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In this work, we present methods to estimate average daily origin–destination trips from
triangulated mobile phone records of millions of anonymized users. These records are first
converted into clustered locations at which users engage in activities for an observed dura-
tion. These locations are inferred to be home, work, or other depending on observation fre-
quency, day of week, and time of day, and represent a user’s origins and destinations. Since
the arrival time and duration at these locations reflect the observed (based on phone usage)
rather than true arrival time and duration of a user, we probabilistically infer departure
time using survey data on trips in major US cities. Trips are then constructed for each user
between two consecutive observations in a day. These trips are multiplied by expansion
factors based on the population of a user’s home Census Tract and divided by the number
of days on which we observed the user, distilling average daily trips. Aggregating indi-
viduals’ daily trips by Census Tract pair, hour of the day, and trip purpose results in trip
matrices that form the basis for much of the analysis and modeling that inform transporta-
tion planning and investments. The applicability of the proposed methodology is supported
by validation against the temporal and spatial distributions of trips reported in local and
national surveys.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The ubiquity of cell phones, along with rapid advancement in mobile technology, has made them increasingly effective
sensors of our daily whereabouts (Lane et al., 2010). Call detail records (CDRs) from mobile phones contain time-stamped
coordinates of anonymized customers, thereby providing rich spatiotemporal information about human mobility patterns.
Since CDRs are automatically collected by cell phone carriers for billing purposes, this data can be gathered more frequently
and economically than travel survey data collected once (or twice) a decade for transportation planning purposes. Addition-
ally, mobile phone data offers digital footprints at a scale and resolution that may not be captured by surveys that typically
record one day of travel diaries per household.

Despite these advantages, mobile phone data lacks information typically available from travel surveys about a respondent
(e.g. age or income) or his/her trip (e.g. purpose or mode) (Richardson et al., 1995; Stopher and Greaves, 2007; Hu and
Reuscher, 2004). Furthermore, CDRs contain traces of a user at approximated locations when his/her phone communicates
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with a cell phone tower, providing an inexact and incomplete picture of daily trip-making. Accordingly, much research has
focused on developing methods to extract meaningful information about human mobility from mobile phone traces as well
as understanding its limitations.

It has been demonstrated that CDR data can be used to infer origin–destination (OD) trips using microsimulation and lim-
ited traffic count data (Iqbal et al., 2014). At the level of the individual, daily trip chains/trajectories constructed from mobile
phone data are consistent with household surveys (Jiang et al., 2013; Schneider et al., 2013). Further, road usage inferred
from the CDR data has been validated against GPS speed data (Wang et al., 2012) and highway assignment results from a
travel demand model (Huntsinger and Donnelly, 2014).

There is still work to be done to explore the usage of phone data to generate trip distributions of different modes, pur-
poses, and times of day. As a step in that direction, this research proposes a methodology to extract OD trips by purpose
and time of day from CDR data. This segmentation captures distinct trip-making patterns pertinent for transportation plan-
ning applications. Moreover, other than CDR data, the techniques presented in this paper rely only upon nationally-available
survey data to allow transferability of the methodology to other study areas in the US.

Extensive research has been conducted into OD estimation, as these trips provide the basis for transportation feasibility
and impact studies. Conventional OD estimation approaches rely on surveys and/or travel demand models to provide trip
matrices. Often, such trip matrices are calibrated or updated using traffic counts and estimation techniques such as maxi-
mum likelihood, generalized least squares, and optimization (Spiess, 1987; Cascetta, 1984; Bell, 1991; Yang et al., 1992). This
research provides a realistic, cost-effective alternative to these traditional OD data sources and estimation approaches. By
presenting a systematic and replicable procedure to extract data relevant to the transportation community, we hope this
work will help to facilitate the use of mobile phone data in practice.

In this paper, we demonstrate methods to analyze mobile phone records for the Boston metropolitan area. In Section 2,
we present an overview of the data and the methods developed to produce OD trips by purpose and time of day. In Section 3,
we summarize and validate our results against independent data sources for the study area, including the US Census and
household travel surveys. Based on these findings, we conclude with a discussion of the limitations and applications of
CDR data in the context of transportation planning and modeling.
2. Data and methods

2.1. CDR data

The studied dataset contains more than 8 billion anonymized mobile phone records (from several carriers) from roughly
2 million users in the Boston metropolitan area over a period of two months in the Spring of 2010. Although the CDR data
spans 60 days, the data provider reindexed the anonymous user IDs for most of the users after the 17th day of the dataset.
Effectively, we observe some users for at most 17 days, some users for at most 43 days, and still others for up to 60 days.

Each record contains an anonymous user ID, longitude, latitude, and timestamp at the instance of a phone call or other
types of phone communication (such as sending SMS, etc.). The coordinates of the records are estimated by service providers
based on a standard triangulation algorithm, with an accuracy of about 200–300 m. In typical mobile phone data sets, loca-
tions are represented by cell towers rather than triangulated coordinates and therefore have a lower spatial resolution; how-
ever, the method proposed here is expected to hold for such cases (Song et al., 2010a; Wang et al., 2012).
2.2. Stay extraction

The first step to reliably infer activities and trips from CDR data is to filter out noise resulting from (1) tower-to-tower call
balancing performed by the mobile service provider, creating the appearance of false movements, and (2) inexact signal tri-
angulation. Furthermore, we wish to distinguish users’ stationary stay locations (when/where users engage in an activity)
from their moving pass-by locations (when/where users are en-route to activities). To do so, we develop a method based
in the work of Hariharan and Toyama (2004) for processing GPS traces. The spatial and temporal filtering methods are dis-
cussed below and illustrated in Fig. 1.

Let sequence Di ¼ ðdið1Þ; dið2Þ; dið3Þ; . . . ; diðniÞÞ be the observed data for a given anonymous user i, where diðkÞ ¼ ðtðkÞ;
xðkÞ; yðkÞÞ0 for k ¼ 1; . . . ;ni, and tðkÞ; xðkÞ, and y(k) are the time, longitude, and latitude of the k-th observation of user i. First,
we extract points diðkÞ that are spatially close (i.e. within roaming distance of 300 m) to their subsequent observations, say,
diðkþ 1Þ; diðkþ 2Þ; . . . ; diðkþmÞ. To reduce the jumps in the location sequence of the mobile phone data, we assume that
diðkÞ; . . . ; diðkþmÞ are observed when user i is at a specific location, i.e., the medoid of the set of locations ðxiðkÞ; yiðkÞÞ

0
;

. . . ; ðxiðkþmÞ; yiðkþmÞÞ0, which is denoted by
MedððxiðkÞ; yiðkÞÞ
0
; . . . ; ðxiðkþmÞ; yiðkþmÞÞ0Þ:



Fig. 1. Extracting stay and pass-by areas from the phone data for an anonymous user in the 2-month period.
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This treatment respects the time order at first, to ignore noisy jumps in estimated location, but then disregards time
ordering to apply the agglomerative clustering algorithm (Hariharan and Toyama, 2004) to consolidate points that are close
in space but may be far apart in time. The points to be consolidated together form a cluster whose diameter is required
to be no more than a certain threshold (set as 500 m). Again we modify the observation locations to the corresponding
medoids of the clusters (see Fig. 1(a) and (b)).

Next, we impose the time duration criterion on the clean data, and extract the stay locations whose durations exceed a
certain threshold (set as 10 min). In the example presented in the figure we extract 31 distinct stay locations from the 1776
phone records in the two-month period of the exhibited anonymous user (see Fig. 1(c)). The rest of the points are called pass-
by points, at which we do not observe any lengthy stays. Note that it is possible that the user stays in some of these pass-by
locations as well as locations that we do not observe. In these cases, information about time and location is totally or par-
tially latent to us as we do not observe it from the phone records. However, all the stay locations frequently visited by the
user ought to be extracted from the mobile phone data, if the observation period is long enough. As such, the pass-bys are
filtered out and the stays are assumed to be trip origins or destinations, between which trips are made. Analysis of the pass-
by points is out of the scope of the present work, in which we focus on simple trip chains with origins and destinations
labeled as: home, work, or other.
2.3. Activity inference

Trips are induced by the need or desire to engage in activities (Pinjari and Bhat, 2011) and therefore understanding pat-
terns and types of activities is crucial in estimating travel demand. It has been demonstrated that human mobility patterns
are characterized by regularity with frequent returns to previously visited locations (Song et al., 2010b; Song et al., 2010a;
Hasan et al., 2013). Due to this predictability, we are able to reasonably infer stay activities for users’ most visited locations
(i.e. home and work).

Accordingly, our first task is to label the stay regions in order to assign trip purpose. For each user, the stay extraction
process detailed above results in a timestamp and duration for each observed visit to a stay location. For this study, we assign
an activity type of either home, work, or other to each users’ stay locations. Future research can expand the other designation
to activity types such as school, shopping, recreation and social, using land use information.

Each user’s home location is identified as the stay with the most visits on (i) weekends and (ii) weekdays between 7 pm
and 8 am, representing the time windows in which we expect users to spend substantial amounts of their time at home. In
addition to inferring trip purpose, the home stay location of each user is used to filter out users with too few data points and
expand the data from phone users to study area population, as summarized in Section 2.4.

A work location is identified as the stay (not previously labeled as home) to which the user travels the maximum total
distance from home, max(d⁄n), where n is the total number of visits to a given stay on weekdays between 8 am and 7 pm
and d is the distance between the latitude-longitude coordinates of the home stay and the given stay using plane approxima-
tion. This assumption is based on the rationale and historical evidence (Levinson and Kumar, 1994; Schafer, 2000) that for a
given frequency of visits, longer distance trips are more likely to be work trips than shorter distance trips, which are more
likely to be for non-work purposes (i.e. to the nearby grocery store).

If the user visits the identified work stay less than 8 times (n < 8; once a week, on average) or the distance is less than
0.5 km (d < 0.5), then the activity of the stay region is identified as other rather than work. In effect, not all users are assigned
a work stay, accounting for the fact that not all users commute to a job. Subsequently, all the remaining stay locations not
identified as home or work are designated as other. These classification assumptions serve to avoid falsely identifying a loca-
tion as work that is either not visited frequently enough or close enough to a user’s home that it could reflect signal noise
rather than a distinct location.
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We acknowledge that under these simple assumptions we may misidentify users’ true home and work locations and, by
extension, their trip purposes. However, based on comparisons with census data (presented below) this procedure give us
very good estimates of the distribution of home and work locations and home-work flows in our study region. Note that the-
se assumptions are related to the duration and spatial resolution of this dataset, and it may be necessary to adjust them for
applications of other datasets.
2.4. Data filtering and expansion

For users with too few stay locations, the CDR data may not fully represent their travel patterns. Accordingly, users with
fewer than 8 (one per week, on average) visits to designated home stays are filtered out. This filter serves the additional pur-
pose of ensuring with a reasonable degree of certainty that the designated stay is the user’s home, a key assumption in our
method of upscaling users to population. Note that this filtering process necessarily excludes visitors, for whom a home loca-
tion is not observed in the studied dataset. Future research could look at extracting visitor trips from CDR data using an
assumption other than home location to upscale these trips.

After this filtering, 335;795 users remain in the Boston CDR dataset. This sample size is an order of magnitude larger than
in most household travel surveys, and should increase given longer periods of observation. To upscale these users to total
population of the study region, the number of home stays were aggregated to the 974 Census Tracts in the study area. An
expansion factor was then calculated for each Tract as the ratio of the 2010 Census population and the number of residents
identified in the CDR data. For the 10 Census Tracts with fewer than 10 CDR residents, the scaling factor is set to 0 to ensure
that we do not overweight users that are not representative of a given Census Tract. The 1st, 2nd, and 3rd quartiles of the
expansion factors are 9.4, 14.2, and 25.1, respectively, as illustrated by the tight probability distribution of expansion factors
in Fig. 2a. The spatial distribution illustrated in Fig. 2b suggests that the Tracts in the western portion of the study area tend
to be more heavily weighted. CDR data for a period greater than 60 days would likely have lower expansion factors and an
improved spatial distribution of users, however, we show that already this limited data set gives reasonable results.
2.5. Trip estimation

With stays for each user designated by activity type and expansion factors to upscale users to population, average daily
origin–destination trips can be constructed by time of day and purpose—home-based work (HBW), home-based other (HBO),
and non-home based (NHB). This segmentation allows us to capture distinct trip-making patterns and is consistent with seg-
mentation in the trip distribution stage of trip-based travel demand models.

Since the timestamp and duration associated with each stay reflect the observed (based on phone usage) rather than true
arrival time and duration of a user, we infer trip departure time using probability density functions to account for this uncer-
tainty. The publicly-available 2009 National Household Travel Survey (NHTS) (U.S. Department of Transportation Federal
Highway Administration, 2011), filtered for respondents residing in a consolidated metropolitan statistical area (CMSA) or
MSA with populations greater than or equal to 3 million, is a reasonable source as it approximates temporal travel patterns
of major US cities comparable to Boston, while allowing for transferability of this methodology to other US cities. Using this
departure time data, we generate six hourly distributions for weekdays and weekends and the following trip purposes: HBW,
HBO, and NHB.

For each user, it is assumed that a trip is made between two consecutive stays (i; iþ 1) occurring within a 24 h period
beginning and ending at 3 am. The trip occurs at a point in time spanned by the range [si þ di; siþ1], where s is the observed
arrival time and d is the observed duration of a stay. The departure hour is randomly generated in this time window using the
NHTS distribution that corresponds to the day (weekday, weekend) and the trip purpose identified from the origin and des-
tination stay activities (HBW, HBO, NHB).

Furthermore, it is presumed that a user starts and ends each 24 h period at home such that if a user is not recorded at his/
her home stay for the first (last) record of the 24 h period, his/her first (last) trip begins (ends) at his/her home stay. The first
(last) trips are assumed to occur at point in time spanned by the range [3AM; siþ1] ([si þ di;3AM]), where s is the observed
arrival time and d is the observed duration of a stay. As before, the departure hour is randomly generated in this window
using the NHTS distribution that corresponds to the day (weekday, weekend) and the trip purpose based on the destination
(origin) stay activity (HBW, HBO).

Through this process, we construct trips on all days we observe each user. The frequency of weekday observations per
user is illustrated in Fig. 3. The distribution of total weekday trips per user is shown in Fig. 3a, with first, second, and third
quartiles of 33, 58, and 96 trips, respectively. The reindexing of anonymous user IDs mentioned previously in Section 2.1 is
evident in the two peaks of the distribution of the number of weekday days we observe each user, as seen in Fig. 3b. Despite
this reindexing, we achieve a sufficiently large number of observation days per person, with first, second, and third quartiles
of 11, 17, and 21 days, respectively. Dividing each user’s total weekday trips by his/her total weekday days, we get the dis-
tribution of average weekday trips shown in Fig. 3c. The distribution has a long tail, however, the first, second, and third
quartiles are 2.6, 3.2, and 4.3 average trips per weekday, respectively, demonstrating that the vast majority of users have
a reasonably small number of daily trips.



Fig. 2. (a) Probability distribution of Census Tract expansion factors. (b) Thematic map showing the spatial distribution of Census Tract expansion factors.

Fig. 3. Frequency of weekday observations per user. (a) Probability distribution of total weekday trips per user. (b) Probability distribution of total weekday
days per user. (c) Probability distribution of average weekday trips per user.

244 L. Alexander et al. / Transportation Research Part C 58 (2015) 240–250
In order to obtain average daily OD trips, each users trips are multiplied by the expansion factors described in Section 2.4
for the user’s home Census Tract and divided by the number of days from which we constructed the user’s trips. For users
assigned a work stay, weekday trips are only constructed on days in which the user is observed at his/her work stay to ensure
we capture representative weekdays of commuters. Unlike traditional travel surveys which ask a respondent details about
one or a few recent days, this method has the advantage of capturing many days per user and thus variations in his/her daily
travel behavior. Lastly, each user’s average daily trips are aggregated into Census Tract pair trip matrices by day type (week-
day, weekend), purpose (HBW, HBO, NHB), and hour of departure.
3. Results and validation

3.1. Productions and attractions

Accurately extracting and upscaling users’ stays is crucial to trip generation. Due to the regularity of human behavior
(Song et al., 2010a; Song et al., 2010b; Hasan et al., 2013), we are able to infer users’ home and (if applicable) work stay loca-
tions from CDR data. For this dataset, we find that we can reasonably represent the spatial distribution of home and work
locations when aggregated to the 164 study area cities and towns (MassGIS, 2014). Refer to Section 3.2 below for more infor-
mation on the impact of aggregation level on accuracy. Fig. 4a shows a comparison of home locations by town from 2010
Census data and the raw and upscaled CDR data.

As we would expect since Tract population was used to upscale the data, the number of residents in each town is
almost identical to that of the upscaled CDR data. However, the slope of a best-fit line through the raw CDR data is close
to 1, which speaks to the fact that the overall distribution of raw CDR users is fairly representative and a simple factoring



Fig. 4. (a) CDR residents vs. 2010 Census population by town before and after population expansion. (b) CDR vs. Census Transportation Planning Products
(CTPP) (U.S. Department of Transportation Federal Highway Administration, 2013) workers by town before and after population expansion.
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method is in fact appropriate to expand the phone users to population. Similarly, Fig. 4b shows a comparison of work loca-
tions aggregated by town. As with the raw CDR data on the home-end, the distribution of raw workplaces is fairly consis-
tent with the 2006–2010 Census Transportation Planning Products (CTPP) (U.S. Department of Transportation Federal
Highway Administration, 2013) data (slope approximately 1), and the upscaling method adjusts well for the difference
in magnitude. This strong correlation is noteworthy considering that each users’ home and work locations were scaled
based on their home location only.
3.2. Trip distribution

With the establishment of reasonable distributions of trip productions and attractions, we next validate the distribution
of trips using two local surveys. The 1991 Boston Household Travel Survey (BHTS) contains information on 39;300 trips
made by 3737 households (Boston Metropolitan Planning Organization, 1991), while the 2010/2011 Massachusetts Travel
Survey (MHTS) contains data on 153;099 trips made by 32;739 people (NUSTATS, 2012). We find that the CDR trips compare
well with trips from these data sources by time of day and purpose. Fig. 5 illustrates the distributions of hourly departure
times for (a) HBW, (b) HBO, (c) NHB, and (d) total average weekday trips. Note that we also benchmark against the NHTS
departure time distributions, which were used to infer departure time for the CDR trips. Accordingly, differences between
each of the hourly NHTS and CDR distributions reflect the observed arrival and duration times of CDR stays.

Most notably, there are consistently more CDR trips in the late night hours than that of the surveys. While this may be due
to a slight mismatch between the frequency of calling and trip-making throughout the day, it may also highlight an advan-
tage of CDR data to capture late night trips not typically reported in survey responses of an average day. Regardless, most
transportation planning applications focus on trips in the morning and evening peak periods, when congestion is most
prevalent, and for which we compare well. Similar trends are evident for average weekday trip shares segmented by key
time periods, as presented in Table 1.

Furthermore, the relative share of average weekday trips for each trip purpose is comparable for the CDR and survey data.
Table 1 shows that the shares of HBW, HBO, and NHB CDR trips are within the ranges of trip purpose shares across all three
surveys. This again suggests that our inferences of home, work, and other activities, as well as their relative prevalence in the
data set, seem reasonable.

To draw comparisons on the magnitude of daily CDR trips, we MHTS data, which includes weights to expand respondents
to population estimated from the 2006–2010 American Community Survey (NUSTATS, 2012). Table 2 shows a comparison of
average weekday trips by purpose and period of the day for the CDR trips and weighted MHTS trips. The survey reports more
daily trips than we observe in the CDR data, with most of the difference coming from the NHB trip segment. Still, the total
CDR and MHTS trips imply reasonable numbers of average weekday trips per person – 3.50 and 4.24, respectively.

Lastly, Table 2 presents a comparison of the spatial distribution of daily CDR and MHTS trips at the Tract-pair and town-
pair level. The correlation coefficients of the trip matrices improve significantly with aggregation to the 164 study area cities
and towns. In particular, the HBW and AM correlations at the Tract-pair level see the largest improvement. This may be
indicative of the role of the size of Tracts, which are considerably smaller in downtown Boston where many of the morning
commute trips end. We discuss the relationship between aggregation level and correlation in more detail in Section 3.3
below.



Fig. 5. Distribution of average weekday hourly departure time from CDR data, 1991 Boston Household Travel Survey (BHTS) (Boston Metropolitan Planning
Organization, 1991), the 2010/2011 Massachusetts Travel Survey (MHTS) (NUSTATS, 2012), and 2009 National Household Travel Survey (NHTS) (U.S.
Department of Transportation Federal Highway Administration, 2011) for (a) home-based work trips, (b) home-based other trips, (c) non-home based trips,
and (d) all trips.

