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Knowing how individuals move between places is fundamental to advance

our understanding of human mobility (González et al. 2008 Nature 453,

779–782. (doi:10.1038/nature06958)), improve our urban infrastructure

(Prato 2009 J. Choice Model. 2, 65–100. (doi:10.1016/S1755-5345(13)

70005-8)) and drive the development of transportation systems. Current

route-choice models that are used in transportation planning are based on

the widely accepted assumption that people follow the minimum cost path

(Wardrop 1952 Proc. Inst. Civ. Eng. 1, 325–362. (doi:10.1680/ipeds.1952.

11362)), despite little empirical support. Fine-grained location traces collected

by smart devices give us today an unprecedented opportunity to learn

how citizens organize their travel plans into a set of routes, and how similar

behaviour patterns emerge among distinct individual choices. Here we study

92 419 anonymized GPS trajectories describing the movement of personal cars

over an 18-month period. We group user trips by origin–destination and

we find that most drivers use a small number of routes for their routine jour-

neys, and tend to have a preferred route for frequent trips. In contrast to the

cost minimization assumption, we also find that a significant fraction of

drivers’ routes are not optimal. We present a spatial probability distribution

that bounds the route selection space within an ellipse, having the origin

and the destination as focal points, characterized by high eccentricity inde-

pendent of the scale. While individual routing choices are not captured by

path optimization, their spatial bounds are similar, even for trips performed

by distinct individuals and at various scales. These basic discoveries can

inform realistic route-choice models that are not based on optimization,

having an impact on several applications, such as infrastructure planning,

routing recommendation systems and new mobility solutions.
1. Introduction
The high urban population density [1] poses new critical challenges in design-

ing the cities of the future. Among those, traffic congestion is one of the most

pressing issues. Under increasing mobility demand, the intricate task of

improving existing infrastructure to allow swift mobility in the city requires

special efforts. Technology can be used to collect data about humans interacting

with their built environment. Converting unstructured data into knowledge

requires specialized methods that extract meaningful information about

individual preferences.

In the previous decade, we have learned valuable aspects of human mobi-

lity, mainly from large scale data mined from mobile phone networks.

Individuals’ visit patterns are highly predictable, presenting unique and slow

exploration habits [2–7]. Mobile phone traces still remain too coarse, both in

space and in time, and are unsuitable to investigate details of human choices.

On the other hand, the rapidly increasing popularity of devices equipped

with location sensors offers unprecedented possibilities to study individual

mobility at a finer-grained level. This new lens enriches our understanding of

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2016.0021&domain=pdf&date_stamp=2016-03-09
mailto:antol@mit.edu
http://dx.doi.org/10.1098/rsif.2016.0021
http://dx.doi.org/10.1098/rsif.2016.0021
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org
http://orcid.org/
http://orcid.org/0000-0002-4473-5311
http://dx.doi.org/10.1038/nature06958
http://dx.doi.org/10.1016/S1755-5345(13)70005-8
http://dx.doi.org/10.1016/S1755-5345(13)70005-8
http://dx.doi.org/10.1680/ipeds.1952.11362
http://dx.doi.org/10.1680/ipeds.1952.11362
http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160021

2

 on March 10, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
human behaviour, and allows us to examine each movement

in detail and to better comprehend routing decisions, at the

root of vehicular traffic.

Route-choice modelling is the process of estimating the

number of vehicles using a link in the road network and it

is a fundamental step in transportation forecasting [8].

Given some knowledge of travel demand, models associate

individuals with the path they will probably follow during

their journey. Urban travel demand has traditionally been

estimated by upscaling travel diary surveys [9] and, more

recently, through analysis of mobile phone data [10–14].

