatial

dispersion due to its central location in the city that makes it accessible. The most

significant POI types located in the downtown attractors are business based places

like firms, and shopping and services places. The least significant attractors behavior

is that of the residential areas in the morning hours, where the amount of inflow is

very minimal. Residential areas attractors contain non-unique POIs that serve the

local people in the neighborhood like apartments, mosques, and schools.

The chapter then proposes a probabilistic modeling approach for predicting the flows

between regions in a city using phone calling data. The modeled GP estimates inflows

more accurately than a gravity model fitted on the city of Riyadh. The initial results

found in this report suggests that probabilistic models enabled by the abundance of

phone data could provide better decision tools for urban planners than existing mod-

els in the literature of transportation engineering. Such predictive models can help

decision makers estimate the inflow to a location prior to making decisions on the

functionality of a region or the residential population capacity.
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Chapter four proposes a Dynamic Bayesian Network for predicting human mobil-

ity using CDRs as a target case. The model utilizes information from similar strangers

that behave similarly in space and time but do not necessarily share a social link. We

include three ways to calculate closeness measures between individuals as a proxy to

finding similar strangers; the closeness measures depend on the spatial and tempo-

ral aspects of locations sequences. Coupling users with their most similar stranger

achieves a prediction accuracy of 60.03% compared to the addition of the whole social

contacts of a person that gives an accuracy of 55.42%. Our results show that humans

exhibit higher mobility randomness during the day compared to the night; the pro-

posed DBN- model performs better than the baseline during the later parts of the

day when human mobility exhibits more randomness and the coupling with similar

strangers proves to be more useful at those times.

The approach discussed here help predict and understand the mobility patterns of

humans at the individual scale. Achieving better prediction accuracy impacts de-

veloping recommender systems [9] and generate more accurate human mobility flow

models [57, 61]. City flow model are essential for planning the future of transporta-

tion in a city [61].

While we use CDRs as a proxy to traces of locations, we have shown here that without

sampling these sources are very sparse and aren't optimal to recover human mobil-

ity of the entire dataset. Furthermore, phone communication is also an imperfect

indicator of a social link, failing in some cases to indicate homophily or a type of re-

lation resembling social media connections. On the other hand, these datasets spans

over huge sample of the population worldwide. While data from GPS traces or other

technologies with higher resolutions become more ubiquitous, exploring methods to

enhance the usability of CDR data for technological applications deserves attention.
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