Table 1
Average weekday trip shares by purpose and period from CDR data, 1991 Boston Household Travel Survey (BHTS) (Boston Metropolitan Planning Organization,
1991), the 2010/2011 Massachusetts Travel Survey (MHTS) (NUSTATS, 2012) and the 2009 National Household Travel Survey (NHTS) (U.S. Department of
Transportation Federal Highway Administration, 2011).

Source (%) HBW (%) HBO (%) NHB (%) Morning 6a–9a (%) Mid-day 9a–3p (%) Evening 3p–7p (%) Rest-of-day 7p–6a (%)

CDR 18 51 31 16 27 27 30
BHTS 20 48 32 18 32 33 17
MHTS 12 49 39 21 34 33 12
NHTS 14 55 30 19 37 31 13

Table 2
Average daily trips by purpose and period from CDR data and the 2010/2011 Massachusetts Travel Survey (MHTS) (NUSTATS, 2012), as well as the correlation
coefficients of CDR and MHTS Tract-pair and Town-pair trips.

HBW HBO NHB AM 6a–9a MD 9a–3p PM 3p–7p RD 7p–6a Total

CDR Trips (in millions) 2.81 7.84 4.73 2.46 4.12 4.15 4.65 15.37
MHTS Trips (in millions) 2.14 8.99 7.18 3.99 6.24 6.06 2.31 18.61
Tract-pair correlation 0.30 0.64 0.58 0.42 0.65 0.54 0.40 0.58
Town-pair correlation 0.96 0.97 0.98 0.97 0.98 0.97 0.96 0.98
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3.3. Home-work flows

Commuting trips represent a key travel market and source of daily roadway congestion, and accurately representing the-
se trips is an important step in validating trips estimated from CDR data. Accordingly, we next compare with flows between
people’s home and work locations, as reported by the 2006–2010 Census Transportation Planning Products (CTPP) (U.S.
Department of Transportation Federal Highway Administration, 2013). Distinct from the average daily HBW trips compared
in Section 3.2, these flows simply link home and work, ignoring that people’s daily trip chains may in fact include work trips
to/from locations other than home.

Table 3 summarizes statistics that support the comparison of CDR and CTPP home-work (HW) flows. In addition to the
total magnitude of trips, the similarities between the percentages of inter-tract and inter-town flows and average trip length
give a high-level indication that the distributions of HW flows are similar.

At the flow level, we find that the correlation between CDR and CTPP HW Tract-to-Tract and town-to-town flows is 0.45
and 0.99, respectively, indicating that the level of aggregation of trips has a significant impact on accuracy. We demonstrate
that as we gradually increase average aggregation size using variably-sized buffers around each origin and destination Tract



Table 3
Comparison of average weekday HW CDR and 2006–2010 CTPP (U.S. Department of Transportation Federal Highway Administration, 2013) flows.

Source Daily HBW trips (millions) Inter-Tract share (%) Inter-town share (%) Average trip length (miles)

CDR 2.11 94 68 9.67
Census 2.10 90 68 10.72

Fig. 6. (a) Probability density distributions of aggregation area size by designated areas (Tract or towns) and variable buffers. (b) Correlation between HBW
CDR and 2006–2010 CTPP (U.S. Department of Transportation Federal Highway Administration, 2013) flows corresponding to the aggregation levels in (a).

Fig. 7. (a) Intra-town and inter-town pair daily HW CDR flows and 2006–2010 CTPP (U.S. Department of Transportation Federal Highway Administration,
2013) flows. (b) Spatial distribution of daily inter-town HW CDR flows (>1000). (c) Spatial distribution of daily inter-town HW 2006–2010 CTPP (U.S.
Department of Transportation Federal Highway Administration, 2013) flows (>1000).
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(Fig. 6a), the correlation between CDR and CTPP HW trips increases as well (Fig. 6b). We find that using small aggregation
buffers has the most significant impacts on correlation, while having minimal influence on average aggregation size (as illus-
trated by the fact that the distribution for the 0.5 mile buffer obscures that of the Tract-level aggregation in Fig. 6b). In effect,
using a 0.5 mile buffer aggregates the small, dense Tracts (i.e. in the city center) and results in a notable improvement in
accuracy. In the absence of meaningful districts or communities to which to aggregate, this can inform suitable distance
thresholds for trip clustering to overcome limitations of sparse data and/or spatial inaccuracy.

We further investigate comparisons of the data sets using town-pairs flows. Fig. 7a shows the CDR and CTPP HW flows for
all of the intra-town and inter-town pairs, which have correlations of 0.99 and 0.95, respectively. It is evident from Fig. 7a
that town pairs with many trips validate better than those pairs with few trips, especially those with fewer than about 500
daily trips. This trend is likely due to sparsity in data for these smaller markets. Fig. 7b and c illustrate spatially the HW flow
distribution for key markets (inter-tract pairs with greater than 1000 daily trips) for the CDR and Census data, respectively.
Inspecting the figure, it is evident that the CDR data captures very similar patterns to that of the CTPP commuting data, with
the majority of flows directed in and out of Boston as well as a few shorter distance markets in the suburban towns.



Fig. 8. (a) Trip length distribution of daily HW CDR and 2006–2010 CTPP (U.S. Department of Transportation Federal Highway Administration, 2013) flows.
(b) Road segment volumes for daily HW CDR and 2006–2010 CTPP (U.S. Department of Transportation Federal Highway Administration, 2013) flows by free
flow speed.

Fig. 9. Road segment volumes of HBW trips (a) from CDR data in the Boston metro area and (c) downtown Boston, and (b) from 2006–2010 CTPP data (U.S.
Department of Transportation Federal Highway Administration, 2013) in the Boston metro area, and (d) downtown Boston. Flows are generated from Tract-
to-Tract ODs in TransCAD (Caliper, 2009) using all-or-nothing highway assignment minimizing travel time.
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Assigning the Tract-to-Tract trips to roads offers another valuable spatial comparison as it considers potential paths of OD
trips and has important implications for planning applications. Although it is not representative of a meaningful traffic sce-
nario, we assign all daily HW flows (irrespective of time of day or mode) to a road network for this comparison. Traffic
assignment also allows us to estimate and compare trip length distributions across the two datasets. Fig. 8a illustrates that
the trip length distributions are indeed very similar, consistent with our findings of comparable trip distributions.

Fig. 8b illustrates strong correlation between CDR and CTPP road segment volumes by free-flow speed, which serves as a
proxy for major and minor arterials. With correlations of 0.97, 0.98, and 0.95 for all segments with free flow speeds greater
than 45 MPH, between 30 and 45 MPH, and less than 30 MPH, respectively, it is evident that the roadway volumes estimated
from CDR and CTPP data are very similar, especially for major roads. The lower correlation on more minor road segments
follows the finding observed in Fig. 7a, in which Tract-pairs having few daily trips have the lowest correlation, since minor
roads typically serve these smaller markets. Spatially, Fig. 9 illustrates these correlations for the greater metropolitan area
and downtown. Although differences in road segment volumes are virtually indistinguishable visually (in Fig. 9), the CTTP
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commuting trips result in slightly higher road segment volumes on major roads experiencing the highest volumes (in
Fig. 8b).

Despite the lower correlations observed for Tract-pairs and road segments with lower flows and volumes, respectively,
these markets have minimal impact on the network as a whole. Further, surveys are susceptible to inaccurate sampling
and/or upscaling due to infrequency or scarcity of trips in these minor markets. Accordingly, the ground truth number of trips
for Tract-pairs with few trips is unknown and comparisons between survey and CDR trips reflect this uncertainty and noise.
4. Conclusions

In this paper, we detailed steps necessary to extract average daily origin–destination trips by purpose and time of day
from mobile phone call detail records (CDRs). The proposed techniques were applied to CDRs in the Boston metropolitan area
and validated against local and national surveys. The methods are transferable to other study areas and could be repro-
ducible by researchers and practitioners using mobile phone and census data.

Emphasizing the importance of data preprocessing, much of the methods serve to filter out noise and extract accurate
travel patterns representative of the study area. While this processing reduces the immensity of the CDR data, we are left
with a sample size that is an order of magnitude larger than most household travel surveys. Further, we observe many days
per user, allowing us to capture variation in daily behavior, including weekends, not typically reported household travel
surveys.

We find that the size of the areas used to aggregate trips is a very important factor in how well the CDR and survey data
compare. We observe significantly higher trip correlation when aggregating origins and destinations to 164 cities and towns
rather than the 974 Census Tracts in the study area. This improvement in accuracy is seemingly an effect of aggregating small
Census Tracts (i.e. in the city center), for which CDR data may not have a sufficiently-large sample size or the necessary spa-
tial accuracy. In general, aggregating trip origins and destinations to areas greater than 1 square mile produces agreement
with survey data. As mobile phone providers collect more dense data such as GPS traces or wifi access points, spatial and
temporal data sparsity will decrease, and accordingly, aggregation size can decrease relative to a given level of precision.
Although we can reasonably represent average daily activity and trip patterns with CDRs, data limitations preclude its
use in applications requiring richer data such as real-time, dynamic OD estimation.

Aggregating to towns results in similar distributions of upscaled home and work locations inferred from the CDR data and
the home- and workplace-based tabulations from the 2006–2010 US Census Transportation Planning Package (CTPP) (U.S.
Department of Transportation Federal Highway Administration, 2013). Additionally, our inferred distributions of trips by
hour of the day and purpose are comparable with the 1991 Boston Household Travel Survey (Boston Metropolitan
Planning Organization, 1991), 2010/2011 Massachusetts Travel Survey (NUSTATS, 2012), and the 2009 National Household
Travel Survey (U.S. Department of Transportation Federal Highway Administration, 2011) (filtered for trips in MSAs and CSAs
with populations greater than 3 million). Finally, the spatial distribution of home-work flows is highly correlated with that of
the CTPP, a well-established nation-wide source for Tract-to-Tract commuting data.

In validating OD trips by purpose and time of day, we demonstrate that CDR data can be effectively used to represent
distinct mobility patterns across market segments typically relevant to transportation planning applications. In particular,
CDR data can be used to augment or complement traditional survey data, which provides detailed information about a
respondent and his/her trip but is more costly and onerous to collect. Transportation models rely heavily on survey data
for inputs, calibration, and validation, and CDR data can be a valuable new resource. Furthermore, the outputs of our pro-
posed methodology are analogous to the outputs of the trip generation and distribution steps of traditional four-step travel
demand models. In areas where public transportation is significant, OD matrices developed from CDRs can be post-processed
to obtain mode-specific trip tables, equivalent to the mode split step. As such, CDR data can be very useful for planning appli-
cations and/or study areas where running such a model is either not feasible or not necessary.

In addition to average daily origin–destination trips, mobile phone data captures individuals’ daily trip chains and is
therefore well-suited for activity-based models, especially if land use information can be used to infer activity types beyond
home, work, and other. Future steps for analyzing this data include traffic assignment of vehicle trips inferred from CDRs by
time of day, allowing us to explore how these data sets help to improve existing urban trip models and applications related
to mitigating congestion.
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Well-established fine-scale urban mobility models today depend on
detailed but cumbersome and expensive travel surveys for their
calibration. Not much is known, however, about the set of mecha-
nisms needed to generate complete mobility profiles if only using
passive datasets with mostly sparse traces of individuals. In this
study, we present a mechanistic modeling framework (TimeGeo)
that effectively generates urban mobility patterns with resolution
of 10 min and hundreds of meters. It ties together the inference of
home and work activity locations from data, with the modeling of
flexible activities (e.g., other) in space and time. The temporal choices
are captured by only three features: the weekly home-based tour
number, the dwell rate, and the burst rate. These combined generate
for each individual: (i) stay duration of activities, (ii) number of vis-
ited locations per day, and (iii) daily mobility networks. These pa-
rameters capture how an individual deviates from the circadian
rhythm of the population, and generate the wide spectrum of em-
pirically observed mobility behaviors. The spatial choices of visited
locations are modeled by a rank-based exploration and preferential
return (r-EPR) mechanism that incorporates space in the EPR model.
Finally, we show that a hierarchical multiplicative cascade method
can measure the interaction between land use and generation of
trips. In this way, urban structure is directly related to the observed
distance of travels. This framework allows us to fully embrace the
massive amount of individual data generated by information and
communication technologies (ICTs) worldwide to comprehensively
model urban mobility without travel surveys.

human mobility | urban model | mobile phone data | networks |
urban planning

Our ability to correctly model urban daily activities for traffic
control, energy consumption, and urban planning (1, 2) has

critical impacts on people’s quality of life and the everyday func-
tioning of our cities. To inform policy making of important pro-
jects such as planning a new metro line and managing the traffic
demand during big events, or to prepare for emergencies, we need
reliable models of urban travel demand. These are models with
high resolution that simulate individual mobility for an entire re-
gion (3, 4). Traditionally, inputs for such models are based on
census and household travel surveys. These surveys collect in-
formation about individuals (socioeconomic, demographic, etc.),
their household (size, structure, relationships), and their journeys
on a given day. Nonetheless, the high costs of gathering the sur-
veys put severe limits on their sample sizes and frequencies. In
most cases, they capture only 1% of the urban household pop-
ulation once in a decade with information of only one or few days
per individual. The low sampling rate has made it very costly to
infer choices of the entire urban population (3, 5–7).
More recent studies try to learn about human behavior in cities

by using data collected from location-aware technologies, instead
of manual surveys, to infer the preferences in travel decisions that
are needed to calibrate existing choice modeling frameworks (8–
10). The problem, however, is that the geotagged data available
from communication technologies, in the massive and low-cost
form, cannot inform us about the detailed activity choices of their

users, making most of the data useless for meaningful urban-scale
mobility models. To make the best use of the massive and passive
data, a fundamental paradigm shift is needed to model urban mo-
bility and enhance new opportunities emerging through urban com-
puting (11). This is our goal with TimeGeo, a modeling framework
that extracts individual features and key mechanisms needed to ef-
fectively generate complete urban mobility profiles from the sparse
and incomplete information available in telecommunication activities.
Mobile phones are the prevalent communication tools of the

21st century, with the worldwide coverage up to 96% of the pop-
ulation (12). The call detailed records (CDRs), managed by mobile
phone service providers for billing purposes, contain information in
the form of geolocated traces of users across the globe. Mobile
phone data have been useful so far to improve our knowledge on
human mobility at an unprecedented scale, informing us about the
frequency and the number of visited locations over long-term ob-
servations (13–18), daily mobility networks of individuals (15, 19),
and the distribution of trip distances (13, 15, 17, 20–22). Due to the
sparse nature of mobile phone use, these data sources have sam-
pling biases and do not provide complete journeys in space and
time for each individual (9). Nonetheless, it has been possible to
extract and characterize from phone data where each individual
may stay or pass by, and then infer the types of activities that they
engage in at various urban locations depending on the time of their
visits (23). By labeling visited location types for individual users as
home, work, or other, representative traffic origin–destination
(OD) matrices for an average day and by time of day can be
generated (24, 25). They are aggregated estimates of person-trips
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between pairs of ODs within few hours, and these results have
been successfully validated in various cities against existing travel
demand models that required expensive surveys for calibration
(24, 25).
A fundamental question still remains on how to perform a

spatiotemporal mapping of raw mobile phone data to establish
models of travel demand with high spatiotemporal resolution,
through which individuals’ disaggregated daily journeys can be
generated. In the current literature that analyzes sparse geotagged
data, the daily temporal behavior of human mobility is either not
modeled or oversimplified (13, 16). For example, previous studies
on human dynamics do not explicitly model individual temporal
choices, but randomly draw parameters such as waiting time or the
number of activities in each active period from aggregated distri-
butions measured from data (14, 15). The model in ref. 19 in-
troduces time dependency in travel and tendency to arrange short
out-of-home activities in consecutive sequences (i.e., bursts of
activities) (26–30), but the stay duration at flexible (other) loca-
tions is fixed. Furthermore, it does not incorporate spatial choices
or the heterogeneity of individual behavior.
To realistically model individual mobility in cities at both

micro- and macrolevel, it is necessary to understand the essential

features of a population distribution in space at different times.
Here we show that these features can be extracted from big data
sources. Instead of using social-demographic information to cali-
brate the set of detailed decisions involved in activity choices—as
required by mainstream transportation modeling approaches––
the framework consists of directly measurable parameters dis-
covered from passive data. It represents a needed paradigm shift
to model individual daily trajectories in cities, adapted to ubiq-
uitously available sparse digital traces of individuals. The results
are high-resolution travel diaries for a large sample of users
based on their information and communication technology
(ICT) data in the urban context. The presented set of parameters
can be further refined as more information becomes available at
the individual level.

Activity Extraction from Mobile Phone Data
To demonstrate the mechanistic modeling framework, we ana-
lyze a CDR data set of 1.92 million anonymous mobile phone
users for a period of 6 wk in 2010 in the Greater Boston area. To
have a control experiment, we also examine a donated set of self-
collected mobile phone traces of a graduate student in the same
region over a course of 14 mo in 2013 and 2014, recorded by a

Fig. 1. Extraction of stays and daily journeys from raw cell phone data. (A–C) Stay locations extracted from the self-collected cell phone records of a student
in three sample days. (D–F) Illustration of trips between consecutive stays in each day. (G–I) Visitation frequency of all locations, counting from the first day of
the observation period to the current day. For this individual, home and work stays dominate all visits. Highlighted arrows mark the trips on that day. The
time bar above each subfigure is color-coded by activity type based on each stay’s duration. (J–L) Illustration of the rank-based EPR model. To illustrate
different cases we use the individual’s home, work, and one other location as trip origins. The potential trip destinations are color-coded by different chosen
probabilities based on their rank. The closer a location is to the origin, the higher the probability it has to be chosen. The height of the dots represents the
density of destinations in the surrounding region. The most dense place for other type of activities is in downtown Boston.
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smartphone application. When an individual anchors at a loca-
tion to conduct an activity, it is defined as a stay. We apply the
stay extraction method discussed in the literature (23) to both
data sets. We filter out signal jumps as well as pass-by records
when mobile phone users were traveling. For each user, based on
the start time and frequency of visits to each stay location, we
infer the stay location type as home (H), work (W), or other (O).
We are able to identify home locations for 1.44 million users,

which is 75% of our initial user base. Next, we filter users who
have more than 50 total stays and at least 10 home stays in the
observation period. These are identified as active users and are
used to extract the various parameters of TimeGeo (as explained
in detail in the next sections). These active users can be labeled
as commuters (133,448 individuals) who have journey-to-work
trips, and noncommuters (43,606 individuals) who have no
journey-to-work trips.
Fig. 1 illustrates the pipeline of extracting stays, labeling ac-

tivity types, and deriving individual mobility features from raw
mobile phone data for each of three demonstrated days. Fig. 1
A–C shows the raw cell phone records (in blue for 14 mo, and in
purple for each day), and the extracted stay locations of the in-
dividual (in red). Fig. 1 D–F shows that for active users the
extracted stays in each day define a daily journey (usually starting
and ending at home). A trip is made when a user changes stay
locations. The time bar shows the start time and duration for
each stay, and activity types are color-coded.

Generating Mechanisms of Individual Mobility
The modeling framework of TimeGeo is presented in Fig. 2A. It
integrates the temporal and spatial choice mechanisms of human
mobility. We assume that for an individual agent, her work activity
has a fixed location, start time, and duration; her home activity is
fixed in terms of location but flexible with start time and duration;
her other activity is flexible with regard to location, start time, and
duration. The presented framework aims to model the flexible
spatial and temporal mobility choices, whereas the schedule of the
fixed activity (i.e., work) is assumed as predetermined (see SI
Appendix, section 2 for details). We divide each day of a week into
144 discrete intervals of 10 min (i.e., 1,008 time intervals in a

week). For each time interval t within a week, an individual first
decides to stay or move. If she chooses to move, she then decides
where to go. We improve from previous human mobility models
(14, 19) by generating spatiotemporal patterns while introducing
individual-specific mobility parameters, namely: a weekly home-
based tour number, a dwell rate, and a burst rate (explicitly de-
fined later). These parameters capture the heterogeneity of indi-
vidual daily mobility observed in the passive digital traces.
Nevertheless, due to the limited observation period of the CDR
data used in this study, some parameters cannot be extracted at
the individual level. These global parameters measure the pref-
erential return and exploration rates, and the rank selection
probability. As large-scale data with higher frequency (e.g., GPS
traces) and longer observation periods (e.g., many months) be-
come available, these global parameters could be measured at the
individual level as well.