Route assignment techniques are based on the widely

accepted assumption that individuals choose the route that

minimizes a cost, usually distance, travel time and/or fuel

consumption. The true utilization of a road link is assumed

to be similar to that obtained under deterministic user equili-

brium, or Wardrop’s equilibrium [15]. In stochastic user

equilibrium [16,17], a random component is added in the

expected travel times, in order to introduce heterogeneity in

the routes and to represent travellers’ preferences unknown

to the modeller. The sets of feasible routes are either obtained

by the two methods described above: deterministic shortest

path and stochastic shortest path. More recently, probabilistic

approaches and constrained enumeration algorithms have

also been used for this purpose. In probabilistic approaches

[18], a network link is chosen depending on its distance from

the shortest path, according to a generalized cost function. Enu-

meration methods [19,20] rely on the assumption that travellers

choose routes according to behavioural rules other than

the minimum cost path. However, empirical results have

shown that users choose multiple routes over origin–

destination pairs, reporting that most choices deviate

significantly from the shortest time path [20–23]. Detours can

happen for several reasons, like picking up or dropping off a

passenger, having a short break at a favourite place or avoiding

unpleasant areas (because of high traffic, crime, aesthetic

reasons, etc.). Previous literature has tried to identify causes

behind deviation from cost minimization, finding that factors

that influence this are several and related to many aspects,

for example, the initial straightness of the route [24,25], the rela-

tive topography [26,27], the presence of landmarks and anchor

points [28–30], the direction and other aspects [31] influenced

by estimation errors [32].

Investigating the reason behind each detour might be a

daunting task, given that the strategies used by drivers are

much more diverse than route-choice models assume

[33,34]. Instead, we would first instead try to quantify how

often these detours occur and how large they are. The

hypothesis that we check is that, regardless of the reason

behind the detour, a clear physical limit dictates whether a

possible deviation that is being taken into consideration by

the driver will be ultimately taken or ignored by the driver.

In other words, how to quantify these deviations in a set of

universal rules in order to be able to synthesize them.

Doing that would allow us to inform probabilistic and enu-

meration route-choice models. Namely, given the daily

routine of individuals in different cities with long-term obser-

vations, how can we generate heterogeneous yet feasible

rules related to alternative route choices?

To that end, we use GPS traces generated by 526 private

cars over an 18-month period, and explore how their routing

behaviour unfolds in four cities. We investigate how many

routes they use and how often they use each of them. We
also consider whether these routes are shortest paths and

evaluate how far they typically go. We finally give a spatial

characterization of routing behaviour. These findings can be

used in existing or new models of route choice.
2. Results
Firstly, we convert the unstructured sequences of time-

referenced positions coming from GPS devices into a

meaningful set of locations, trips and route choices [35,36],

as shown in figure 1a. We describe a trajectory as a finite

sequence of (t, x) tuples, where t represents a time value

and x a location vector. The source and the destination of

the trajectory are the first and last point of the sequence,

respectively. We call significant place a geographical region

that a person goes to several times. Significant places detected

in this study have a diameter smaller than 600 m, which is

compatible with choosing parking spots in the proximity of

a destination. Several trips performed by a user between

the same pair of significant places together define a routine
trip. The distribution of significant places in each city is

shown in the electronic supplementary material, figure S1.

Finally, depending on how spatially similar the trajectories

of a routine trip are, they can be grouped into one or more

route choices (see an illustration in figure 1b–d and more

details in Material and methods).

The first question we answer is: how many different

routes do drivers use in their routine trips? In figure 2a, we

plot the histogram of the number of routes used for each rou-

tine trip. The histograms are surprisingly similar among

diverse cities. Independent of the urban settlement under

consideration, different individuals prefer to use a limited

number of routes, and a third of them use only one route.

This is a notable result, considering that these trips span an

18-month period. We can safely conclude that users organize

their routine trips through only a few preferred route options,

where the number of choices follows a lognormal distribution

with parameters m ¼ 0.71 and s ¼ 2.22. The lognormal distri-

bution, linked to a multiplicative random process, is

ubiquitous in social science [37] and has been found also in

the distribution of single-mode distance trips [38]. In this

case, it may arise from the set of unknown random variables

that determine individual route choices.

Next, for routine trips that have used more than one

route, are some of them chosen more often than others? In

order to answer this question, we use a normalized Gini coef-

ficient Gn, corrected to have meaningful values when the

number of routes is small (see Material and methods). A

value close to 0 (maximum equality) suggests that routes

are evenly used. A value close to 1 (maximum inequality)