Temporal Choices. To uncover the key generating mechanisms
needed to reproduce individual daily trajectories, we propose a
time-inhomogeneous Markov chain model with three individual-
specific parameters—weekly home-based tour number (nw), dwell
rate (β1), and burst rate (β2)—to capture individual circadian
propensity to travel (16, 19, 31) and likelihood of arranging short
activities in consecutive sequences (26–30). As work activity is as-
sumed to have fixed start time and duration, we consider two
Markov states: home and other. Home is considered as a less-ac-
tive state, because the average stay duration at home is significantly
longer than that at other states where people are more active (i.e.,
likely to travel).
When an individual l is at home, her individual travel circadian

rhythm is defined as nwPðtÞ, representing her likelihood of making
a trip originated from home in a time-interval t of a week. The
weekly home-based tour number nw counts the total number of
trips that an individual l initiated from home to other places. PðtÞ is
the global travel circadian rhythm of the population in an average
week. We differentiate PðtÞ for commuters and noncommuters (SI
Appendix, section 3.1). For noncommuters, PðtÞ is measured as
the fraction of all user-trips in the time interval t of the week for the
population (i.e.,

P1,008
t=1 PðtÞ= 1, t= 1,2, . . . , 1,008), capturing the
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(D) Empirical probability to visit a new location Pnew as a function of distinct visited locations S; it follows Pnew = 0.6S−0.21. (E) Empirical probability of choosing
the rank k location as a trip destination follows PðkÞ∼ k−0.86.
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expected variation of travel in different time of the week (shown in
Fig. 2B). For commuters, because work is modeled as a fixed ac-
tivity, PðtÞ does not include trips to or from work. The product of
the two, nwPðtÞ, less than 1, defines the individual travel probability
at a specific time interval ðtÞ while she is at home.
To model an individual’s propensity to travel from an other

(out-of-home) state, we introduce a dwell rate β1 which measures
how much more active (or likely to travel) the person is at an
other state compared with home. The probability of traveling
when an individual is at an other state is defined as β1nwPðtÞ. By
capturing individual propensity to move from an other state,
β1nw controls the stay duration Δt for flexible activities. The
higher the product β1nw, the more likely the person will choose
to move and thus the shorter duration Δt she will stay at
other locations.
Next, if an individual is already out of home and chooses to

move at time t, we then model her decision to either go home or
go to an additional other location by introducing a burst rate β2.
We define the probability that the individual travels from an
other location O1 to an additional other location O2 as
PðO1 →O2Þ= β2nwPðtÞβ1nwPðtÞ. It is assumed that for an indi-
vidual who has decided to move, the probability of visiting an
additional other location is proportional to β2nw. The ratio be-
tween the two choices of going to an additional other location or
going home can be presented as follows:

PðO1 →O2Þ
PðO1 →HÞ =

β2nwPðtÞ
1− β2nwPðtÞ

. [1]

For a given value of β2nw, when PðtÞ is high (e.g., in the after-
noon), people are more likely to visit additional other locations;
when PðtÞ is low, people are more likely to return home. For a
given PðtÞ, the higher the value of β2nw, the higher probability the
individual will keep visiting flexible (other) locations, and thus
the greater number of daily locations N she will visit.
Compared with previous models that randomly draw the stay

duration (or waiting time Δt) or the number of visited locations
(N) from aggregated empirical distributions (14, 15, 29), by in-
troducing three individual-specific parameters including weekly
home-based tour number nw, dwell rate β1, and burst rate β2, we
explicitly model the temporal dynamics of individual mobility.
The Markov model framework allows it to be analytically trac-
table and to derive explicit effects in the resulting stay-duration
and daily-location distributions PðΔtÞ and PðNÞ (SI Appendix,
section 6).

Spatial Choices. To model the spatial choices of individual mo-
bility, we propose a rank-based exploration and preferential
return (r-EPR) model by incorporating a rank-based selection of
new locations to the original EPR model (14). The EPR model
explains well the differences in the frequency of visits of each
location (13–18, 32). For each movement, an individual decides
either to explore a new location with probability Pnew, or return
to a previously visited location with probability 1−Pnew. The
exploration probability Pnew = ρS−γ captures a decreasing pro-
pensity to visit new locations as the number of previously visited
locations (S) increases with time, and effectively captures indi-
vidual mobility choices between explorations and returns. If the
individual decides to return to previously visited locations, she
chooses a specific location i with probability Pi defined as the
visitation frequency of location i (14). Fig. 1 G–I illustrates Pi
with different circle sizes, using the volunteered student’s loca-
tion records as an example. In each subfigure, we label the vis-
itation frequency of each location up to the current day. We
highlight locations visited in the current day in the foreground
and show the previously visited ones in the background.

If the individual decides to explore a new location, she needs
to choose a destination from a large number of possible alter-
natives. One limitation of the original EPR model proposed in
ref. 14 is its lack of a mechanism for the new-location selection.
To select a new location, the original EPR model randomly
draws the exploration jump-size (Δr) from a global empirical
distribution. To model the exploration mechanism more sensi-
ble to the urban structure, in this study, we incorporate a rank-
based selection mechanism for newly explored locations (i.e.,
r-EPR model).
Our selection mechanism gives a rank k to each alternative

destination based on their distances to the trip origin (33–36).
Among all potential new destinations, the one closest to the
current location is of k = 1, the second closest k = 2, etc. The
empirical probability of selecting the kth location as a destination
is quantified as PðkÞ∼ k−α; the same form has been measured in
various studies that analyze aggregated trips between locations
for both commuting and noncommuting trips (33–36). For an
individual to select an exploration destination, we measure PðkÞ
aggregating all users’ destinations. Fig. 1 J–L illustrates proba-
bilities of selecting different destinations (with higher ranks in
red and lower ranks in blue). Each dot represents a location for
an other activity extracted from the CDR data. The height of the
dot on the z axis represents the dot density at the location.
Because the observation period of the empirical data in this

study is 6 wk, most users have a limited number of exploration
trips, making it difficult to estimate the spatial parameters of
PðkÞ at the individual level. Given more abundant data, this
distribution could be estimated at the individual level as well.

Role of Land Use on Travel Distance
Different spatial patterns of cities imply different geographical
advantages to urban functioning (37). TimeGeo takes the spatial
distribution of locations (e.g., observed from the CDR data) as
an input. To explain and quantify the influence of land use on
travel, we propose a hierarchical multiplicative cascade frame-
work of analysis. It allows scenario tests on how changes in land-
use patterns will affect individual travel. It can generate different
scenarios of urban structure (i.e., spatial distribution of home
and other activities).
Fig. 3 A–D shows the distribution of different types of loca-

tions (home and other) extracted from the mobile phone data set
at two scales: At a scale with larger grids, home and other lo-
cations are mixed spatially, showing high spatial correlations. At
a scale with smaller grids, the separation between home and
other types of land use becomes clear (35). The intuition behind
this phenomenon is that at a scale with smaller grids (e.g., similar
to the census block level), land use is often separated—meaning
that residential land use is separated from nonresidential one,
whereas at a scale with larger grids (e.g., at the district, town, or
regional level), residential and nonresidential land uses mix to-
gether. A hierarchical multiplicative cascade divides an area of
interest into grids with different granularity and quantifies the
spatial correlation of each type of land use at different scales.
The current framework integrates the two features that in-

fluence the spatial choices of exploration to other locations.
These are (i) the spatial distribution of activity locations, and (ii)
the rank-based location-selection mechanism (illustrated in Fig.
1 J–L). By characterizing the spatial distributions of population
and facilities at various scales, here we formalize how these two
features influence the observed trip–distance distribution.
To quantitatively represent home to other (H −O) trip dis-

tance, we denote home locations as the demand side D, and
other locations as the supply side S. The entire region of interest
is Ω0 (taken as a unit square, shown in Fig. 3E). We progressively
partition Ω0 into 41, 42,. . ., 4n square tiles with side length
2−1, 2−2, . . . , 2−n. Each time a mother tile Ωi−1 (at resolution level
i− 1) is partitioned into four daughter tiles Ωi (at resolution level
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i). Then, the probability that a trip goes outside its origin tile at
resolution level i, P>ðiÞ, can be expressed as

P>ðiÞ=
Z M

1
P>ðkÞfSi,tripðkÞdk, [2]

where M is the total number of supplies in the entire region Ω0;
P>ðkÞ is the probability that the k supplies in the origin tile are not
chosen; fSi,tripðkÞ is the probability of finding k supplies within the
origin tile. The tile exceeding probability P>ðiÞ at different tile
resolutions generates the resulting distribution of trip distances.
Eq. 2 ties together the rank-based selection mechanism P>ðkÞ
and the geographic distribution of locations fSi,trip ðkÞ, which can
be calculated as

fSi,tripðkÞ=
Z Q

0
fDi,tripðDÞfSi jDi=DðkÞdD, [3]

where fDi,tripðDÞ is the conditional probability that a trip originates
in a tile at level i given D demands are in that tile. fSijDi is the
conditional probability of supply given demand. Q is the num-
ber of demand in the entire study area. In summary, to quan-
tify trip distance through P>ðiÞ, we not only need the
distribution of each type (home and other) of location, but
also the correlation between them at different scales. The de-
tailed introduction to the cascade method of analysis can be
found in ref. 38 and in Materials and Methods; the derivation of
the resulting trip distance distribution is presented in SI Ap-
pendix, section 5.

Results
Extracted Mobility Features from Mobile Phone Data. In this section
we show the results for noncommuters. For each individual, the
weekly home-based tour number nw is directly extracted from the

data, whereas the β1 and β2 parameters are calibrated using the
temporal Markov model. The rest of the parameters needed are
α= 0.86 for the rank selection probability PðkÞ∼ k−α, and ρ= 0.6
and γ = 0.21 for the preferential return mechanism Pnew = ρS−γ.
These three parameters are extracted from the aggregated data of
the entire population (Fig. 2 D and E).
The individual values of β1 and β2 values are obtained by

calibrating the Markov model to minimize the following statistic:

Aðβ1, β2Þ=
Z

jPDðΔtÞ−PMðΔtjβ1, β2ÞjdΔt+ ηjND −NMðβ1, β2Þj,

[4]

where PDðΔtÞ and PMðΔtjβ1, β2Þ are the distributions of the indi-
vidual empirical and modeled stay duration, respectively. Scalar
values ND and NMðβ1, β2Þ are the average daily number of vis-
ited locations measured from the individual’s empirical data
and from the model simulation, respectively. The difference
between ND and nw is that ND counts all trips whereas nw only
counts trips starting at home. Metaparameter η= 0.035 con-
trols the weight between the two components. Because Aðβ1, β2Þ
is a nonconvex function, discrete β1 and β2 values are used
(β1 = 1,2,3, . . . , 20, β2 = 1,6,11, . . . , 101) to estimate the (β1, β2)
pair that minimizes Aðβ1, β2Þ for each person. The empirical re-
sults of nwβ1, nwβ2, and nw for all of the individuals are presented
in Fig. 2C. The median values of nw, nwβ1, and nwβ2 for noncom-
muters are 7.4, 34.2, and 355.6, respectively. Median dwell rate
β1 = 4.6, suggesting that when people are not at home, they are on
average 4.6 times more likely to travel.

Simulated Mobility Features. Taking the featured parameters mea-
sured directly from active users of the mobile phone data set,
TimeGeo can generate realistic individual daily trajectories over a
long time period at the urban scale.

Fig. 3. Multiplicative cascade analysis framework. (A and B) The distribution of home locations in the Boston area at two different resolutions. (C and D) The
distribution of other locations at two different resolutions. The variance of both distributions and their correlations depend on the resolution of the grids, or
the cascade level i. At the scale with larger grid cells, the number of nonresidential (other) locations has higher correlation with the distribution of home
locations, whereas at the scale with smaller grid cells separation between residential and other land-use types are observed. (E) Illustration of the hierarchical
cascade process generating trip demand D. Each tile is repetitively divided into four smaller tiles. The density of locations in each tile is controlled by the
cascade generatorW at each tile level. (F) P>ðiÞ is the probability of an exploration trip going outside their origin tiles at level i at eight tile levels with tile side
length from 24 km to 187 m (the entire Boston Metro area, larger than the area shown in the maps, is set as a 48-km square). Results show the calculation with
the multiplicative cascade framework, in the simulation and measured by the mobile phone data.
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We first use the student volunteer’s 14-mo mobile phone re-
cords as an example to explain the simulation and interpret the
results of TimeGeo. We fix the locations of home and work (in
this case school is identified as work) and apply the proposed
modeling framework to simulate the spatiotemporal choices of
flexible other activities and temporal choices of home activities.
For the student, we computed that his dwell rate β1 = 4, burst
rate β2 = 36, and weekly home-based tour number nw = 7. His
burst rate is lower than the population average, reflecting smaller
likelihood to conduct consecutive short activities. Fig. 4 A–C
shows three simulated days for the student. The days are pre-
dominated by home–work trips, with a few trips to other loca-
tions. The model is able to capture not only the number of
locations visited each day, but also more detailed configuration
of daily trip chains. Fig. 4D shows the distribution of the most
frequent daily mobility networks, i.e., daily motifs, of the student.
We represent unique locations as nodes and trips between lo-
cations as edges and count the motif distribution for days start
and end at home. The dominating motif is traveling just between
two locations in a day. To show the infrequent motifs clearer, we
present the percentage in log scale.
A key value of TimeGeo is to use ICT records to generate

individual trajectories from discovered mobility features at the
urban scale. In Fig. 4 E–H, we illustrate a user with very sparse
data. She only had four distinct locations in 30 d and we simulate
her complete daily trajectories in space and time. We select two
different sets of β1, β2, and nw from the joint distribution shown
in Fig. 2C to generate two synthetic realizations of the user.
Fig. 4 F and G shows the two resulting profiles of simulated
journeys of the same sparse user and Fig. 4H shows the distinct
motif distributions.

The importance of the individual features extracted from data
(Fig. 2C) lies in their ability to capture diverse travel behaviors
observed in the population. Fig. 5 A and B compares mobility
patterns for different individual profiles. The individual 1 and 2
represent two extreme cases: one travels more frequently (shown
in squares, nw = 10.86, β1 = 6, β2 = 41) and the other travels less
frequently (shown in circles, nw = 5.51, β1 = 1, β2 = 36). As a
comparison we also present the average case—a simulation using
median values of the parameters nw, β1, and β2. Fig. 5 A and B
shows that these three individuals have distinct PðΔtÞ and PðNÞ
distributions. The less-frequent traveler has significantly longer
stay duration and visits fewer locations per day. To quantify the
differences between empirical distributions of data and the
model simulation, we use the Kolmogorov–Smirnov (KS) test.
The KS statistic between empirical and simulated PðΔtÞ for the
two extreme individuals is 0.12 and 0.11, respectively. If we
compare their empirical data with the average case, the KS
statistic increases to 0.25 and 0.20, respectively. Similarly, for
these two individuals, the KS statistic for PðNÞ is 0.05 and 0.12.
When comparing with the average case, the KS statistic increases
to 0.40 and 0.50, respectively. It confirms the importance of
including individual-specific parameters to model temporal
choices. With data of high frequency and longer observation
period available in future studies, machine learning methods
can be applied to better learn from choices at individual level
when choosing return trips for improvement of our proposed
modeling framework.
Fig. 5 C–F compares aggregated mobility features extracted

from data and simulation for all of the active noncommuters.
These results show that to reproduce individual mobility patterns
realistically, it is critical to incorporate each of the mechanisms

Fig. 4. Simulation of daily trajectories of one active commuter and one sparse user. (A–C) Simulated trajectories of the student with self-collected cell phone
records. Three sample days are shown here. The trips for each sample day are in purple, and the visitation frequency of each location is calculated until the
sample day and represented by the circle sizes. (D) Distributions of daily mobility motifs for the active commuter’s data vs. simulation. The model captures well
the higher propensity of motifs with node sizes 2 and 3 as well as some other occurrences. (E) A sample sparse user with 10 stays at 4 distinct locations in an
observation period of 30 d. (F and G) Two different realizations for simulating the same sparse user with different parameter values. The first realization uses
nw = 6, β1 = 4, β2 = 23. The second realization uses nw = 6, β1 = 10, β2 = 73. Larger values of β1 and β2 generate more consecutive out-of-home activities and
more daily visited locations. (H) Distributions of daily mobility motifs for the two realizations of the same sparse user using different parameter values. With
small nw, β1nw, and β2nw values the person is likely to have simple motifs, whereas large parameter values lead to more complex daily activity chains.
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proposed in the current modeling framework, namely, the weekly
home-based tour number, dwell rate, burst rate, and the rank-
based EPR, over the land-use profile of the city under consid-
eration. The results on the aggregated daily mobility motif dis-
tribution are presented in SI Appendix, section 4.2. For the dwell
rate (β1), if β1 = 1, i.e., the model does not differentiate the
mobility circadian rhythms of home or other activities. The
resulting PðΔtÞ distribution will underestimate trips with short
duration, and the KS statistic increases from 0.04 to 0.27. For the
PðNÞ distribution, the KS statistic for the model with and without
the burst rate β2 is 0.03 and 0.22, respectively. The bursts of
flexible activities, captured by the dwell and burst rates β1 and β2,
ensure realistic distributions of the stay duration PðΔtÞ and the
number of daily visited locations PðNÞ. The improved rank-based
EPR mechanism models the selection of locations. It improves
the KS statistic of the trip distance distribution from 0.52 to 0.39.
The visitation frequency to the Lth most visited location follows
f ðLÞ∼L−1.2±0.1. In Fig. 3 D, P>ðiÞmeasures the probability that a
generic exploration trip goes outside its origin tile at resolution
level i. At the largest four tile sizes (24, 12, 6, and 3 km), the
cascade is a pure log-normal cascade, P>ðiÞ can be analytically
calculated, and the result compares very well with the data. The
empirical data, simulation, and analytical calculation all show
that 10% of the trips cross the tile with a size of 24 km, and over
60% cross the tile with a size of 3 km.
Taken together, we now use the extracted features from active

mobile phone users with the presented modeling framework
to estimate the daily mobility for the entire metropolitan area.
To do so, we expand the users (commuters and noncommuters)
to the population (aged 16 and over), and generate 1-weekday
mobility trajectories using TimeGeo for the population (see SI
Appendix, section 4.3 for more details). In the Fig. 5 (Bottom), we
compare our simulated daily mobility patterns for the population
in Metro Boston (3.54 million individuals aged 16 and over) with

traditional travel survey data, including the 2010–2011 Mas-
sachusetts Travel Survey (MTS) and the 2009 National Household
Travel Survey (NHTS). When comparing the simulation results
with the MTS and NHTS, respectively, the KS statistic for PðΔtÞ is
0.23 and 0.59 (Fig. 5G). Note that these stay duration distributions
are significantly different among the surveys and our simulation. It
is mainly because in the 1-d surveys people rarely report duration
of stays longer than 12 h, whereas the active mobile phone users’
data records informed our simulation. This range of stays can add
up to 20% of the data, as seen in the cumulative distribution of
Fig. 5A. Besides, the distribution of the daily visited locations PðNÞ
compares well among the simulation and the surveys, as presented
in Fig. 5H, with the KS statistic of 0.07 and 0.23, respectively. For
PðΔrÞ, comparing the simulation with the MTS, the KS statistic is
0.24 (Fig. 5I). Here the model, which does not consider trip dis-
tances in the selection of return locations, overestimates long
distance trips. We do not compare with travel distances from the
national survey (NHTS), because spatial aspects of travel depend
directly on the specific extension of the urban form, which varies
across the nation (39).
Fig. 5J compares the total number of trips from home to work

in our simulation with the estimates of the model developed by
the Boston Region Metropolitan Planning Organization (MPO)
for 2010 (40). The comparisons of the number of commuting
trips are presented both for those between the 164 cities and
towns in the metropolitan area (intertown) and for trips within
them (intratown). The results for commuting trips are excellent,
with a Pearson correlation coefficient of 0.90 and 0.99, re-
spectively. More differences are present in the trips from home
to other locations and between other types of locations. Finally,
Fig. 5K compares the fraction of trips being initiated at different
times of the day among our simulation, the 2009 NHTS, and the
2010 MTS. Although the total estimates compare well, we esti-
mate more trips between nonhome destinations in the evening

A B C

D

G H I

E

F

J

K

Fig. 5. Mobility patterns for different individuals and population distributions. The top panels (A–F) show the comparison of the simulation results with the
phone data for noncommuters. (A and B) Comparison of mobility patterns for three representative noncommuters. Individuals 1 and 2 represent two extreme
cases, one has shorter stays (shown in squares, nw =10.86, β1 = 6, β2 = 41) and the other travels less frequently (shown in circles, nw = 5.51, β1 = 1, β2 = 36). The third
case represents an average noncommuter and is simulated using the median parameter values of nw, β1, and β2. (A) Stay duration distribution. (B) Daily visited
location distribution. The Markov modeling framework allows the calculations of the number of visited locations per day, as shown in dashed lines, and is
discussed in SI Appendix. (C) Activity duration distribution PðΔtÞ. The model without differentiating home and other states (setting β1 =1) is considered as a
benchmark here. In this case, stays with short duration are underestimated. (D) The distribution of the number of daily visited location PðNÞ. Both the model’s
calculation and simulation results are shown. It shows the need for the β2 parameter in the model. (E) Visitation frequency fðLÞ to the Lth most visited location
follows the form fðLÞ∼ L−1.2±0.1. The benchmark shows the result without the preferential return mechanism. (F) Trip distance distribution PðΔrÞ extracted from
data, and simulation results using an r-EPR mechanism, compared with the random selection of exploration locations (not using the rank-based selection
mechanism). The bottom panels (G–K) show the comparison of the simulated daily mobility patterns for the population (aged 16 and over, for both commuters
and noncommuters) in Metro Boston (3.54 million individuals) with traditional travel survey data, including the 2009 NHTS, and the 2010–2011 MTS. (G) Stay
duration distribution. (H) Daily visited location distribution. (I) Trip distance distribution. (J) Comparison of total commuting trips between and within the 164
cities and towns (i.e., inter- and intratown) estimated by our simulation and the model of the Boston Region MPO (40). (K) Fraction of trip departures by time of
the day, comparing the simulation, the 2009 NHTS, and the 2010 MTS. SI Appendix, Fig. S18 shows comparisons for various trip purposes.
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than those reported in the surveys (see SI Appendix, section 4.3
for detailed comparisons). Overall, the results show good agree-
ment with existing MPO models which needed expensive travel
survey for their calibration.