suggests that the user is strongly biased towards one route

for that routine trip and that the alternate routes have been

seldom used. In figure 2d we plot the normalized Gini, for

routine trips that have at least two route choices, computed

on the number of times that the route has been used. In gen-

eral, routine trips have high values of the Gini coefficient

with a median value of 0.6, suggesting that people tend to

have a dominant route. Moreover, a mild correlation between

the Gini values and the number of trips made suggests an

adaptation process: when an individual repeats a journey

more than 20 times, a preferred route tends to dominate

their route choices. By contrast, we found both the number

http://rsif.royalsocietypublishing.org/
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Figure 1. From trajectories to route choices. (a) A sample of the trajectories analysed from the four cities, shown in grey, outline their urban road networks.
Coloured trajectories spanning between the same pair of points represent seven routine trips. In each routine trip, a coloured line represents a distinct route
choice. (b) A set of trajectories belonging to a car. Each trajectory starts at the circle marker and ends at a square marker. (c) By clustering the endpoints of
the trips, we find three significant places. Two routine trips are shown with a solid black arrow. (d ) We finally discover, for each routine trip, the different
route choices performed by the driver. In this example one routine trip has three route choices ( purple, green, red), the other has two (cyan, orange).
(Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160021

3

 on March 10, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
of routes and Gn to be uncorrelated with the most common

time and day of the week of the routine trip.

Finally, what are the characteristics of a dominant route?

Previous research has assumed that drivers prefer routes mini-

mizing some cost function, directly connected to travel time,

fuel consumption or distance. We compare the routes taken

by the user with the routes suggested by a popular online rout-

ing service. The service provides up to three alternative routes,

accounting for expected travel times and traffic conditions. In

order to compare these recommended optimal routes with

the routes actually chosen, we measure the maximum distance

between a user’s GPS positions and the recommended path (see

Material and methods for further information). In figure 2c, we

show the distribution of these distances, in four cases: when

comparing only the top optimal route with the most used

route; when comparing the optimal route with all the user’s

routes; when comparing the three suggested optimal routes

to the dominant route used by the user and, finally, when com-

paring all suggested routes with all the user’s routes. In the last

three cases, only the pairs of routes that deviate the least are

considered. In about 53% of the cases, the dominant route

chosen by the user is not the first optimal choice. For about

34% of the user routines none of the routes are compatible

with the optimal choices, indicating that preferred routes do

not minimize the travel cost. In electronic supplementary

material, figure S3, we see that this result is valid independently
of the distance between origin and destination and that as this

distance increases, the chosen route is further away from the

optimal route. A previous study at a smaller scale had also

found similar results that reject the shortest-path assumption

[39]. It is noteworthy that in this paper we define ‘optimal

routes’ as those suggested by a very popular online routing ser-

vice that takes into account typical traffic conditions based on

historical data. We stress this does not mean these routes are

optimal in absolute terms. In this case, the suggested routes

are optimal according to the service used, based on their traffic

estimation model and routing algorithm.

Next, our goal is to determine how far away individuals

are willing to go while undertaking their trip. To that end,

we study the probability density function F(x, y) of the

route locations, normalized with respect to the source and

the destination. We transform trajectories to a common refer-

ence frame of coordinates for all trajectories. The goal is to see

how paths unfold and how far they usually go from their

endpoints, regardless of their geographical position and of

the trip length. In figure 3b, we see that most of the deviations

are small with respect to the source–destination endpoints. In

particular, we find that the majority of the positions recorded

are contained within an elliptical area, having as the two foci

the first and last point of the trip (figure 3c; electronic sup-

plementary material, figure S5). This result suggests that

while individuals commonly take detours due to personal

http://rsif.royalsocietypublishing.org/
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Figure 2. Individual patterns of route choice. (a) The distribution of the number of routes used for a routine trip. For most routine trips this number is low, despite
the fact that these trips span over a period of up to 18 months. The markers show the empirical histograms about routine trips grouped by city. The solid curve
shows the best lognormal fit, obtained on aggregated data generated in all four cities. (b) The probability density distribution of number of trips performed in a
routine trip; the solid line is a kernel density estimation. (b,d,e) Share the axes and are on the same scale. (c) Maximum point distance between the optimal route
ropt, as suggested by the online routing service, and the favourite user route rusr. For the other three curves, we consider all the alternative routes returned by the
service and all the routes ever used by the driver, choosing for each element the route that deviates the least from its counterpart, respectively r�opt and r�usr: Notably,
34% of the routes chosen are not any of the shortest paths and over 53% of the preferred routes are not optimal. (d ) The number of trips performed during a
routine journey versus the normalized Gini coefficient related to how many times each route choice is used. The two quantities show a weak correlation (Pearson’s
r ¼ 0.48, p ¼ 4.2e – 255). The more a driver travels between two locations, the more likely it is for them to have a route of preference. (e) The probability density
distribution of the normalized Gini coefficient Gn; the solid line shows a kernel density estimation. (Online version in colour.)
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preferences or characteristics of the street network [14,40],