Conclusion
We present a mechanistic modeling framework to generate in-
dividual daily mobility with fine resolution at urban scale.
Temporally, we introduce the weekly home-based tour number,
dwell rate, and burst rate to model the bursts of short flexible
activities in activity chains. This mechanism can reproduce in-
dividual distributions of stay duration, number of daily visited
locations, and daily mobility motif distribution. Spatially, an
improved rank-based EPR model is introduced to explain indi-
vidual activity location selection choices. Compared with the
original EPR model, the ranking mechanism quantifies the
likelihood of selecting new destinations in space based on
the distribution of facilities around trip origins. Moreover, the
covariance of the distributions of population and facilities in a
given region is characterized using a hierarchical multiplicative
cascade framework of analysis. In this way, we take account of
the influence of region-specific spatial structure on individual
travel distances. This enables us to perform scenario tests on how
changing land use in the city would affect microlevel individual
travel behavior and macrolevel OD flows.
TimeGeo serves as a general modeling framework of urban

trajectories that can be flexibly adapted to different application
scenarios using population density and the distributions of facili-
ties in any city. It can be coupled with sparse location data from
ICTs that sample the visitation preferences of actual individuals
and can complement or, for some applications, substitute the need
for expensive travel surveys for modeling urban travel. The frame-
work is flexible to generate trajectories with various data con-
ditions. The minimum requirement is to have population and
facility distributions. In the current results, the parameters to
model exploration and returns (α, ρ, and γ) are assumed to be
the same across population, whereas the temporal mobility rates
of an individual are assumed to be independent of the actual
location. In future studies, as more data of higher frequency and
over longer periods become available, it is possible to further
learn from the individual variations of the proposed parameters.
It is also interesting to explore the variations of the model pa-
rameters across urban areas, and across population groups with
different demographics and lifestyles.

Materials and Methods
All study procedures were carried out with Institutional Review Board ap-
proval from Massachusetts Institute of Technology (MIT) Committee on the
Use of Humans as Experimental Subjects (COUHES) (Protocol 1405006399)
approved on June 10, 2014. CDR data were collected by AirSage for oper-
ational purposes of two mobile phone carriers. The student, who donated
his 14-mo self-collected mobile phone traces through a smartphone ap-
plication (OpenPaths), provided informed consent for the research.

Mobile Phone Data. We extracted activity stay locations of 1.92 million cell
phone users from their CDRs in the Greater Boston area during an obser-
vation period of 6 wk in 2010. A stay means performing an activity at a
location. A stay sequence, or an activity sequence, represents consecutive
stays a person made in a period (usually a day). A trip is made between
consecutive stay locations. These stay locations are also called trip origins and
destinations. In the CDR data, a record is made when a user calls, sends text
messages, or uses data through the cellular networks. Each record is in the
following format: (UserID, longitude, latitude, time). The precision of the
location is about 200–300 m in urban areas. For the voluntarily self-collected
mobile phone user example, a record is made every time the smartphone
application detects a significant spatial movement. The data are in the same
format and similar spatial resolution as the CDR data. The detailed methods
to extract stay locations and to label location types (as home, work, and

other) are presented in SI Appendix, section 1. For the CDR data, the records
do not directly correspond to a user’s stays—a stay could not be detected if a
user did not use his or her cell phone more than once during a stay. Even for
cases when more than one cell phone use was recorded, the stay duration
can only be approximated for active phone users. Therefore, not all cell
phone users have enough records to be measured for basic mobility patterns
presented in this study. Meanwhile, we cannot determine if long stays at
one location (for over 2 d) are caused by no cell phone use or actual stay at
one location for over 2 d; therefore, these stays were removed from the
analysis and not captured by the model.

The Hierarchical Multiplicative Cascade Model. For any given subregion ω⊂Ω0,
DðωÞ is the number of trip origins in ω and SðωÞ is the number of trip des-
tinations in ω. We use bivariate random measures XðωÞ= ½DðωÞ, SðωÞ$ to
represent the number of demand and supply locations in ω, where X results
from a cascade process in which the fluctuations at different spatial scales
combine in a multiplicative way. The generation of bivariate ½D, S$ cascades is
illustrated in Fig. 3C. The demand and supply in a generic i-tile Ωi are Di and
Si and the associated measure densities are Di′=Di=jΩi j and Si′= Si=jΩi j. One
starts with uniform measure densities D0′ and S0′ in Ω0, then progressively
partitions Ω0 into 41, 42, . . ., 4n square tiles of side length 2−1, 2−2, . . . , 2−n.
The demand and supply densities in the daughter tiles are multiplied by
independent realizations of nonnegative random factors WDi and WSi , with
mean value 1. The random vectors Wi = ½WDi ,WSi $, i= 1,2, . . . ,n are the
generators of the cascade. Although the generators Wi have independent
values in different i tiles, their components WDi and WSi in a given i tile may
be dependent. Moreover, the distribution of Wi may vary with the resolu-
tion level i. These features provide important modeling flexibility. The
measured densities at resolution level i− 1 and i are related as

!
Di
′

Si′

"
=d
!
WDi 0
0 WSi

"!
Di−1

′

Si−1′

"
. [5]

According to Fig. 3 A–D), at larger tile sizes almost all tiles are nonempty
and the supply and demand have positive correlation. Consequently for
small i values (large tile sizes) the generator can be described as joint log-
normal variables (38). If the log generators lnðWDi Þ and lnðWSi Þ have joint
normal distribution with variances σ2WDi

and σ2WSi
, mean values −1=2σ2WDi

and
−1=2σ2WSi

, and correlation coefficient ρLNi
, then lnðDiÞ and lnðSiÞ have joint

normal distribution with mean values mDi and mSi , variances σ
2
Di

and σ2Si , and
correlation coefficient ρi given by

σ2Di
=

Xi

j=1

σ2WDj
,mDi = ln

#
D04−i

$
− 1=2σ2Di

, [6]

σ2Si =
Xi

j=1

σ2WSj
,mSi = ln

#
S04−i

$
− 1=2σ2Si , [7]

ρi =
Xi

j=1

ρLNj
σWDj

σWSj

σDi σSi
. [8]

Therefore, once we can estimate σWDi
, σWSi

, and ρLNj
, the rest of the variables

can be calculated.
At smaller tile sizes, empty tiles cannot be ignored and extreme forms of

dependence like mutual exclusion may occur. In this case the generator is
better modeled as a β-cascade, in which a tile is either filled or empty. The
generators WðiÞ= ½WDðiÞ,WSðiÞ$ of a bivariate β-cascade have a discrete dis-
tribution with probability masses concentrated at four (wD,wS) points: mass
P00 at ð0,0Þ, mass PD0 at ð1=PD, 0Þ, mass P0S at ð0, 1=PSÞ, and mass PDS at
ð1=PD, 1=PSÞ. PD = PD0 + PDS, PS = P0S + PDS, and PD0 + PDS + P0S + P00 = 1. Thus, a
tile is either filled or empty. The correlation between the supply and de-
mand is ρβi .
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ABSTRACT
Urban planning applications (energy audits, investment, etc.) re-
quire an understanding of built infrastructure and its environment,
i.e., both low-level, physical features (amount of vegetation, build-
ing area and geometry etc.), as well as higher-level concepts such
as land use classes (which encode expert understanding of socio-
economic end uses). �is kind of data is expensive and labor-
intensive to obtain, which limits its availability (particularly in
developing countries). We analyze pa�erns in land use in urban
neighborhoods using large-scale satellite imagery data (which is
available worldwide from third-party providers) and state-of-the-
art computer vision techniques based on deep convolutional neural
networks. For supervision, given the limited availability of standard
benchmarks for remote-sensing data, we obtain ground truth land
use class labels carefully sampled from open-source surveys, in
particular the Urban Atlas land classi�cation dataset of 20 land use
classes across 300 European cities. We use this data to train and
compare deep architectures which have recently shown good per-
formance on standard computer vision tasks (image classi�cation
and segmentation), including on geospatial data. Furthermore, we
show that the deep representations extracted from satellite imagery
of urban environments can be used to compare neighborhoods
across several cities. We make our dataset available for other ma-
chine learning researchers to use for remote-sensing applications.

CCS CONCEPTS
•Computing methodologies→Computer vision; Neural net-
works; •Applied computing→Environmental sciences;

KEYWORDS
Satellite imagery, land use classi�cation, convolutional networks

1 INTRODUCTION
Land use classi�cation is an important input for applications rang-
ing from urban planning, zoning and the issuing of business per-
mits, to real-estate construction and evaluation to infrastructure
∗Corresponding author.
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development. Urban land use classi�cation is typically based on
surveys performed by trained professionals. As such, this task
is labor-intensive, infrequent, slow, and costly. As a result, such
data are mostly available in developed countries and big cities that
have the resources and the vision necessary to collect and curate it;
this information is usually not available in many poorer regions,
including many developing countries [9] where it is mostly needed.

�is paper builds on two recent trends that promise to make
the analysis of urban environments a more democratic and inclu-
sive task. On the one hand, recent years have seen signi�cant
improvements in satellite technology and its deployment (primar-
ily through commercial operators), which allows to obtain high
and medium-resolution imagery of most urbanized areas of the
Earth with an almost daily revisit rate. On the other hand, the
recent breakthroughs in computer vision methods, in particular
deep learning models for image classi�cation and object detection,
now make possible to obtain a much more accurate representation
of the composition built infrastructure and its environments.

Our contributions are to both the applied deep learning literature,
and to the incipient study of “smart cities” using remote sensing
data. We contrast state-of-the-art convolutional architectures (the
VGG-16 [19] and ResNet [7] networks) to train classi�ers that recog-
nize broad land use classes from satellite imagery. We then use the
features extracted from the model to perform a large-scale compar-
ison of urban environments. For this, we construct a novel dataset
for land use classi�cation, pairing carefully sampled locations with
ground truth land use class labels obtained from the Urban Atlas
survey [22] with satellite imagery obtained from Google Maps’s
static API. Our dataset - which we have made available publicly
for other researchers - covers, for now, 10 cities in Europe (chosen
out of the original 300) with 10 land use classes (from the original
20). As the Urban Atlas is a widely-used, standardized dataset for
land use classi�cation, we hope that making this dataset available
will encourage the development analyses and algorithms for ana-
lyzing the built infrastructure in urban environments. Moreover,
given that satellite imagery is available virtually everywhere on
the globe, the methods presented here allow for automated, rapid
classi�cation of urban environments that can potentially be applied
to locations where survey and zoning data is not available.

Land use classi�cation refers to the combination of physical
land a�ributes and what cultural and socio-economic function land
serves (which is a subjective judgement by experts) [2]. In this paper,
we take the view that land use classes are just a useful discretization
of a more continuous spectrum of pa�erns in the organization of
urban environments. �is viewpoint is illustrated in Figure 2: while
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Figure 1: Urban land usemaps for six example cities. We compare the ground truth (top row) with the predicted land usemaps,
either from using separate data collected from the same city (middle row), or using data from all other cities (bo�om row).

Figure 2: Le�: Comparing urban environments via deep hi-
erarchical representations of satellite image samples. Right:
approach outline - data collection, classi�cation, feature ex-
traction, clustering, validation.

some a�ributes (e.g., amount of built structures or vegetation) are
directly interpretable, some others may not be. Nevertheless, these
pa�erns in�uence, and are in�uenced by, socio-economic factors
(e.g., economic activity), resource use (energy), and dynamic human
behavior (e.g., mobility, building occupancy). We see the work
on cheaply curating a large-scale land use classi�cation dataset
and comparing neighborhoods using deep representations that
this paper puts forth as a necessary �rst step towards a granular
understanding of urban environments in data-poor regions.

Subsequently, in Section 2 we review related studies that apply
deep learning methods and other machine learning techniques
to problems of land use classi�cation, object detection, and image
segmentation in aerial imagery. In Section 3 we describe the dataset

we curated based on the Urban Atlas survey. Section 4 reviews the
deep learning architectures we used. Section 5 describes model
validation and analysis results. We conclude in Section 6.

All the code used to acquire, process, and analyze the data, as
well as to train the models discussed in this paper is available at
h�p://www.github.com/adrianalbert/urban-environments.

2 LITERATURE
�e literature on the use of remote sensing data for applications in
land use cover, urban planning, environmental science, and others,
has a long and rich history. �is paper however is concerned more
narrowly with newer work that employs widely-available data
and machine learning models - and in particular deep learning
architectures - to study urban environments.

Deep learning methods have only recently started to be deployed
to the analysis of satellite imagery. As such, land use classi�cation
using these tools is still a very incipient literature. Probably the �rst
studies (yet currently only 1-2 years old) include the application
of convolutional neural networks to land use classi�cation [2] us-
ing the UC Merced land use dataset [25] (of 2100 images spanning
21 classes) and the classi�cation of agricultural images of co�ee
plantations [17]. Similar early studies on land use classi�cation
that employ deep learning techniques are [21], [18], and [15]. In
[11], a spatial pyramid pooling technique is employed for land use
classi�cation using satellite imagery. �e authors of these studies
adapted architectures pre-trained to recognize natural images from
the ImageNet dataset (such as the VGG16 [19], which we also use),
and �ne-tuned them on their (much smaller) land use data. More
recent studies use the DeepSat land use benchmark dataset [1],
which we also use and describe in more detail in Section 2.1. An-
other topic that is closely related to ours is remote-sensing image
segmentation and object detection, where modern deep learning
models have also started to be applied. Some of the earliest work
that develops and applies deep neural networks for this tasks is that



of [13]. Examples of recent studies include [26] and [12], where the
authors propose a semantic image segmentation technique com-
bining texture features and boundary detection in an end-to-end
trainable architecture.

Remote-sensing data and deep learning methods have been put
to use to other related ends, e.g., geo-localization of ground-level
photos via satellite images [3, 24] or predicting ground-level scene
images from corresponding aerial imagery [27]. Other applications
have included predicting survey estimates on poverty levels in
several countries in Africa by �rst learning to predict levels of night
lights (considered as proxies of economic activity and measured
by satellites) from day-time, visual-range imagery from Google
Maps, then transferring the learning from this la�er task to the
former [9]. Our work takes a similar approach, in that we aim to use
remote-sensing data (which is widely-available for most parts of
the world) to infer land use types in those locations where ground
truth surveys are not available.

Urban environments have been analyzed using other types of
imagery data that have become recently available. In [4, 14], the
authors propose to use the same type of imagery from Google Street
View to measure the relationship between urban appearance and
quality of life measures such as perceived safety. For this, they
hand-cra� standard image features widely used in the computer
vision community, and train a shallow machine learning classi�er
(a support vector machine). In a similar fashion, [5] trained a
convolutional neural network on ground-level Street View imagery
paired with a crowd-sourced mechanism for collecting ground truth
labels to predict subjective perceptions of urban environments such
as “beauty”, “wealth”, and “liveliness”.

Land use classi�cation has been studied with other new data
sources in recent years. For example, ground-level imagery has been
employed to accurately predict land use classes on an university
campus [28]. Another related literature strand is work that uses
mobile phone call records to extract spatial and temporal mobility
pa�erns, which are then used to infer land use classes for several
cities [6, 10, 20]. Our work builds on some of the ideas for sampling
geospatial data presented there.

2.1 Existing land use benchmark datasets
Public benchmark data for land use classi�cation using aerial im-
agery are still in relatively short supply. Presently there are two
such datasets that we are aware of, discussed below.

UC Merced. �is dataset was published in 2010 [25] and con-
tains 2100 256 × 256, 1m/px aerial RGB images over 21 land use
classes. It is considered a “solved problem”, as modern neural net-
work based classi�ers [2] have achieved > 95% accuracy on it.

DeepSat. �e DeepSat [1] dataset1 was released in 2015. It
contains two benchmarks: the Sat-4 data of 500, 000 images over 4
land use classes (barren land, trees, grassland, other), and the Sat-6
data of 405, 000 images over 6 land use classes (barren land, trees,
grassland, roads, buildings, water bodies). All the samples are 28×28
in size at a 1m/px spatial resolution and contain 4 channels (red,
green, blue, and NIR - near infrared). Currently less than two years
old, this dataset is already a “solved problem”, with previous studies
[15] (and our own experiments) achieving classi�cation accuracies

1Available at h�p://csc.lsu.edu/∼saikat/deepsat/.

of over 99% using convolutional architectures. While useful as input
for pre-training more complex models, (e.g., image segmentation),
this dataset does not allow to take the further steps for detailed
land use analysis and comparison of urban environments across
cities, which gap we hope our dataset will address.

Other open-source e�orts. �ere are several other projects
that we are aware of related to land use classi�cation using open-
source data. �e TerraPa�ern2 project uses satellite imagery from
Google Maps (just like we do) paired with truth labels over a large
number (450) of detailed classes obtained using the Open Street
Map API3. (Open Street Maps is a comprehensive, open-access,
crowd-sourced mapping system.) �e project’s intended use is as
a search tool for satellite imagery, and as such, the classes they
employ are very speci�c, e.g., baseball diamonds, churches, or
roundabouts. �e authors use a ResNet architecture [7] to train a
classi�cation model, which they use to embed images in a high-
dimensional feature space, where “similar” images to an input image
can be identi�ed. A second open-source project related to ours is
the DeepOSM4, in which the authors take the same approach of
pairing OpenStreetMap labels with satellite imagery obtained from
Google Maps, and use a convolutional architecture for classi�cation.
�ese are excellent starting points from a practical standpoint,
allowing interested researchers to quickly familiarize themselves
with programming aspects of data collection, API calls, etc.

3 THE URBAN ENVIRONMENTS DATASET
3.1 Urban Atlas: a standard in land use analysis
�e Urban Atlas [22] is an open-source, standardized land use
dataset that covers ∼ 300 European cities of 100, 000 inhabitants or
more, distributed relatively evenly across major geographical and
geopolitical regions. �e dataset was created between 2005-2011 as
part of a major e�ort by the European Union to provide a uniform
framework for the geospatial analysis of urban areas in Europe.
Land use classi�cation is encoded via detailed polygons organized
in commonly-used GIS/ESRI shape �les. �e dataset covers 20
standardized land use classes. In this work we selected classes of
interest and consolidated them into 10 �nal classes used for analysis
(see Figure 3). Producing the original Urban Atlas dataset required
fusing several data sources: high and medium-resolution satellite
imagery, topographic maps, navigation and road layout data, and
local zoning (cadastral) databases. More information on the method-
ology used by the Urban Atlas researchers can be obtained from
the European Environment Agency5. We chose expressly to use
the Urban Atlas dataset over other sources (described in Section 2.1
because i) it is a comprehensive and consistent survey at a large
scale, which has been extensively curated by experts and used in
research, planning, and socio-economic work over the past decade,
and ii) the land use classes re�ect higher-level (socio-economic,
cultural) functions of the land as used in applications.

We note that there is a wide variance in the distribution of land
use classes across and within the 300 cities. Figure 3 illustrates
the di�erences in the distribution in ground truth polygon areas

2h�p://www.terrapa�ern.com/
3h�p://www.openstreetmap.org
4h�ps://github.com/trailbehind/DeepOSM
5h�p://www.eea.europa.eu/data-and-maps/data/urban-atlas/



Figure 3: Ground truth land use distribution (by area) for
three example cities in the Urban Environments dataset.

for each of the classes for three example cities (Budapest, Rome,
Barcelona) from the dataset (from Eastern, Central, and Western
Europe, respectively). �is wide disparity in the spatial distribution
pa�erns of di�erent land use classes and across di�erent cities
motivates us to design a careful sampling procedure for collecting
training data, described in detail below.

3.2 Data sampling and acquisition
We set out to develop a strategy to obtain high-quality samples
of the type (satellite image, ground truth label) to use in training
convolutional architectures for image classi�cation. Our �rst re-
quirement is to do this solely with freely-available data sources,
as to keep costs very low or close to zero. For this, we chose to
use the Google Maps Static API6 as a source of satellite imagery.
�is service allows for 25, 000 API requests/day free of charge. For
a given sampling location given by (latitude, longitude), we ob-
tained 224×224 images at a zoom level 17 (around 1.20m/px spatial
resolution, or ∼ 250m × 250m coverage for an image).