these detours are well bounded. The emergence of an

elliptical shape is not surprising. Keeping in mind that

an ellipse is the loci of the points P such that the sum of

the distances to the two focal points F1and F2 is constant

(d(F1, P) þ d(F2, P) ¼ a), this result shows that the detour

that people are willing to take is bounded. Trips that require

larger detours are rare, as they are unlikely to be undertaken,

or they might be split into two distinct trips.

In order to further investigate this hypothesis and formally

quantify the detours, we calculate two quantities for each trip:

the geodesic distance between source and destination f; and a,

the maximum value of the sum of the distance to the source

and to the destination from any points along the path taken

by the user. Finding these values is equivalent to identifying

an idealized ellipse that fully contains all the paths taken by

the driver. The eccentricity of the ellipse e ¼ f/a indicates

how far from the geodesic this path goes. In the unlikely

case where the endpoints lie on the same straight street and

the driver takes the shortest route, f ¼ a, the eccentricity

takes the maximal value of 1, and the ellipse degenerates

into a straight line. At the other extreme, a value of eccentricity

close to 0 indicates that the path taken is very far from the end-

points, the ellipse tends to look like a circle in the target space

and the two endpoints are close to each other compared with

the path taken by the driver while moving between them.

Generally the straight route is not a viable option because

of physical obstacles. Drivers deviate from that idealized

shortest path according to the underlying street network

and personal routing preferences. While these two phenom-

ena are hard to treat, we find that routing detours are well
approximated by an ellipse with high values of eccentricity

(figure 3d; electronic supplementary material, figure S4).

Large deviations are rare; we speculate that they are caused

by intermediate destinations that the driver intends to reach

before the final destination (e.g. giving a ride to somebody

and dropping them off). Interestingly, the value of the eccen-

tricity does not change considerably with distance between

the endpoints (figure 3e), suggesting that, in an urban setting,

the space of the routing alternatives is proportional to the

effective distance travelled. Whether this result also holds

for trips at longer distances, such as inter-city journeys, is

to be investigated in future analyses.

It is worth mentioning that ellipses have been previously

used to understand the spatial extent of activity spaces and

chained trips [41–43]. To the best of our knowledge, instead,

this is the first work that uses ellipses to quantify detours of

single non-chained trips.
3. Discussion
We have discovered a set of behavioural rules that capture

individual behaviour in an urban environment. They are

independent of the urban layout and were obtained by

methods that are agnostic of the underlying street network.

The rules establish the basic ingredients of realistic route-

choice models. Once a travel plan is established for a user,

a dominant route must be assigned. This choice should be

spatially bounded within an elliptic shape of high eccentri-

city, as observed in the experimental distribution,

opportunely scaled so that the origin and the destination

http://rsif.royalsocietypublishing.org/
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are the foci of the ellipse. Although the choice can be driven

by a distance/cost function from the main axis of the ellipse,

it does not have to be deterministically chosen as the path

that minimizes a travel cost, as we have seen this does not

typically reflect personal routing choices. Finally, individuals

could choose alternate routes, within the ellipse, with prob-

ability inversely proportional to how often the person

travels between the endpoints.

A new science of cities is emerging [44], heavily fuelled by

the massive data generated by numerous sensors, inherently

interdisciplinary, motivated by the need to improve people’s

lives and counteract the negative effects of the increasing

urban population (such as traffic congestion and pollution,

to name the most urgent). The findings generated by this

urban science can be successfully used to design simple yet

innovative solutions [45,46] that can help cities of today

turn into smart cities of tomorrow.
4. Material and methods
4.1. GPS data
The dataset contains information about the trajectories followed

by 526 users in an undisclosed European country over a period

of 18 months. The trajectories followed by the cars were collected

by GPS devices installed on them. Each trajectory is composed

by periodic location updates, taken every 60 s, starting when

the driver turns the engine on, until it is turned off. We remove
inconsistent data points that are collected when the number of