�e goals of our sampling strategy are twofold. First, we want
to ensure that the resulting dataset is as much as possible balanced
with respect to the land use classes. �e challenge is that the classes
are highly imbalanced among the ground truth polygons in the
dataset (e.g., many more polygons are agricultural land and isolated
structures than airports). Second, the satellite images should be
representative of the ground truth class associated to them. To this
end, we require that the image contain at least 25% (by area) of
the associated ground truth polygon. �us, our strategy to obtain
training samples is as follows (for a given city):
• Sort ground truth polygons in decreasing order according to

their size, and retain only those polygons with areas larger than
1
4 (224 × 1.2m)2 = 0.06km2;

• From each decile of the distribution of areas, sample a propor-
tionally larger number of polygons, such that some of the smaller
polygons also are picked, and more of the larger ones;

• For each picked polygon, sample a number of images propor-
tional to the area of the polygon, and assign each image the
polygon class as ground truth label;

6h�ps://developers.google.com/maps/documentation/static-maps/

Figure 4: Example satellite images for the original land use
classes in the Urban Atlas dataset.

Example satellite images for each of the 10 land use classes in
the Urban Environments dataset are given in Figure 4. Note the
signi�cant variety (in color schemes, textures, etc) in environments
denoted as having the same land use class. �is is because of several
factors, including the time of the year when the image was acquired
(e.g., agricultural lands appear di�erent in the spring than in the
fall), the di�erent physical form and appearance of environments
that serve the same socioeconomic or cultural function (e.g., green
urban areas may look very di�erent in di�erent cities or in even
in di�erent parts of the same city; what counts as “dense urban
fabric” in one city may not be dense at all in other cities), and
change in the landscape during the several years that have passed
since the compilation of the Urban Atlas dataset and the time of
acquisition of the satellite image (e.g., construction sites may not
re�ect accurately anymore the reality on the ground).

Apart from these training images, we constructed ground truth
rasters to validate model output for each city. For that, we de�ned
uniform validation grids of 100 × 100 (25km × 25km) around the
(geographical) center of a given city of interest. We take a satellite
image sample in each grid cell, and assign to it as label the class
of the polygon that has the maximum intersection area with that
cell. Examples of land use maps for the six cities we analyze here
are given in Figure 1 (top row). �ere, each grid cell is assigned the
class of the ground truth polygon whose intersection with the cell
has maximum coverage fraction by area. Classes are color-coded
following the original Urban Atlas documentation.

In Table 1 we present summaries of the training (le�) and vali-
dation (right) datasets we used for the analysis in this paper. �e
validation dataset consists of the images sampled at the centers of
each cell in the 25km × 25km grid as discussed above. �is dataset
consists of ∼ 140, 000 images distributed across 10 urban environ-
ment classes from 6 cities: Roma (Rome), Madrid, Berlin, Budapest,
Barcelona, and Athina (Athens). Because of the high variation in
appearance upon visual inspection, we chose to consolidate several



classes from the original dataset, in particular classes that indicated
urban fabric into “High Density Urban Fabric”, “Medium Density
Urban Fabric, and “LowDensity Urban Fabric”. As mentioned above
and illustrated in Figure 3, we did notice a great disparity in the
numbers and distribution of ground truth polygons for other ex-
ample cities that we investigated in the Urban Atlas dataset. As
such,for the analysis in this paper, we have chosen cities where
enough ground truth polygons were available for each class (that
is, at least 50 samples) to allow for statistical comparisons.

4 EXPERIMENTAL SETUP
4.1 Neural network architectures and training
For all experiments in this paper we compared the VGG-16 [19]
and ResNet [7, 8] architectures.

VGG-16. �is architecture [19] has become one of the most pop-
ular models in computer vision for classi�cation and segmentation
tasks. It consists of 16 trainable layers organized in blocks. It starts
with a 5-block convolutional base of neurons with 3 × 3 receptive
�elds (alternated with max-pooling layers that e�ectively increase
the receptive �eld of neurons further downstream). Following each
convolutional layer is a ReLU activation function [19]. �e feature
maps thus obtained are fed into a set of fully-connected layers (a
deep neural network classi�er). See Table 2 for a summary.

ResNet. �is architecture [7, 8] has achieved state-of-the-art
performance on image classi�cation on several popular natural
image benchmark datasets. It consists of blocks of convolutional
layers, each of which is followed by a ReLU non-linearity. As before,
each block in the convolutional base is followed by a max-pooling
operation. Finally, the output of the last convolutional layer serves
as input feature map for a fully-connected layer with a so�max
activation function. �e key di�erence in this architecture is that
shortcut connections are implemented that skip blocks of convo-
lutional layers, allowing the network to learn residual mappings
between layer input and output. Here we used an implementation
with 50 trainable layers per [7]. See Table 3 for a summary.

Transfer learning. As it is common practice in the literature,
we have experimented with training our models on the problem of
interest (urban environment classi�cation) starting from architec-
tures pre-trained on datasets from other domains (transfer learning).
�is procedure has been shown to yield both be�er performance
and faster training times, as the network already has learned to
recognize basic shapes and pa�erns that are characteristic of im-
ages across many domains (e.g., [9, 12, 15]). We have implemented
the following approaches: 1) we used models pre-trained on the
ImageNet dataset, then further �ne-tuned them on the Urban Atlas
dataset; and 2) we pre-trained on the DeepSat dataset (See Section
2), then further re�ned on the Urban Atlas dataset. As expected,
the la�er strategy - �rst training a model (itself pre-trained on Ima-
geNet data) on the DeepSat benchmark, and the further re�ning
on the Urban Atlas dataset - yielded the best results, achieving
increases of around 5% accuracy for a given training time.

Given the large amount of variation in the visual appearance
of urban environments across di�erent cities (because of di�erent
climates, di�erent architecture styles, various other socio-economic
factors), it is of interest to study to what extent a model learned on
one geographical location can be applied to a di�erent geographical

location. As such, we perform experiments in which we train a
model for one (or more) cities, then apply themodel to a di�erent set
of cities. Intuitively, onewould expect that, themore neighborhoods
and other urban features at one location are similar to those at a
di�erent location, the be�er learning would transfer, and the higher
the classi�cation accuracy obtained would be. Results for these
experiments are summarized in Figure 6.

4.2 Comparing urban environments
We next used the convolutional architectures to extract features
for validation images. As in other recent studies (e.g., [9]), we use
the last layer of a network as feature extractor. �is amounts to
feature vectors of D = 4096 dimensions for the VGG16 architecture
and D = 2048 dimensions for the ResNet-50 architecture. �e
codes x ∈ RD are the image representations that either network
derives as most representative to discriminate the high-level land
use concepts it is trained to predict.

We would like to study how ”similar” di�erent classes of urban
environments are across two example cities (here we picked Berlin
and Barcelona, which are fairly di�erent from a cultural and archi-
tectural standpoint). For this, we focus only on the 25km × 25km,
100× 100-cell grids around the city center as in Figure 1. To be able
to quantify similarity in local urban environments, we construct
a KD-tree T (using a high-performance implementation available
in the Python package scikit-learn [16]) using all the gridded
samples. �is data structure allows to �nd k-nearest neighbors of a
query image in an e�cient way. In this way, the feature space can
be probed in an e�cient way.

5 RESULTS AND DISCUSSION
In Figure 1 we show model performance on the 100 × 100 (25km ×
25km) raster grids we used for testing. �e top row shows ground
truth grids, where the class in each cell was assigned as the most
prevalent land use class by area (see also Section 3). �e bo�om row
shows model predictions, where each cell in a raster is painted in
the color corresponding to the maximum probability class estimated
by the model (here ResNet-50). Columns in the �gure show results
for each of the 6 cities we used in our dataset. Even at a �rst visual
inspection, the model is able to recreate from satellite imagery
qualitatively the urban land use classi�cation map.

Further, looking at the individual classes separately and the con-
�dence of the model in its predictions (the probability distribution
over classes computed by the model), the picture is again qualita-
tively very encouraging. In Figure 5 we show grayscale raster maps
encoding the spatial layout of the class probability distribution for
one example city, Barcelona. Particularly good qualitative agree-
ment is observed for agricultural lands, water bodies, industrial,
public, and commercial land, forests, green urban areas, low density
urban fabric, airports, and sports and leisure facilities. �e model
appears to struggle with reconstructing the spatial distribution of
roads, which is not unexpected, given that roads typically appear
in many other scenes that have a di�erent functional classi�cation
for urban planning purposes.



Table 1: Urban Environments dataset: sample size summary.

(a) Dataset used for training & validation (80% and 20%, respectively)

class/city athina barcelona berlin budapest madrid roma class
total

Agricultural + Semi-
natural areas + Wet-
lands

4347 2987 7602 2211 4662 4043 25852

Airports 382 452 232 138 124 142 1470
Forests 1806 2438 7397 1550 2685 2057 17933
Green urban areas 990 722 1840 1342 1243 1401 7538
High Density Urban
Fabric

967 996 8975 6993 2533 3103 23567

Industrial, commer-
cial, public, military
and pr…

1887 2116 4761 1850 3203 2334 16151

Low Density Urban
Fabric

1424 1520 2144 575 2794 3689 12146

Medium Density Ur-
ban Fabric

2144 1128 6124 1661 1833 2100 14990

Sports and leisure fa-
cilities

750 1185 2268 1305 1397 1336 8241

Water bodies 537 408 1919 807 805 619 5095
city total 15234 13952 43262 18432 21279 20824 132983

(b) 25km × 25km ground truth test grids (fractions of city total)

class / city athina barcelona berlin budapest madrid roma

Agricultural + Semi-
natural areas + Wet-
lands

0.350 0.261 0.106 0.181 0.395 0.473

Airports 0.003 0.030 0.013 0.000 0.044 0.006
Forests 0.031 0.192 0.087 0.211 0.013 0.019
Green urban areas 0.038 0.030 0.072 0.027 0.125 0.054
High Density Urban
Fabric

0.389 0.217 0.284 0.365 0.170 0.215

Industrial, commer-
cial, public, military
and pr…

0.109 0.160 0.190 0.096 0.138 0.129

Low Density Urban
Fabric

0.016 0.044 0.012 0.006 0.036 0.029

Medium Density Ur-
ban Fabric

0.041 0.025 0.129 0.045 0.042 0.047

Sports and leisure fa-
cilities

0.017 0.034 0.080 0.025 0.036 0.025

Water bodies 0.005 0.006 0.026 0.044 <0.001 0.004

Figure 5: Barcelona: ground truth (top) and predicted probabilities (bo�om).

Table 2: �e VGG16 architecture [19].

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
Conv(3,64)
Conv(3,64)
Max-
Pool(2,2)

Conv(3,128)
Conv(3,128)
Max-
Pool(2,2)

Conv(3,256)
Conv(3,256)
Conv(3,256)
Max-
Pool(2,2)

Conv(3,512)
Conv(3,512)
Conv(3,512)
Max-
Pool(2,2)

Conv(3,512)
Conv(3,512)
Conv(3,512)
Max-
Pool(2,2)

FC(4096)
FC(4096)
FC(Nclasses)
So�Max

Table 3: �e ResNet-50 architecture [7].

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
Conv(7,64)
Max-
Pool(3,2)

3x[Conv(1,64)
Conv(3,64)
Conv(3,256)]

4x[Conv(1,128)
Conv(3,128)
Conv(1,512)]

6x[Conv(1,256)
Conv(3,256)
Conv(1,1024)]

3x[Conv(1,512)
Conv(3,512)
Conv(1,2048)]

FC(Nclasses)
So�Max

5.1 Classi�cation results
We performed experiments training the two architectures described
in Section 4 on datasets for each of the 6 cities considered, and for
a combined dataset (all) of all the cities. �e diagonal in Figure 6
summarizes the (validation set) classi�cation performance for each
model. All �gures are averages computed over balanced subsets
of 2000 samples each. While accuracies or ∼ 0.70 − 0.80 may not
look as impressive as those obtained by convolutional architectures
on well-studied benchmarks and other classi�cation tasks (e.g.,

natural images from ImageNet or small aerial patches from Deep-
Sat), this only a�ests to the di�culty of the task of understanding
high-level, subjective concepts of urban planning in complex ur-
ban environments. First, satellite imagery typically contains much
more semantic variation than natural images (as also noted, e.g.,
in [2, 13]), i.e., there is no “central” concept that the image is of
(unlike the image of a cat or a �ower). Second, the type of labels we
use for supervision are higher-level concepts (such as “low density
urban fabric”, or “sports and leisure facilities”), which are much
less speci�c than more physical land features e.g., “buildings” or
”trees” (which are classes used in the DeepSat dataset). Moreover,
top-down imagery poses speci�c challenges to convolutional archi-
tectures, as these models are inherently not rotationally-symmetric.
Urban environments, especially from from a top-down point of
view, come in many complex layouts, for which rotations are ir-
relevant. Nevertheless, these results are encouraging, especially
since this is a harder problem by focusing on wider-area images and
on higher-level, subjective concepts used in urban planning rather
than on the standard, lower-level physical features such as in [1] or
[17]. �is suggests that such models may be useful feature extrac-
tors. Moreover, as more researchers tackle problems with the aid of
satellite imagery (which is still a relatively under-researched source
of data in the machine learning community), more open-source



Figure 6: Transferability (classi�cation accuracy) of models
learned at one location and applied at another. Training on
a more diverse set of cities (all) yields encouraging results
compared with just pairwise training/testing.

datasets (like this one) are released, performance will certainly im-
prove. For the remainder of this section we report results using
the ResNet-50 architecture [7], as it consistently yielded (if only
slightly) be�er classi�cation results in our experiments than the
VGG-16 architecture.

Transfer learning and classi�cation performance. Next,
we investigated how models trained in one se�ing (city or set of
cities) performwhen applied to other geographical locations. Figure
6 summarizes these experiments. In general, performance is poor
when training on samples from a given city and testing on samples
from a di�erent city (the o�-diagonal terms). �is is expected, as
these environments can be very di�erent in appearance for cities as
di�erent as e.g., Budapest and Barcelona. However, we notice that
a more diverse set (all) yields be�er performance when applied at
di�erent locations than models trained on individual cities. �is is
encouraging for our purpose of analyzing the high level “similarity”
of urban neighborhoods via satellite imagery.

We next looked at per-class model performance to understand
what types of environments are harder for the model to distin-
guish. Figure 7 shows such an example analysis for three example
cities, of which a pair is “similar” according to Figure 6 (Rome and
Barcelona), and another dissimilar (Rome and Budapest). �e le�
panel shows model performance when training on samples from
Barcelona, and predicting on test samples from Barcelona (intra-
city). �e middle panel shows training on Rome, and predicting
on test samples in Barcelona, which can be assumed to be “sim-
ilar” to Rome from a cultural and architectural standpoint (both
Latin cities in warm climates). �e right �gure shows training on
Barcelona, and predicting on test samples in Budapest, which can
be assumed a rather di�erent city from a cultural and architectural
standpoint. For all cases, the classes that the model most struggles
with are “High Density Urban Fabric”, “Low Density Urban Fabric,
and “Medium Density Urban Fabric”. Considerable overlap can be
noticed between these classes - which is not surprising given the
highly subjective nature of these concepts. Other examples where
the model performance is lower is forests and low-density urban
areas being sometimes misclassifed as “green urban areas”, which,

again, is not surprising. �is is especially apparent in the cross-city
case, where the model struggles with telling apart these classes. For
both the case of training and testing on “di�erent cities” (Budapest
and Barcelona) and on “similar” cities (Rome and Barcelona), we
note that airports and forests are relatively easier to distinguish.
However, more subjective, high-level urban-planning concepts such
as “high density urban fabric” are harder to infer (and more easily
confused with “medium density” or “low density” urban fabric) in
the case of more similar cities (Rome and Barcelona) rather than
dissimilar cities (Budapest and Barcelona). Urban environments
containing sports and leisure facilities and green areas are under
this view more similar between Rome and Barcelona than they are
between Budapest and Barcelona.

Choosing the spatial scale: sensitivity analysis. So far, we
have presented results assuming that tiles of 250m is an appropriate
spatial scale for this analysis. Our intuition suggested that tiles of
this size have enough variation and information to be recognized
(even by humans) as belonging to one of the high-level concepts
of land use classes that we study in this paper. However, one
can �nd arguments in favor of smaller tile sizes, e.g., in many
cities the size of a typical city block is 100m. �us, we trained
models at di�erent spatial scales and computed test-set accuracy
values for three example cities, Barcelona, Roma, and Budapest
- see Figure 8. It is apparent that, for all example cities, smaller
spatial scales (50m, 100m, 150m) that we analyzed yield poorer
performance than the scale we chose for the analysis in this paper
(250m). �is is likely because images at smaller scales do not capture
enough variation in urban form (number and type of buildings,
relative amount of vegetation, roads etc.) to allow for discriminating
between concepts that are fairly high-level. �is is in contrast with a
benchmark such as DeepSat [1] that focuses on lower-level, physical
concepts (“trees”, “buildings”, etc.). �ere, a good spatial scale is
by necessity smaller (28m for DeepSat), as variation in appearance
and compositional elements is unwanted.

5.2 Comparing urban environments
Finally, we set to understand, at least on an initial qualitative level,
how “similar” urban environments are to one another, across formal
land use classes and geographies. Our �rst experiment was to
project sample images for each class and city in this analysis to
lower-dimensional manifolds, using the t-SNE algorithm [23]. �is
serves the purpose of both visualization (as t-SNE is widely used
for visualizing high-dimensional data), as well as for providing an
initial, coarse continuous representation of urban land use classes.
In our experiments, we used balanced samples of size N = 6000, or
100 samples for each of the 10 classes for each city. We extracted
features for each of these samples using the all models (trained
on a train set with samples across all cities except for the test one).

Figure 9 visualizes such t-SNE embeddings for the six cities in
our analysis. For most cities, classes such as low density urban
fabric, forests, and water bodies are well-resolved, while sports
and leisure facilities seem to consistently blend into other types of
environments (which is not surprising, given that these types of
facilities can be found within many types of locations that have a
di�erent formal urban planning class assigned). Intriguing di�er-
ences emerge in this picture among the cities. For example, green



Figure 7: Example classi�cation confusion matrix for land use inference. Le�: training and testing on Barcelona; Middle:
training on Rome, testing on Barcelona; Right: training on Rome, predicting on Budapest.

Figure 8: Sensitivity of training patch size vs test accuracy.

Figure 9: t-SNE visualization (the �rst 2 dimensions) of ur-
ban environments (satellite image samples) across six cities.

urban spaces seem fairly well resolved for most cities. Commercial
neighborhoods in Barcelona seem more integrated with the other
types of environments in the city, whereas for Berlin they appear
more distinct. Urban water bodies are more embedded with urban
parks for Barcelona than for other cities. Such reasoning (with
more rigorous quantitative analysis) can serve as coarse way to
benchmark and compare neighborhoods as input to further analysis
about e.g., energy use, livelihood, or tra�c in urban environments.

Figure 10: Comparing urban environments across cities
(with reference to Barcelona) We show relative inter-city
similarity measures computed as the sum of squares across
the clusters in Figure 9.

We further illustrate how “similar” the six cities we used through-
out this analysis are starting o� the embeddings plots in Figure 9.
For each land use class, we compute intra-city sum of squares in
the 2-d t-SNE embedding, and display the results in Figure 10. Note
that the distances are always shown with Barcelona as a reference
point (chosen arbitrarily). For each panel, the normalization is with
respect to the largest inter-city distance for that land use class. �is
visualization aids quick understanding of similarity between urban
environments. For example, agricultural lands in Barcelona are
most dissimilar to those in Budapest. Airports in Barcelona are
most similar to those in Athens, and most dissimilar to those in
Berlin and Budapest. Barcelona’s forests and parks are most dissim-
ilar to Budapest’s. Water bodies in Barcelona are very dissimilar to
all other cities. �is point is enforced by Figure 11 below, which
suggests that areas marked as water bodies in Barcelona are ocean
waterfronts, whereas this class for all other cities represents rivers
or lakes.



Figure 11: Samples from three urban environments across
our 6 example cities. We sampled the 2-d t-SNE embedding
of Figure 9 and queried for the closest real sample to the
centroid using an e�cient KD-tree search.

Finally, we explore the feature maps extracted by the convolu-
tional model in order to illustrate how “similar” the six cities we
used throughout this analysis are across three example environ-
ments, green urban areas, water bodies, and medium density urban
fabric. For each city and land use class, we start o� the centroid of
the point cloud in the 2-d space of Figure 9, and �nd the nearest
several samples using the KD-tree method described in Section 4.
We present the results in Figure 11. Visual inspection indicates
that the model has learned useful feature maps about urban envi-
ronments: the sample image patches show a very good qualitative
agreement with the region of the space where they’re sampled from,
indicated by the land use class of neighboring points. �alitatively,
it is clear that the features extracted from the top layer of the con-
volutional model allow a comparison between urban environments
by high-level concepts used in urban planning.