satellites available is lower than 4, and we remove sudden GPS

jumps that are inconsistent with average travel speeds higher

than 110 km h21. All user IDs were given in anonymized form.
4.2. Significant locations extraction
We extracted each user’s significant locations by clustering the

starting and ending point of each trajectory. The geographical

distance between points was computed using the Haversine for-

mula. The clustering was performed using the mean shift

algorithm. This clustering method detects groups of points that

are dispersed around a centre, according to a Gaussian distri-

bution. By choosing the bandwidth parameter g ¼ 0.025, we

find clusters of points that are distant from each other at most

by 600 m. The sensitivity analysis of g is shown in the electronic

supplementary material, figure S2. These points can be reason-

ably different parking spots used to reach the same final

destination, located at walking distance.
4.3. Distance between trajectories
In order to compare trajectories, which in general are defined by

a heterogeneous number of points, we use the dynamic time

warping (DTW) algorithm, traditionally used in speech recog-

nition and shape analysis. Given two paths A ¼ [a1, a2, . . . , aN]

and E ¼ [b1, b2, . . . , bM], specified as sequences of geographical

points of different length, we first find an alignment such that

the following recursive definition, for i ¼ 1 . . . N 2 1, j ¼ 1 . . .

http://rsif.royalsocietypublishing.org/
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M21, is minimized:

WðAi, BjÞ ¼ dðai, bjÞ þmin
WðAiþ1, B jþ1Þ
WðAiþ1, BjÞ
WðAi, B jþ1Þ

8<
: ; ð4:1Þ

where Ai and Bj are subsequences containing all the elements 1 . . . i
from A and 1 . . . j from B, respectively; the element-wise distance d
is here considered to be the Haversine distance. The algorithm tries

to match each point in Awith a point in B, taking into consideration

the sequence order. Initially, the two starting points are associated;

then the algorithm advances one of the two trajectories, or both,

depending on which pair of points minimizes the element-wise

distance; the algorithm proceeds until both endpoints are reached.

Once the alignment is found between the two trajectories, we

consider the maximum distance between all the matched pairs

of points.

4.4. Route detection
Clustering of trajectories in a routine trip is performed using the

DBSCAN algorithm on the maximum distance in the DTW-aligned

trajectories, obtained as previously described. This clustering

method has the advantage of not needing to specify the number

of groups. However, it is necessary to choose two parameters: B,

the minimum number of trajectories necessary to form a route

and e, the maximum distance to consider an element part of the

cluster. We set B ¼ 1, so that a single different trajectory is con-

sidered as a distinct route choice. We obtained the best clustering

results with a choice of e ¼ 0.5 km; such a value is reasonable,

considering that a car travelling at 30 km h21 covers that distance

during the sample period of 60 s.

It is also worth mentioning that an alternative to the method

we devised and used is represented by map-matching and

segment-by-segment comparison of routes. However, we decided

not to use this option for several reason. Firstly, map-matching

requires full-knowledge of the urban network, making implemen-

tation and reproducibility of the results harder. Secondly, as

map-matching best performs at higher sampling-rates, in this

case, it will introduce additional undesired noise and bias. Finally

and most importantly, we are not interested in achieving
maximum precision: while the rate of 60 s rate period might

seem high, the detour that a driver is able to make during this

time period is quite limited, at most one block away (�150 m) con-

sidering an average speed of 30 km h21. We consider any smaller

deviation too small to be considered a different route choice.
4.5. Normalized Gini coefficient
The Gini coefficient G is a statistical index of dispersion of values,

typically used in economics to quantify the inequality of income

among people. Its value is bounded between 0 � G � 1 2 1/N,

where N is the size of the population; the coefficient is null for

perfect equality and maximum for complete inequality. We use

the Gini coefficient to quantify, for a routine trip, how similar

the usage frequencies are among all the routes employed at

least once by the user. In order to compare this index on routine

trips with a heterogeneous number of routes N, which is typi-

cally small, we consider a variant of the Gini coefficient,

normalized by the maximum value the Gini index G obtainable

with a number N of routes:

Gn ¼
G

1� 1=N
: ð4:2Þ

As a consequence Gn ¼ 1 for perfect inequality, regardless of the

number of elements considered.
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