6 CONCLUSIONS
�is paper has investigated the use of convolutional neural net-
works for analyzing urban environments through satellite imagery
at the scale of entire cities. Given the current relative dearth of
labeled satellite imagery in the machine learning community, we
have constructed an open dataset of over 140, 000 samples over 10
consistent land use classes from 6 cities in Europe. As we continue
to improve, curate, and expand this dataset, we hope that it can help
other researchers in machine learning, smart cities, urban planning,
and related �elds in their work on understanding cities.

We set out to study similarity and variability across urban envi-
ronments, as being able to quantify such pa�erns will enable richer
applications in topics such as urban energy analysis, infrastructure
benchmarking, and socio-economic composition of communities.
We formulated this as a two-step task: �rst predicting urban land
use classes from satellite imagery, then turning this (rigid) clas-
si�cation into a continuous spectrum by embedding the features
extracted from the convolutional classi�er into a lower-dimensional
manifold. We show that the classi�cation task achieves encour-
aging results, given the large variety in physical appearance of
urban environments having the same functional class. Moreover,

we exemplify how the features extracted from the convolutional
network allow for identifying “neighbors” of any given query im-
age, allowing a rich comparison analysis of urban environments by
their visual composition.

�e analysis in this paper shows that some types urban envi-
ronments are easier to infer than others, both in the intra- and
inter-city cases. For example, in all our experiments, the models
had most trouble telling apart “high”, “medium”, and “low” den-
sity urban environments, a�esting to the subjectivity of such a
high-level classi�cation for urban planning purposes. However,
agricultural lands, forests, and airports tend to be visually similar
across di�erent cities - and the amount of relative dissimilarity can
be quanti�ed using the methods in this paper. Green urban areas
(parks) are generally similar to forests or to leisure facilities, and
the models do be�er in the intra-city case than predicting across
cities. How industrial areas look is again less geography-speci�c:
inter-city similarity is consistently larger than intra-city similarity.
As such, for several classes we can expect learning to transfer from
one geography to another. �us, while it is not news that some
cities are more “similar” than others (Barcelona is visually closer to
Athens than it is to Berlin), the methodology in this paper allows
for a more quantitative and practical comparison of similarity.

By leveraging satellite data (available virtually world-wide), this
approach may allow for a low-cost way to analyze urban envi-
ronments in locations where ground truth information on urban
planning is not available. As future directions of this work, we
plan to i) continue to develop more rigorous ways to compare and
benchmark urban neighborhoods, going deeper to physical ele-
ments (vegetation, buildings, roads etc.); ii) improve and further
curate the open Urban Environments dataset; and iii) extend this
type of analysis to more cities across other geographical locations.

A PRACTICAL TRAINING DETAILS.
We split our training data into a training set (80% of the data) and a
validation set (the remaining 20%). �is is separate from the data
sampled for the ground truth raster grids for each city, which we
only used at test time. We implemented the architectures in the
open-source deep learning framework Keras7(with a TensorFlow8

backend). In all our experiments, we used popular data augmenta-
tion techniques, including random horizontal and vertical �ipping
of the input images, random shearing (up to 0.1 radians), random
scaling (up to 120%), random rotations (by at most 15 degrees either
direction). Input images were 224 × 224 × 3 pixels in size (RGB
bands). For all experiments, we used stochastic gradient descent
(with its Adadelta variant) to optimize the network loss function (a
standard multi-class cross-entropy), starting with a learning rate of
0.1, and halving the rate each 10 epochs. We trained our networks
for at most 100 epochs, with 2000 samples in each epoch, stopping
the learning process when the accuracy on the validation set did
not improve for more than 10 epochs. Given the inherent imbalance
of the classes, we explicitly enforced that the minibatches used for
training were relatively balanced by a weighted sampling proce-
dure. For training, we used a cluster of 4 NVIDIA K80 GPUs, and
tested our models on a cluster of 48 CPUs.

7h�ps://github.com/fchollet/keras
8www.tensor�ow.org
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José J. Ramasco. 2015. Comparing and modelling land use organization in cities.
Royal Society Open Science 2, 12 (2015). DOI:h�p://dx.doi.org/10.1098/rsos.150449
arXiv:h�p://rsos.royalsocietypublishing.org/content/2/12/150449.full.pdf

[11] Qingshan Liu, Renlong Hang, Huihui Song, and Zhi Li. 2016. Learning Multi-
Scale Deep Features for High-Resolution Satellite Image Classi�cation. CoRR
abs/1611.03591 (2016). h�p://arxiv.org/abs/1611.03591

[12] D. Marmanis, K. Schindler, J. D. Wegner, S. Galliani, M. Datcu, and U. Stilla.
2016. Classi�cation With an Edge: Improving Semantic Image Segmentation
with Boundary Detection. ArXiv e-prints (Dec. 2016). arXiv:cs.CV/1612.01337

[13] Volodymyr Mnih. 2013. Machine learning for aerial image labeling. Ph.D. Disser-
tation. University of Toronto.

[14] Nikhil Naik, Ramesh Raskar, and Csar A. Hidalgo. 2016. Cities Are Physical Too:
Using Computer Vision to Measure the�ality and Impact of Urban Appearance.
American Economic Review 106, 5 (May 2016), 128–32. DOI:h�p://dx.doi.org/10.

1257/aer.p20161030
[15] M. Papadomanolaki, M. Vakalopoulou, S. Zagoruyko, and K. Karantzalos. 2016.

Benchmarking Deep Learning Frameworks for the Classi�cation of Very High
Resolution Satellite Multispectral Data. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences (June 2016), 83–88. DOI:h�p://dx.doi.
org/10.5194/isprs-annals-III-7-83-2016

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. �irion, O. Grisel, M.
Blondel, P. Pre�enhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[17] O. A. B. Pena�i, K. Nogueira, and J. A. dos Santos. 2015. Do deep features
generalize from everyday objects to remote sensing and aerial scenes domains?.
In 2015 IEEE Conference on Computer Vision and Pa�ern Recognition Workshops
(CVPRW). 44–51. DOI:h�p://dx.doi.org/10.1109/CVPRW.2015.7301382

[18] A. Romero, C. Ga�a, and G. Camps-Valls. 2016. Unsupervised Deep Fea-
ture Extraction for Remote Sensing Image Classi�cation. IEEE Transactions
on Geoscience and Remote Sensing 54, 3 (March 2016), 1349–1362. DOI:h�p:
//dx.doi.org/10.1109/TGRS.2015.2478379

[19] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional
Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).
h�p://arxiv.org/abs/1409.1556

[20] Jameson L. Toole, Michael Ulm, Marta C. González, and Dietmar Bauer. 2012.
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The excessive exploitation of petroleum and coal affect not 
only the security of energy supply but also air quality and cli-
mate change. These shortcomings have triggered the search 

for cleaner alternative fuels for transportation1–3. Today’s PEV 
technology is one of the most promising candidates to date4,5. The 
main issues that have hindered their adoption are: range anxiety, 
charger unavailability and high prices3. However, improvements 
in battery technology, tax breaks and subsidized charging pro-
grammes6,7 have somewhat mitigated these limitations. As a result, 
PEVs are becoming a more viable means to move and are being 
adopted by drivers at steadily increasing rates4. According to the 
US Energy Information Administration, the number of PEVs in 
the United States doubled between 2013 and 2015 and is expected 
to reach 20 million by 20208.

Planning for the mobility needs of PEVs is particularly impor-
tant in the context of the vulnerability of the power grid to outages 
that can cascade drastically9. Large-scale failures signified a need to 
reexamine the balance between power demand and the electricity 
infrastructure, opening the need for interdisciplinary approaches to 
study this complex system10. A body of literature has focused on 
the nature of network reliability of power grids, the role of network 
topology on the spread of cascading failures11–17. On the subject 
of PEVs and their impact on the grid, methods of optimization 
and control of PEV electricity consumption have a rich set of ave-
nues18–20. Research topics on this front include measuring impact on 
the grid21–27, developing accurate PEV energy consumption mod-
els28, energy management29,30, smart charging strategies that probe 
centralized and decentralized approaches31,32, scheduling33,34, peak 
shaving, emissions, pricing models35,36 and joint optimization of 
power and transportation networks37. A common shortcoming in 
these works is the narrow scope in incorporating individual mobil-
ity needs into the analyses, often limited to the estimation of arrival 
or departure hours. Up-to-date data on individual mobility demand 
at metropolitan scale have not yet been incorporated into the plan-
ning schemes to manage electricity demand.

In this work, we target these gaps in the literature to extend the 
current knowledge of transportation-based electricity. For this 
purpose, we bring together three independent data sources: (i) 
mobile phone activity of a large sample of San Francisco Bay Area 
residents, (ii) charging sessions obtained from the commercial PEV 
supply equipment in the same region and (iii) surveys on the use 
of conventional and electric vehicles, together with census data for 
income information at the ZIP code level (see Methods). In the 
first part of the work, we estimate individual vehicular mobility per 
week day in the Bay Area using the mobile phone activity of a large 
sample of residents. We then present a Bayesian methodology to 
sample the PEV drivers from all travellers by utilizing information 
obtained from surveys regarding the household income and daily 
travel distances of PEV drivers. In the second part, with the charg-
ing session data, we analyse the various aspects of charging activity 
to characterize the nature of electricity demand at charging stations.  
We observe that PEV charging patterns are highly regular with 
morning and evening peaks following the traffic peaks. These peaks 
of demand are undesired because they can cause instabilities in 
the power grid. To tackle this problem, we explore the relationship 
between the electricity consumption of simulated PEV commuters 
working in the selected ZIP codes and the observed energy demand 
at individual commercial charging stations in the same region. 
We calibrate the charging behaviours of PEV drivers to match the 
observed demand. As an application, we lay out a charging scheme 
that minimizes the peak power by changing the start and end of the 
charging sessions, while also taking into account the constraints in 
changing departures and arrivals. We show how not knowing the 
mobility constraints decreases the potential of the peak minimiza-
tion schemes. In contrast, introducing the awareness of individual 
mobility increases the feasibility of their adoption, affecting less the 
benefits of peak minimization. The resulting effects on the com-
muting travel times and the monetary benefits from the changes 
in charging times support the viability of the charging time shifts. 
Figure 1 depicts a summary of the proposed framework.

Planning for electric vehicle needs by coupling 
charging profiles with urban mobility
Yanyan Xu1,6, Serdar Çolak1,2,6, Emre C. Kara3, Scott J. Moura4 and Marta C. González1,2,5*

The rising adoption of plug-in electric vehicles (PEVs) leads to the temporal alignment of their electricity and mobility 
demands. However, mobility demand has not yet been considered in electricity planning and management. Here, we pres-
ent a method to estimate individual mobility of PEV drivers at fine temporal and spatial resolution, by integrating three 
unique datasets of mobile phone activity of 1.39 million Bay Area residents, census data and the PEV drivers survey data. 
Through coupling the uncovered patterns of PEV mobility with the charging activity of PEVs in 580,000 session profiles 
obtained in the same region, we recommend changes in PEV charging times of commuters at their work stations and shave 
the pronounced peak in power demand. Informed by the tariff of electricity, we calculate the monetary gains to incentivize 
the adoption of the recommendations. These results open avenues for planning for the future of coupled transportation and 
electricity needs using personalized data.
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Estimating individual mobility of PEV drivers
We simulate the individual mobility of the entire population of 
the Bay Area using a fine-scale urban mobility model, TimeGeo38. 
This process begins with the extraction of stay locations in the 
trajectories of each individual39–41. Each stay is then accordingly 
labelled as home, work or other, based on temporal properties 
of the call activities. According to whether the workplaces are 
detected or not, we model the trips of commuters and non-com-
muters respectively (see Methods). Figure 2a represents the simu-
lated trajectory and the labelled activities of a mobile phone user. 
The simulations of individual mobility based on mobile phone 
data compare very well with the results using two travel surveys, 
the 2010–2012 California Household Travel Survey (CHTS)42 and 
the 2009 National Household Travel Survey (NHTS)43. As shown 
in Fig. 2b,d, the daily visited locations and fraction of departures 
per time of the day simulated by our model based on phone data 
agree well with the travel surveys. Further comparisons are pre-
sented in the Supplementary Figs. 1 and 2.

Mobility motifs44 describe the individual daily travel net-
works, where nodes are visited locations and directed edges are 
trips from one location to another. For example, the motif of an 
individual whose only trips in a day are to and from work will 
consist of two nodes with two directed edges (one in both direc-
tions). On average, individuals visit three different places per day. 
When constructing all possible directed networks with six or 
fewer nodes, there exist over a million ways for an individual to 
travel between. However, 90% of people use one of just 17 net-
works, called motifs44. While nearly half of the population follow 
the simple two-locations motif. These results can be modelled 

with a probabilistic Markov model38 that assigns particular rates 
to each individual informed by their trip behaviour. The top ten 
motifs of nearly six million simulated drivers in the Bay Area are 
summarized in Fig. 2c, which implies that the distribution of our 
simulated motifs agrees well with the information gathered from 
mobile phone users. The comparison of motifs of commuters and 
non-commuters are shown in Supplementary Fig. 1c.

After simulated individual mobility overall, we can probabi-
listically estimate the individual mobility of PEVs. To that end, 
we utilize the vehicle usage rate from the US census data and the 
California Plug-in Electric Vehicle Driver Survey45. According to 
this survey, PEV drivers’ income distribution is skewed towards 
higher income segments. In particular, the percentage of those 
with average annual incomes above US$150,000 among conven-
tional vehicle drivers is 15%, compared with the 47% observed 
among PEV drivers. The survey also highlights the typical dis-
tances PEV drivers travel: 64% of PEV drivers travel less than  
30 miles per day (Table 1). This information is used to subsample 
PEV trips from total vehicular trips by implementing the Bayesian 
sampling procedure. Namely, we use the individual income 
estimated from the US census data at the census tract level and 
daily route distance from TimeGeo to estimate the probability of  
that the driver travels with a PEV, both for commuters and non-
commuters (see Methods).

Figure 3a depicts the number of PEVs estimated from the 
Bayesian method at each ZIP code and the number obtained from 
the dataset on PEVs collected by the California Air Resources 
Board’s Clean Vehicle Rebate Project46, referred as the CVRP data-
set. Figure 3b shows a good agreement between the number of 
PEVs obtained via the Bayesian estimates and the mobility model 
versus the ground truth of PEV usage. Figure 3c,d compares the 
distributions of the morning route distance, D, made by all com-
muters versus PEV drivers, as well as the commuting travel time, 
T, under free flow conditions. There are fewer PEV trips shorter 
than 5 km and longer than 25 km, in agreement with the findings 
of the survey. Figure 3e depicts the four mobility motifs from PEV 
commuters, showing that approximately 66% of PEV commuters 
mostly travel between home and work during weekdays. The sim-
ple motif (with ID =​ 1) is more prevalent among PEV drivers than 
among commuters using conventional vehicles, this may be a sign 
of the driver’s concerns on the range of PEVs.

Electric vehicle charging session data profiles
In this section, we analyse PEV charging in non-residential regions 
by examining: visitation patterns and adoption rates, temporal fea-
tures of arrivals and departures, and typical energy and power con-
sumption levels. PEV drivers display varying degrees of regularity 
in terms of how often they visit charging stations. Figure 4a reveals 
that for the majority of PEV drivers the average number of charg-
ing sessions per day, Nday, is less than one. The bottom left inset in 
Fig. 4a displays the logarithmic distribution of the number unique 
PEV charging stations (EVSEs) visited by each PEV driver, NEVSE. 
Noticeably, the great majority of PEV drivers (95.6%) is observed 
in less than 20 distinct EVSEs. The top right inset of Fig. 4a depicts 
the rate of PEV adoption observed throughout the year. The 3,000 
drivers observed in January 2013 increases by an average of 1,000 
per month, doubling twice over the course of 2013.

We look at the arrival and departure hours of charging sessions, 
ha and hd, in Fig. 4b. Approximately 50% of all arrivals take place 
in the 6:00–11:00 morning period, and as expected, the morning 
and the evening peaks are highly pronounced. This points to the 
parallels between the temporal component of overall travel demand 
to electricity demand. We compare the distribution of departure 
time in the morning of commuters with the arrival time of charg-
ing sessions and find notable delay between these two distributions  
(see Supplementary Fig. 6a). Such delay represents the driving time 
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Fig. 1 | Coupling PEV charging with urban mobility. a, Mobile phone data 
are used to model individual mobility. Three users, U1, U2 and U3, interacted 
with their mobile phone at their home and then at workplace Z.  
b, Charging sessions data are used to characterize individual and total 
electricity demand curves. The charging power per timeslot of vehicle  
A, B and C are 1 kW, and their charging sessions are overlapped. The green 
bar plot shows the total electricity demand of vehicle A, B and C at the 
charging station during one day. The peak electricity demand reaches 
3 kW. c, The Bayesian inference method is proposed to find the probability 
that the vehicular trip is made by a PEV. d, Charging activity is shifted to 
create a recommendation scheme that relieves peaks in demand. The peak 
electricity demand at the charging station is reduced to 1 kW via shifting 
the charging sessions of vehicle A and B.
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of commuters from home to work in the Bay Area, which is around 
30 min on average47. In the inset of Fig. 4b we look at the distribu-
tion of inter-arrival and inter-departure times, Δ​ha and Δ​hd, that is, 
the time between two consecutive charging sessions for the same 
driver ID. These distributions are peaked at multiples of 24 h, point-
ing to the diurnal periodicity of PEV drivers’ charging behaviour. 
These findings reinforce the notion that commuting and charging 
behaviour in the non-residential regions are highly related.

Next, we shift our focus to measures per session, such as energy, 
duration and power. Figure 4c exhibits the average energy consump-
tion per session, ES. The battery sizes of Nissan Leaf (24 kWh) and 
Chevrolet Volt (16 kWh), two of the most commonly used PEVs in 
the region, are marked (see also Supplementary Fig. 4)46. Typically, ES 
are well below these capacities, indicating that PEV drivers typically  

stay within the range of their PEVs. PEV drivers can charge at home 
or not necessarily start their commute at full capacity. On the other 
hand, the distribution of session durations reveals that 98.4% of 
all charging sessions last less than a day (Fig. 4c), in line with the 
ubiquitous charging at work places. Given the flexibility in terms 
of battery capacity and mobility patterns, here we assume that the 
session energy ES represents not a single commuting trip, but rather 
a number of them.

The actual charging activity does not last as long as the session 
duration, δS, as seen in Fig. 4d. We divide sessions into four cat-
egories based on their session duration and plot the average power 
consumption for each segment at various percentages of the total 
duration. We observed three levels of power rate that are most 
common, denoted here as levels 1–3 (L1, L2 and L3). The first 
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two deliver 120 V and 240 V, typically corresponding to 3.3 kW 
and 6.6 kW, respectively. L3 chargers are mainly for fast charging 
at 480 V and are relatively uncommon. As faster charging technol-
ogy becomes more abundant, the peak load yielded by PEVs will be 
even higher as the charging sessions start intensively in the morn-
ing. In the charging dataset, L1 and L2 chargers make up 99.9% 
of all the sessions in the dataset (see Supplementary Fig. 6d). This 
composition of power ratings explains the 4 kW upper limit to aver-
age power consumption observed in Fig. 4d. For sessions lasting less 
than 4 h, average power stays above 3 kW up to 80% of the duration 
of the session. Conversely, for sessions that last longer than 12 h but 
less than a day, only in the starting 25% of the session duration is 
there active charging. This corresponds approximately to 3–6 h, and 
the power remains zero thereafter. This is consistent with constant-
current, constant-voltage battery charging behaviour and it suggests 
that currently there is no strategy to charging involved: PEVs are 
charged immediately on arrival.

Coupling PEVs energy demand and mobility patterns
This section presents the coupling of the individual mobility of 
PEV drivers with the energy demand at each destination. First, we 
measure the distribution of electricity demand at a ZIP code from 
the charging sessions, and connect that to the distribution of esti-
mated energy demand of simulated PEVs commuting to that ZIP 
code. The charging sessions data is provided by a private company 
with a partial coverage of the market with reasonable agreement 
of the most popular destinations for charging (see Methods, and 
the comparison of estimated PEVs versus the charging data in 
Supplementary Fig. 5). To estimate the energy demand of each PEV 
trip, we first assign each PEV a mode from the four most popular 
modes (see Supplementary Fig. 4). Each PEV mode is associated 
an energy consumption model. Specifically, we use the drivetrain 
model for the two battery electric vehicle (BEV) modes, Nissan Leaf 
and Tesla Model S48, and the charge-depleting model for the two 
plug-in hybrid electric vehicle (PHEV) modes, Chevrolet Volt and 
Toyota Prius49. For each PEV trip, we estimate the energy demand 
using its average speed and route distance (see Methods).

Due to the limited information from charging sessions data, we 
can not infer the state of charge of each vehicle. Therefore, we assign 
different shares of charging states: morning consumption, daily 
consumption and two-days consumption. This corresponds to dif-
ferent charging behaviours respectively: charging both at home and 
work every day, charging at work once per day or charging at work 
once every other day, indicating that the energy consumption at the 
arrival equals to the consumption of the trips in the last two days.  
In Fig. 3f, we show the comparison of probability distributions of the 
energy consumption of the three scenarios together with the actual 
charge, ES, in a selected ZIP code. The peaks in the distribution of 
ES demonstrate the heterogeneity in the electricity demand, which is 

mainly caused by the travel distance, the battery capacities and the 
charging behaviours of various PEVs. The 3–4 kWh peak, which can 
be observed in both actual and estimated consumptions, is a com-
bination of low energy demand as a consequence of short commut-
ing trips and PHEVs that typically have a battery capacity around 
4 kWh (ref. 50). Further comparisons between daily consumption 
estimates and the charging station data in selected ZIP codes are 
shown in Fig. 3g. The charging data have more pronounced peaks 
than our daily curves, this may be because our charging behaviours 
are simplified, leaving room for further improvements.

To estimate the charging behaviour in the given ZIP code, we 
limit the amount of charging sessions to 30 kWh. The charging 
behaviour is distributed to match the demand of the ZIP code 
with most charging sessions. Corresponding to average charging 
schemes that result in: 10%, 35% and 55% of the PEVs drivers, 
respectively (see also Supplementary Fig. 6c). Note that only 10% 
of the drivers charging at home is in agreement with a recent report 
by the Department of Energy, which states that 80% of partners in 
their Workplace Charging Challenge programme provide free PEV 
charging51. We randomly assign the charging speed from the charg-
ing session data to the simulated PEVs to make the distribution of 
charging speed match with the ground truth (see Supplementary 
Fig. 6d).

Strategies to mitigate peak demand with mobility needs
Our goal in this section is to transform the load curve into one 
that is more uniformly distributed across the day. To that end, we 
propose changes in the start and end of the charging sessions such 
that the peak power load is minimized. We cast the problem as a 
mixed-integer linear program with discrete shifts in arrival times 
and charging end times as inputs (see Methods). The program 
modifies the total power Pt measured through the day resulting 
from the overlapping charging activities of a population of PEVs 
in a way that minimizes the peak power while keeping the total 
energy consumed constantly. In this context, we test two differ-
ent strategies. The first fixes the departure times for PEVs and 
shifts the arrival time in advance by di, an amount specific to ses-
sion i within the interval [0,d], to minimize the peak power load 
Ppeak. We refer to this strategy as end bound. The second strategy, 
referred to as flexible, offers modifications to both of the arrival 
and departure times. In this approach, charging activity is shifted 
in the interval [−​d,d]. In both of the two strategies, the PEVs are 
charged once they are plugged into the charging station and PEV 
driver could depart at their scheduled time if the charging session 
has finished. As a future scenario, we show the peak load saving 
when the charging station is able to control the start of the charg-
ing session independent of the arrival time. The current infra-
structure does not allow the start of charging at an optimized time 
and it is coupled to the PEV arrival. With a smarter charging-shift 
scenario, the charging could be freely shifted between the plug-in/
arrival and plug-out/departure time. We test the time shifting sce-
narios on the 448 PEVs travelling to our ZIP code with the largest 
number of incoming users.

Figure 5a illustrates an instance where 40 charging sessions in 
one day are shifted flexibly. Some users are recommended to charge 
earlier and others later than their actual request. Figure 5b depicts 
how the power curves are modified under the flexible strategy with 
varying value of d (Supplementary Fig. 7 presents the results for the 
end bound strategy). The flexible strategy reduces Ppeak down 47% 
from 1,019 kW to approximately 479 kW for d =​ 4, or 1 h. In con-
trast, the charging-shift strategy reduces the peak load by 66% as we 
have more room to operate the PEV charging.

We also evaluate the effects of introducing the constraints of 
the individual mobility motifs of each PEV. Mobility constraints 
are introduced via the four motifs depicted in Fig. 3e. More than 
30% of PEV drivers have other activities before or after work,  

Table 1 | Characteristics of PEV drivers

Category Conventional PEV

Income (US$1,000) Unknown 20% 17%

<​50 20% 2%

50–100 30% 13%

100–150 14% 20%

>​150 15% 47%

Distance (miles) <​15 – 14%

15–30 – 50%

30–45 – 28%

>​45 – 8%

Distribution of household income and the daily travelled miles of PEV drivers in California, USA45.
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therefore, they are limited to accept the recommendations of a time-
shift strategy if the recommendation falls before their usual arrival 
and departure times. Namely, we impose the following restric-
tions per motif ID. (1) Home-work-home, can change both of the 
arrival and departure time; (2) home-work-other-home, indicates 
activities after work, and they can not delay their departure time;  
(3) home-other-work-home, which indicates activities before work, 
and they can not change their arrival time; (4) home-other-work-
other-home, which indicates the PEV drivers can change neither the 
arrival nor the departure time.

Figure 5c contrasts the estimates of peak saving with and with-
out the consideration of individual mobility constraints in the 
optimization strategy, looking at the percentage of peak loads of 
three schemes with variant d. The three schemes are (i) the opti-
mal strategy, where all PEV drivers can follow the time shifts;  
(ii) the motif blind subtracts to the optimal estimates, all the PEV 
drivers that will not accept the recommendations due to the indi-
vidual mobility constraints; (iii) the motif aware is a customized 
strategy informed by the individual mobility constraints to distrib-
ute the time shifts. These three strategies are evaluated under the 
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end bound and flexible schemes. The comparisons of the power 
curves of the three schemes and the two strategies are shown in 
Supplementary Figs. 7 and 8.

The optimal results are the best case scenario because all sessions 
can be shifted. The motif aware scheme represents the more feasible 
gains by coupling the charging strategies with the constraints of the 
drivers. The motif blind scheme is added to show how optimization 
strategies based on charging data only overestimate the benefits of 
the savings from 3% to 15%, while this loss can be overcome with 
the mobility information.

For the motif aware scheme, we examine the peak load saving 
versus the PEV driver’s adoption rate (also known as flexibility) 
of the time shifts. Figure 5d shows a linear relationship between 
the acceptance rate and the savings for both of the motif blind and 
motif aware schemes. With the increase of adoption rate, motif 
aware contributes more on peak load saving than motif blind. For 
instance, when 80% of PEV drivers accept the time-shift recom-
mendations, the motif aware scheme reduces the peak load by 
424 kW on average, while the motif blind scheme reduces 279 kW 
on average.

In Fig. 5e, we present the peak load saving of the three flexible 
schemes versus the number of PEVs travelling to the selected ZIP 
code. The inset of Fig. 5e shows the estimated peak load without 
energy demand management. Both the peak load and the three 
saving powers grow linearly with the numbers of PEVs. The gap 

between optimal and motif aware is negligible in comparison with 
optimal versus motif blind.

This framework allows us to evaluate how the time shifts in their 
departures affect the commuting travel times of the PEV trips into 
the subject ZIP code. Figure 5f shows that the peak load reductions 
can be achieved without causing major discomfort to commuters in 
terms of travel times. The most negatively influenced drivers end up 
losing a maximum of 20 min in the case of d =​ 4 (1 h), and are far less 
than those who are unaffected by the proposed changes. There is a 
number of drivers that even achieve travel time savings.

Finally, we examine the monetary outcomes of the proposed 
strategies, end bound and flexible. We use the max part-peak 
demand summer rates in the E-19 rate structure for the region 
to calculate the change in demand charge as a proxy of the cost 
in terms of dollars32,52. When implemented, the possible benefits 
of the schemes we proposed are displayed in Fig. 5g: monthly 
potential savings in the demand charge can reach up to US$2,500 
for the motif customized and flexible strategy, corresponding to 
roughly US$5.6 per month per session. Without managing charg-
ing, these savings remain unrealized, and are paid by PEV drivers 
or the companies that subsidize the charging activity. As a sum 
the savings are substantial, yet for the number of sessions on a 
typical weekday considered here, the amount saved per individual 
is relatively small, making the uniform distribution of savings a 
relatively unexciting reward for cooperation. However, as the  
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biggest beneficiary of the PEV traveling management, the power 
grid operator could pay the PEV drivers to encourage their ini-
tiatives on the travel schedule shift. In addition, recent studies 
have suggested that gamified systems are successful in promoting 
behaviour that helps achieve social good53. More specifically, these 
systems encourage engagement by building raffles in which each 
participant has a chance to win a bigger reward with a probability 
proportional to their cooperation level. This type of mechanism 
may make incentivization more attractive in the context of PEVs 
and their electricity demand management.

Moreover, we analyse the potential impact of the PEV travel 
demand management strategy on the non-EV charging electric-
ity demand in both of the residential regions and commercial  

buildings. Among the PEV drivers involved in the time-shift strat-
egy, 60% of them are recommended to depart from home earlier 
and 40% are recommended to depart from home later. Considering 
most of the household electricity usages have two peaks, morning 
and evening peak54, we argue that the time-shift strategy is more 
likely to relieve the morning peak of electricity usage in the residen-
tial area as a part of PEV drivers are leaving home earlier than usual. 
Similarly, as the PEV drivers arrive home at variant time, the time-
shift strategy is also likely to relieve the evening peak load. For the 
commercial buildings, the power load curve is more stable during 
the working hours55. The change of arrival time to or departure time 
from the commercial building will have no significant influence on 
the power load.
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Discussion
This work presents an exploratory analysis that couples two unique 
large datasets on urban mobility and energy consumption of electric 
vehicles. We address a gap in existing PEV management literature, 
namely the simplistic modelling of urban mobility, by generating a 
model of individual mobility informed by large-scale mobile phone 
data. Moreover, we extend the proposed methodology by demon-
strating a charging management scheme and assess its applicabil-
ity by using the information on individual mobility constraints of  
the drivers.

We evaluate recommendation schemes of time shifts in the 
charging sessions constrained by the individual mobility motif of 
PEV drivers. That is, about 30% of PEV drivers could be limited 
to change their travel plan due to their schedule in other activi-
ties before or after work. Following these, peak power values can 
be shed by up to 47%. To assess the feasibility of the recommenda-
tions, we estimate the possible monetary benefits and the travel time 
losses resulting from the proposed schemes. The resulting daily sav-
ings, while modest at the individual level, are certainly substantial 
enough to fund game-based prizes that induce cooperation and 
raise awareness. On the other hand, the travel time losses are almost 
imperceptible to the majority of the drivers, and a substantial num-
ber of drivers, in fact, benefit from the adjustment of their arrival 
times as it aids them to escape morning traffic.

The presented framework relies on individual location data from 
mobile phones and a survey of PEV drivers. We designed a Bayesian 
inference framework to estimate the PEV usage probability of each 
vehicle driver. The Bayesian inference framework relies on three 
properties of the PEV users: the distribution of their household 
income, the distribution of their daily driving distances, and the 
adoption rate of PEV in the city. While the profiles of PEV adopt-
ers may change due to the rebate policy, new battery technique and 
so on, the surveys can be updated based on sales. Thus, via chang-
ing one or more properties, it's easy to estimate the use of PEV in 
each ZIP code under different scenarios. Associated with the mobil-
ity information, the proposed model is adaptable and can be used 
to evaluate different scenario analysis of future energy demand 
of PEVs in time and space. In contrast, the prevalent data-driven 
energy demand methods mainly predict the future demand in a 
given region with the historical data, which can not estimate long-
term consumption under different scenarios56.

There are various avenues in which this work can be extended. 
Better understanding of the charging behaviour of PEV drivers 
and the energy demand in residential regions would complete and 
enrich our planning estimates. As the PEVs are spreading widely at 
the moment, a stronger comprehension of the tie among mobility, 
socioeconomic characteristics of PEV owners and the PEV incentive 
policies is necessary to accurately grasp the future energy demand as 
well as the pressure on the power grid. Another interesting avenue 
is to investigate PEV management when the future energy structure 
changes, such as the rise of the wind and solar power.

Methods
Datasets. Mobile phone activity data, also known as call detail records (CDRs), 
have been widely popular in the past decade, especially in the context of mobility 
modelling39–41,57–59. For this work, we make use of the CDRs for the Bay Area 
including approximately 1.39 million users and more than 200 million calls they 
made over 6 weeks. Each record contains the anonymized user ID, timestamp, 
duration and the geographic location of the associated cell tower. The spatial 
resolution is discretized to the service areas of 892 distinct cell towers. This 
information is used to build the TimeGeo mobility model for the Bay Area for a 
typical weekday. More details of the CDRs can be found in ref. 59.

PEV charging profiles provided by ChargePoint (https://www.chargepoint.com), 
a charging station construction company, contain information on 580,000 PEV 
charging sessions at commercial PEV supply equipment (EVSE) locations across the 
Bay Area in 2013. For each charging session, the following information is available: 
(i) one-time information on the EVSE location type, unique driver ID, total energy 
transferred and plug-in/plug-out times; and (ii) charging power readings obtained 

every 15 min. The locations of the charging stations are anonymized to ZIP code 
level. As a preprocessing step, we filter out those records lasting less than 1 min, not 
occuring in 2013 or with erroneous power measurements exceeding typical cable 
capacity and maximum charging rates.

Census and survey information used in this study consists of shapefiles 
describing census tracts, their population and income information60. The survey 
information is obtained from the California Plug-in Electric Vehicle Driver 
Survey carried out in 201345. This survey contains information on various 
sociodemographic characteristics and travel behaviour of PEV drivers in 
California. We utilize information regarding income and average daily vehicle 
miles traveled in the estimation of PEV mobility.

Individual mobility model. From the CDRs data, we are able to extract the 
visited places and time during the period of the dataset for each user. With that 
information, TimeGeo models and integrates the flexible temporal and spatial 
mobility choice of the individual. In the model, each day of a week is divided into 
144 discrete intervals. For each interval, the individual decides to stay or move, and 
then where to go if she chooses to move. To represent the movement mechanisms, 
TimeGeo introduces a time-inhomogeneous Markov chain model with three 
individual-specific mobility parameters: a weekly home-based tour number (nw), 
a dwell rate (β1) and a burst rate (β2). P(t) is defined as the global travel circadian 
rhythm of the population in an average week and it is different for commuters and 
non-commuters.

For the temporal movement choices, TimeGeo begins with determining if 
the individual is at home. If true, she will move with probability nwP(t), which 
represents her likelihood of making a trip originated from home in a time-interval 
t of a week. If false, she will move with probability β1nwP(t). Then, if she decides 
to move, she goes to other places with probability β2nwP(t) and goes back to 
home with probability 1 −​ β2nwP(t). The P(t), distribution of nw, β1nw and β2nw are 
illustrated in Supplementary Fig. 3.

For the spatial movement choices, TimeGeo uses a rank-based exploration 
and preferential return (r-EPR) to determine the next place of the individual. In 
detail, when the individual chooses to move to another place, she could return 
to a visited place or explore a new place. The model assumes that the individual 
explores a new place with probability Pnew =​ ρS−γ, which captures a decreasing 
propensity to visit new locations as the number of previously visited locations (S) 
increases with time. The two parameters, 0 <​ ρ ≤​ 1 and γ ≥​ 0, are used to control 
the user’s tendency to explore a new location and are calibrated with empirical 
data. If the individual decides to return, the return location is selected from the 
visited locations according to her visiting frequency. If she decides to explore a new 
location, the alternative destinations are selected according to the distance to her 
origin with probability P(k) ~ k−α, where k is the rank of alternative destinations, 
the one closest to the current location is k =​ 1, the second closest k =​ 2 and so on, 
and α is calibrated with the empirical data. More details of the TimeGeo model can 
be found in ref. 38. To assess the simulation of individual mobility in Bay Area, we 
compare the aggregate performance of TimeGeo with NHTS and CHTS and show 
the results in Fig. 2 and Supplementary Figs. 1 and 2.

Electric vehicle mobility estimation. With the purpose of sampling PEV users 
from all vehicular drivers in Bay Area, we first extract the vehicular drivers from 
the entire population with the vehicle usage rate at census tract scale. Then, each 
vehicular driver is associated with a probability of using PEV, P(EV | Iu, Du) on 
the basis of the driver’s household income Iu and daily driving distance Du. Iu 
is the random variable that denotes the income of the trip maker and follows a 
standard normal distribution centred at the median income of the residential 
tract. The median income information at tract scale is from census data60. P(Iu) 
is the probability density of the household income of all trip makers in the Bay 
Area. Similarly, Du is the random variable that denotes the daily travel distance 
of the trip maker. The visited locations of the trip maker are obtained from 
the TimeGeo model and the routing distance is calculated by using a publicly 
available online API service for routing. P(Du) is the probability density of the 
daily travel distance of all travelers in the Bay Area. We assume that for a given 
trip maker, his or her income Iu and daily travel distance Du are independent, 
thereby, P(Iu, Du | EV) =​ P(Iu | EV)P(Du | EV), that is, Iu and Du are also conditionally 
independent given a PEV driver.

To estimate the probability of using PEV, P(EV | Iu, Du), we begin by expressing 
the Bayesian relation:

∣ =
∣

P I D
P I D P

P I D
(EV , )

( , EV) (EV)
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By imposing our aforementioned assumptions on equation (1), we have
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In estimating this value, the share of PEVs within all cars in the Bay Area in 
2013 is 0.62% according to the CVRP data46, that is, P(EV) =​ 0.62%. We make use 
of the PEV driver survey information regarding income and daily travel distance, 
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namely P(Iu | EV) and P(Du | EV), respectively. Once P(EV | Iu, Du) is estimated, the 
probabilities are used to select the PEV drivers from all vehicular drivers. Figure 3c  
represents the distribution of travel distance in the morning of all vehicular and 
PEV commuters.

Energy consumption models. We design different energy consumption models 
for the four popular PEV modes in the Bay Area. In detail, we estimate the power 
demand of Nissan Leaf with a drivetrain model and the trip information. This 
drivetrain model builds the relationship between the energy consumption and  
two aggregate properties of the trip, the average travel speed and the route distance, 
which we estimate from a publicly available online API service for each PEV  
trip. That is,

=E f V D( ) (3)trip
Nissan

trip trip

where Vtrip and Dtrip are the average speed and route distance of the trip respectively. 
f(Vtrip) implies the consumed power per mile (kWh mile–1) when the PEV is 
traveling at speed Vtrip (mile h–1). However, f(Vtrip) depends on the battery used 
by the PEV model, meaning that different PEV models show different shapes of 
f(Vtrip). In this work, we fit f(Vtrip) with a piecewise linear function using the data 
observed from Nissan Leaf3. The curve of f(Vtrip) is given in Supplementary Fig. 6b 
and the formulation is given as follows:
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The consumption of Tesla Model S is the estimated by scaling the consumption 
of Nissan Leaf in the same trip by 1.229, as the Tesla model S consumes 22.9% 
more energy on average than the Nissan Leaf61. That is, Etrip

Tesla =​ 1.229f(Vtrip)Dtrip.
For the PHEVs, we introduce the charge-depleting models to estimate their 

energy consumptions,

= ×E D r Cmin{ , } (5)trip
PHEV

trip PHEV

where r and CPHEV are the electricity consumption rate and the battery capacity of 
the PHEV, respectively. It has been previously calibrated that r =​ 0.288 kWh mile–1 
for PHEVs with 10 mi electric range; r =​ 0.337 kWh mile–1 for PHEVs with 20 mile 
electric range; and r =​ 0.342 kWh mile–1 for PHEVs with 40 mile electric range49. 
In the Bay Area, the two most popular modes of PHEVs are Chevrolet Volt and 
Toyota Prius, and their electric ranges are 40 and 10 mile, respectively. The energy 
consumption models used here also match with the EV efficiency ratings released 
by the US Department of Energy (see Supplementary Table 1).

Optimization model. We begin by discretizing a day into 15-min intervals such 
that each day starts at t =​ 0 and ends at t =​ 95 (ref. 32). For each charging session i 
among N in a day happen in a selected ZIP code, we define t i

a as the arrival time 
index, t i

c as the time index where charging is complete, and td
i  as the departure time 

index. We represent the time indices by the vector τi, and the power consumption 
by vectors Pi and Qi, all defined as follows:
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By shifting Qi within Pi by an amount di for all sessions, we can modify the 
overall power demand curve. We define = − +M t t( ) 1i i i

c a  as the total number of 
non-zero power measurements in this charging session (that is, total number of 
elements in Qi), given that charging sessions start immediately on arrival.  
We enforce continuity of the charging process, the non-violation of departure  
times and amounts of session energy.

To capture the constraints proposed above, we introduce the following formal 
constraints:
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where di is the delay of the charging session of the ith PEV driver. As the mobility 
motif of the PEV driver limits the acceptability of the recommendations, we 
customize di for the PEV drivers with different mobility motifs as shown in Fig. 3e. 
Assuming that the delay of strategy is d, we introduce the following constraints:

=
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In this customization of delay, the drivers with mobility motif ‘home-work-
home’ (H-W-H) could accept any change of arrival and departure time; the drivers 
with mobility motif ‘home-work-other-home’ (H-W-O-H) can not delay their 
departure time, that is, the delay d must be non-positive; the drivers with mobility 
motif ‘home-other-work-home’ (H-O-W-H) can not change their arrival time; the 
drivers with mobility motif ‘home-other-work-other-home’ (H-O-W-O-H) can 
change neither their arrival time nor departure time.

We construct the proposed constraints using a binary decision matrix to 
represent charging or non-charging time slots within the optimization duration. To 
represent the candidate time slot at which Qj

i can be positioned, we create binary 
row vectors xj

i each consisting of 95 binary decision variables: xj k
i
,  ∈​ {0,1},  

∀​j ∈​ [1,Mi], ∀​i ∈​ [1,N], ∀​k ∈​ [0,95].
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Finally, we write the variables in the constraints given in equation (7) using the 
binary decision variable as follows:
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The aggregate power vector AP is given as follows:
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The resulting formulation is a mixed-integer linear program, with decision 
variables Xi, Ppeak and di of which the latter two are integers. The problem can be 
proposed to minimize the daily peak load Ppeak for a group of PEVs arriving to 
the same ZIP code location, subject to equation (7) and the following additional 
constraints:

≤ ∀ ∈ ∀ ∈P i N tAP , [1, ], [0, 95] (12)t
i

peak

Data availability. All data needed to evaluate the conclusions in the paper are 
present in the paper. Additional data related to this paper may be requested from 
the authors.
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Sequences of purchases in credit card data reveal
lifestyles in urban populations
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Zipf-like distributions characterize a wide set of phenomena in physics, biology, economics,

and social sciences. In human activities, Zipf's law describes, for example, the frequency of

appearance of words in a text or the purchase types in shopping patterns. In the latter, the

uneven distribution of transaction types is bound with the temporal sequences of purchases

of individual choices. In this work, we define a framework using a text compression technique

on the sequences of credit card purchases to detect ubiquitous patterns of collective

behavior. Clustering the consumers by their similarity in purchase sequences, we detect five

consumer groups. Remarkably, post checking, individuals in each group are also similar in

their age, total expenditure, gender, and the diversity of their social and mobility networks

extracted from their mobile phone records. By properly deconstructing transaction data with

Zipf-like distributions, this method uncovers sets of significant sequences that reveal insights

on collective human behavior.
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In the age of information, we leave digital traces of our
everyday activities: the people we call, the places we visit, the
things we eat, and the products we buy. Each of these human

activities generates data that when analyzed over long periods
yield a comprehensive portrait of human behavior1–6.

In the past decade, call detailed records (CDRs) have been of
paramount importance to understand the daily rhythms of
human mobility7–11. By properly analyzing billions of digital
traces, our modern society has a whole framework to analyze
wealth12, socio-demographic characteristics13, and to better tackle
the origins of urban traffic14,15. By contrast, we still need to better
exploit the credit card records (CCRs) to uncover the behavioral
information they may hide. Main uses of CCRs have been to
measure similarity in purchases via affinity algorithms16,17.
Recent research has also shown that credit card data can be used
analogously to mobile phone data to detect human mobility.
Namely, the CCRs inform us about the preferred transitions
between business categories, identifying the unevenness of the
spatial distributions of people’s most preferred shopping activ-
ities18, and to enrich urban activity models. Consumers’ habits
are shown to be highly predictable19, and groups that share work
places have similar purchase behavior20. These results allowed
defining the spatial–temporal features to improve the estimates of
the individual’s financial well-being21.

It has been measured by individual surveys and confirmed by
credit card and cash data that the vast majority of daily purchases
is dominated by food and then followed by mobility and
communication–social activities13,22. Their frequency seems to
follow Zipf distribution, meaning that the most frequent category
of purchases will occur approximately twice as often as the second
most frequent category, three times as often as the third, etc.
Grouping the consumers depending on their socio-demographic
attributes preserves the Zipf-like behavior and dominant pur-
chase (food). For each group, there is a peculiar order in the
abundance of less frequent category. As pointed out by Lenor-
mand et al.13 and Sobolevsky et al.23 this depends on the socio-
demographic features such as income, gender, and age.

Hence, the challenge at hand is to obtain meaningful infor-
mation within these highly uneven spending frequencies to cap-
ture a comprehensive picture of their shopping styles related to
socio-economic dynamics within the city.

A similar challenge appears in the sequence of diseases in the
medical records24 or phenotype associations with diseases25.
Existing approaches cluster patients based on their historical
medical records described by the International Classification of
Diseases. In this case, the frequency-inverse document frequency
(TF-IDF) ranking is used to eliminate redundant information.

In the matter of uneven word frequency in the text corpora26,
Bayesian inference methods have been used to detect the hidden
semantic structure. In particular, the latent Dirichlet allocation
(LDA)27 is a widely used method for the detection of topics
(ensemble of words) from a collection of documents (corpus) that
best represent the information in data sets.

However, both of the above-mentioned approaches do not take
into account the temporal order in the occurrence of the ele-
ments. Our goal is to eliminate redundancy while detecting habits
and keeping the temporal information of the elements, which in
the case of purchases are an important signature of an indivi-
dual’s routine and connect them to their mobility needs. In this
work, we identify significantly ordered sequences of transactions
and group the users based on their similarity. This allows offering
deeper description of consumer behavior, unraveling their
routines.

In this work, we are interested in uncovering diverse patterns
of collective behavior extracted from this data. Specifically, how
the digital footprint of CCRs can be used to detect spending

habits, reflecting interpretable lifestyles of the population at large.
By integrating credit card data with demographic information
and mobile phone records, we have a unique opportunity to
tackle this question.

The presented method is able to deconstruct Zipf-like dis-
tribution into its constituent's distributions, separating behavioral
groups. Paralleling motifs in network science28, which represent
significant subnetworks, the uncovered sets of significant
sequences are extracted from the labeled data with Zipf-type
distribution. Applied to CCRs, this framework captures the
semantic of spending activities to unravel types of consumers.
The resulting groups are further interpreted by coupling together
their mobile phone data and their demographic information.
Consistently, individuals within the five detected groups are also
similar in age, gender, expenditure, and their mobility and social
network diversity. We show that the selection of significant
sequences is a critical step in the process; it improves the TF-IDF
method that is not able to discern the spending habits within the
data. Remarkably, our results are comparable with the ones
obtained by LDA, with the added advantage that it takes into
account the temporal sequence in the activities.

Results
Data analysis. We analyze individual CCR transactions over
10 weeks in 150,000 users who live in one of the most populated
cities in Latin America (Mexico City, Mexico). The data set
contains age, gender, and residential zipcode of the users (Sup-
plementary Figure 1A–C). For each user, we analyze the chron-
ological sequence of their transactions and the associated
expenditure labeled with the transaction type via a Merchant
Category Code (MCC)29. The purchase entries are aggregated by
the user and are temporally ordered with respect to each day. For
one-tenth of the analyzed users, we also have their CDR data over
a period of 6 months (overlapping the CCR time period),
including time, duration, location of the calls, and identification
of the receiver. While payment with cards and electronic payment
terminals are being promoted in the region to improve financial
inclusion, credit card adoption rates remain relatively low at 18%
for the population30. First, we check how representative the CCR
users are within the city. We observe the correlation between the
median CCR expenditure in the data set at the district level and
the average monthly wage in the same district, according to the
census (Fig. 1a) (Source: INEGI, National Survey of Occupation
and Employment (ENOE) and population aged 15 years and
older.). The monthly expenditure of card users is high in relation
to their monthly wages, indicating that the adoption of credit
cards predominantly occurs among users with higher wages in
each district. However, our users’ sample spans over all the city
districts with different income levels. We observe that wider
adoptions of credit card are across male and young adults (aged
35–50 years) in each district (Supplementary Figure 1B–F). The
spending patterns in the CCRs reveal that the frequency of the
purchase types follows Zipf’s law (Supplementary Figure 2A). The
majority of shoppers use more frequently the top 20 transactions
codes presented in Fig. 1b, among hundreds of possible MCCs.
Moreover, slight variations emerge in this trend when dividing
the population by wealth, age, and gender (Fig. 1c). In general,
transaction codes related to food, mobility, and communication,
in that order, dominate the number of top transactions in all
groups and the number of transactions per day; for each user is
not affected by any socio-demographic category (Supplementary
Figure 2B, C).

Credit card transaction codes as sequence of words. Our main
goal is to amplify the signal in the data to identify the individuals’
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expenditure habits hidden in the non-uniform distribution of
transaction types present in a Zipf’s type of distribution. The first
step in this direction is to transform the chronological sequence
of user MCC codes into a sequence of symbols given by the
transaction codes (Fig. 2a). We apply the Sequitur algorithm31 to
infer a grammatical rule that generate words, defined as MCC
symbols that repeat in sequence. The result of this process applied

recursively is a compression of the original sequence with new
symbols called words, which offer insights into the repeated
sequences of transactions. We take each word as a routine in
shopping, as they are a chronological sequence of two or more
MCCs that appear frequently. We detect more than 10,000 dif-
ferent words also following a Zipf-type distribution, as presented
in Fig. 3. We noticed that the inter-time transactions between
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word purchases are smaller with respect to two random con-
secutive transactions. Moreover, the time to perform an n-
transaction word, defined as the time between the first and the
last purchase of the word, is smaller than the time of two con-
secutive transactions picked randomly (Fig. 3c). The set of words
{wi} for user i are significant only if their occurrence differs from
the outcome of a random process with the same number of
transactions per type. To detect the words that are significant, we
generate 1000 randomized code sequences for each user. For each
realization, we apply the Sequitur algorithm to define the words
in the randomized sequences and evaluate the significance level of
the user’s words by computing the z-score of the occurrence of
the real words with respect to the randomized ones. Z-score test
needs to be performed on a Gaussian distribution of word
occurrence. The word-occurrence distribution of simulated
samples has in general a normal shape. But in several cases, the
frequency of the generated words has a small number of

occurrences; in Supplementary Figures 3, 4, we show the
robustness of a z-score benchmark to assess the word significance
for non-Gaussian distributions. We extract for each user, the set
of significant words with z-score >2, defined as {wi}. The selected
words represent the shopping routines that indicate informative
choices in the user’s spending behavior (see Supplementary Fig-
ure 5), given that their occurrence vary from the mean by two
standard deviations. In the Supplementary Figure 5D, E, we
analyze the number of valid users with at least a significant word
depending on the z-score threshold.

The lifestyles. With these meaningful samples, we can now
measure the similarity between shopping behaviors among users.
To that end, we decompose each significant word as direct links
between its transaction codes. Each user is represented by a
directed network, in the space of MCC, that collects all the links
present in the user’s words. We then calculate the Jaccard
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similarity coefficient between all the users to compare the set of
links in their networks (see the illustration of the method in
Fig. 2b). Since user networks have a low degree, our similarity
measure is not sensitive to the sets’ size (Supplementary Fig-
ure 6C). Moreover, our results are in agreement with the ones
that use the turnover component of Jaccard dissimilarity index32,
which is less susceptible to the sets’ size (see Supplementary
Figure 6). Owing to the Jaccard index, we obtain the matrix M of
users’ similarity in shopping sequences.

Finally, we identify the groups in this matrix by applying a
parallel Louvain algorithm for faster unfolding of communities in
M33,34. The same clusters appear with Leading Eigenvector35 and
Walking Trap36 (Supplementary Figures 7, 8). We detect six
clusters or groups of users who share similarities in their
spending habits; one of the six encloses unlabeled users who are
close to the average behavior, while the other five present
interesting behavioral preferences as confirmed later by their
demographics and their mobile phone records.

Figure 2c shows the group’s shopping habits. The weight of the
arrows between two codes represents the fraction of users of a
given cluster that have the given transaction sequence. This
schematic representation of the group's routines is
possible because our method firstly, detects the most significant
sequences of transactions and secondly preserves the temporal
information embedded in word as the ordered sequence of
transaction.

Coupling credit card data with mobile phone data. In order to
gather a more comprehensive portrait of the users’ behavior, we
couple the information of the CCR users with their CDR data
(Fig. 2d, e). From the mobile phone data, we analyze the basic
characteristics of an individual’s social contacts and their

mobility network with well-established metrics, namely, social
diversity, homophily, mobility diversity, radius of gyration8,37,
tower residual activity38, and mobility behavioral pattern. Social
network diversity is the entropy associated with the number of
individual i’s communication events with their reciprocal
contacts divided by the number of contacts1. Homophily, in the
call graph from the mobile phone data, is a metric that inves-
tigates whether or not two users in the same cluster have a
higher probability of contacting each other. Mobility diversity is
measured via entropy in the number of trips between locations
normalized by the number of visited locations37. Ego networks
are defined by a focal node (ego) and the users to whom the ego
is directly connected. High diversity score in the ego network
implies that individuals split three times evenly among their
social ties. High diversity in the network of trips among loca-
tions means that individuals distribute their number of trips
evenly among their visited urban locations. Radius of gyration,
in turn, defines the radius of the circle within which they are
more likely to be found, it is centered in all the visited locations
of i and weighted by the number of mobile phone records in
each location8. From the urban science perspective, we inves-
tigate the cell towers’ residual activity as defined by Toole
et al.38 to determine whether users who belong to the
same cluster tend to aggregate in a specific area of the city.
Residual activity can be interpreted as the amount of mobile
phone activity in a region relative to the expected mobile phone
activity in the whole city. Finally, to assess the mobility beha-
vioral pattern, we analyze the portion of explorers and returners
among the users39. Returners are the users who limit much of
their mobility to a few locations; in contrast, the explorers have
a tendency to wander between a larger number of different
locations.
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Discussion
Five of the six clusters detected depict a particular lifestyle on how
individuals spend their money, move, and contact other indivi-
duals. One transaction type is at the core of the spending activities
in each group, and 90% of the users within the cluster have it
repeated as a sequence (or significant word, represented by yellow
loop in Fig. 4a). This transaction also appears in more than 45%
as starting or ending transaction of the sequences of other types
of transactions within the group (Fig. 4a). The users clustered by
using our approach have relatively high Shannon entropy in their
transactions and a Sequitur compression ratio of 1.5 or larger
(Supplementary Figure 10). Cluster 5 aggregates the uncategor-
ized users. In particular, users who belong to this cluster have less
than five significant sequences and less variation in their expen-
diture types (Supplementary Figures 7–9).

Figures 4b, 5 show that each cluster reveals consistent relations
between expenditure patterns and age, mobility, and social net-
works of their members, hinting that the method actually unra-
vels behavioral groups in the data or actual lifestyles. Cluster 1
aggregates users whose core transaction is toll fees, and accord-
ingly we label them as Commuters. They live furthest from the
city center, expend the most, travel longest distances, and are
majority male, as confirmed from the analysis of the radius of
gyration and the residual activity in Fig. 5a. Conversely, users in
the cluster 2 or homemakers have grocery stores as a core
transaction. They represent the oldest group with least expendi-
ture, mobility, and a larger share of women. Although the social
network of this cluster manifests a lower diversity, there is a slight
preference in the homophily matrix in this cluster, suggesting that
the few connections are cluster transversal (Fig. 5b). Younger
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users are split into two groups (clusters 3 and 4) with different
values in their expenditure, and social and mobility diversity.
Cluster 3 is labeled as Youths because it has the youngest indi-
viduals with taxis as their core transaction. Cluster 4 is close in
age to cluster 3, but has computer networks and information
services as a core transaction. They are labeled as Tech users and
have higher than average expenditure and higher diversity in their
social contacts and mobility networks. The residual activity
(Fig. 5a) suggests that their movements are within the city center.
Moreover, clusters 3 and 4 are the only ones with a majority of
explorers within their users, supporting the lifestyle fingerprint
(Fig. 5c). Finally, cluster 6, labeled as Diners, aggregates middle-
aged users who have restaurants as their core transaction with
high mobility diversity and higher expenditures (see Supple-
mentary Figures 11–16, 21 for further information).

We compare the detected groups with the ones extracted via the
patients’ stratification technique to analyze the health records24.
Instead of applying the Sequitur algorithm to assess the likelihood
of a given sequence of codes, we compute, for each user's code, the
TF-IDF frequency measure40, which rewards high code frequency
in the individual records and penalizes high prevalence across the
all user's history. The similarity matrix among users is based on
the cosine similarity in the space of the code frequency TF-IDF.
The clusters extracted via this method (Supplementary Figure 17)
do not have socio-demographic similarities, and the characteristics
of the members within each group average similarly to the
population. Moreover, TF-IDF does not disentangle the Zipf
distribution (Supplementary Figure 17c), meaning each cluster
keeps the same overall transaction frequency.

Furthermore, we compare our clusters with the LDA27,41. This
method first identifies five topics represented by an ensemble of
MCCs. Each user is identified by a vector vi weighting the mixture
of those five topics. We compute the users’ similarity matrix using
Jensen–Shannon divergence42 among vi. Finally, we perform the
Louvain algorithm over the matrix. Four of the seven identified
clusters (1, 2, 3, and 7), in the Supplementary Figure 18, are
similar to our clusters (1, 2, 3, and 6). Furthermore, the LDA is
able to untangle the similar variance from the Zipf distribution
(Supplementary Figure 18C) compared with our method (Sup-
plementary Figure 13B).

With respect to the above-mentioned methods (TD-IDF and
LDA), our approach deconstructs the Zipf distribution into the
constituents’ behavior (see Supplementary Figure 13B). The
resulting clusters of the latter are comparable with our method.
Furthermore, our framework is able to capture the routines of
each cluster as ordered sequence of transaction; this temporal
information is lost using the above-mentioned approaches. These
tests stress the effectiveness of our method.

Finally, we apply our framework to another minor city of
Mexico: Puebla (Supplementary Figure 19–21). As already shown
by Sobolevsky et al.23, different cites manifest a general behavior
in terms of spending patterns, maintaining some unique char-
acteristics. In Puebla, we detect six clusters; four of them share
similar routines and attributes to the main city (Mexico City
clusters (2, 3, 5, and 6)). Comparing the median absolute devia-
tion of each cluster, it is possible to assess the diversity of every
socio-demographic attribute (Supplementary Figure 21). In par-
ticular, the routines of Commuters’ clusters are identifiable in
both of the cities, with some difference in the mobility attributes.
Finally, in Puebla, the Youth cluster is replaced with one with
different core transactions in the miscellaneous food store and
insurance instead of taxi and restaurants. This result stresses how
our framework can capture cities' differences in terms of spending
patterns, providing a tool to enrich the urban activity models.

Taken together, we present a method to detect behavioral
groups in chronologically labeled data. It could be applied also to

similar data sets with Zipf-like distributions, such as disease codes
in patients’ visits24,25 or law-breaking codes in police databases43.
Given the ubiquitous nature of the CCR transaction distribution
by type23, similar groups could be detected and compared among
cities worldwide. Analogous to the price index that uses online
information to improve survey-based approaches to measure
inflation44, the meaningful information of groups extracted from
the CCR data can be used to compare consumers worldwide4.
Interesting avenues for the application of this method are policy
evaluation of macroeconomic events such as inflation and
employment and their effects on the spending habits of various
groups45.

Methods
Credit card data sets. Credit card data sets, also referred to as CCRs, used in this
study consists of 10 weeks of records, starting from the 1st week of May 2015, of
all the credit card users of a particular bank across each subject city. Each
individual CCR consists of a hashed user identification string, the time stamp of
the transaction, the associated expenditure labeled with the transaction type via
an MCC29, and the transaction amount. For each user, the data set contains age,
gender, and residential zipcode of the user (Supplementary Figure 1A–C).The
purchase entries are aggregated by user and are temporally ordered with respect
to each day.

Mobile phone data sets. Mobile phone data sets, also referred to as CDRs, used in
this study consist of 6 months of records, starting form March 2015, of all mobile
phone users of a particular carrier across each subject city. Each individual CDR
consists of a hashed user identification string, a time stamp, and location of the
activity. The spatial granularity of the data varies between cell tower levels.

Census data. The census data used in this work were download from the Instituto
Nacional de Estadística Geografía e Informática, México (http://www.inegi.org.mx/
last checked 13/Jun/2018). In particular, the data regarding the population dis-
tribution among the districts are from “Source: INEGI, Intercensal Survey 2015”
and the data on the district income are from “Source: INEGI, National Survey of
Occupation and Employment (ENOE). Population aged 15 years and older.”

Data availability. For contractual and privacy reasons, the raw data is not avail-
able. Upon request, the authors can provide the data of the matrix of user similarity
along with appropriate documentation for replication.
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