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Abstract
Many of the world’s most disaster-prone cities are also the most difficult to model and plan. Their high vulnerability to natural
hazards is often defined by low levels of economic resources, data scarcity, and limited professional expertise. As the fre-
quency and severity of natural disasters threaten to increase with climate change, and as cities sprawl and densify in hazar-
dous areas, better decision-making tools are needed to mitigate the effects of near- and long-term extreme events. We use
mostly public data from landslide and flooding events in 2017 in Freetown, Sierra Leone to simulate the events’ impact on
transportation infrastructure and continue to simulate alternative high-risk disasters. From this, we propose a replicable
framework that combines natural hazard estimates with road network vulnerability analysis for data-scarce environments.
Freetown’s most central road intersections and transects are identified, particularly those that are both prone to serviceabil-
ity loss due to natural hazard and whose disruption would cause the most severe immediate consequences on the entire road
supply in terms of connectivity. Variations in possible road use are also tested in areas with potential road improvements,
pointing to opportunities to harden infrastructure or reinforce redundancy in strategic transects of the road network. This
method furthers network science’s contributions to transportation resilience under hydrometeorological hazard and climate
change threats with the goal of informing investments and improving decision-making on transportation infrastructure in
data-scarce environments.

Prioritizing transportation investments and optimizing
transportation planning decision-making pose important
challenges. On top of this, a proliferation of natural disas-
ters, human-caused disruptions, increasing investments in
adaptation, and growing anxiety over climate change
have brought urban resilience and vulnerability to the
forefront of conversations on city and transportation
planning. Vulnerability to disasters poses enormous chal-
lenges. Environmental anomalies in cities with the highest
poverty rates and lowest investment levels in resilience are
particularly prone to severe disasters. Serious data scar-
city and a lack of capacity to generate high-quality data,
combined with broader resource constraints, restrain resi-
lience improvement in the most vulnerable cities.

Freetown, with a population of just over 1million, is
the capital of Sierra Leone in West Africa. It stands out

both for a recent high-impact disaster and low levels of
development. With a life expectancy of 51 years and an
average of three years’ schooling, Sierra Leone ranks
179th out of the 188 countries assessed in the Human
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Development Index (1). Freetown does not have a clear
hierarchy of roads or pedestrian facilities in most high
pedestrian traffic areas. The city uses a single set of traf-
fic signals, with other critical intersections controlled by
traffic police. Without any rail lines, all formal and infor-
mal inland modes travel on the road network (Figure 1).

In August 2017, a high-magnitude landslide struck the
Freetown Peninsula. This was followed by mudslides and
flooding. The events impacted 6000 people, with 1100
declared dead or missing. Direct impacts to the transpor-
tation infrastructure amounted to losses of US$1million,
including the destruction of eight pedestrian bridges, two
road bridges and 5.5 kilometers of roadways (2). The eco-
nomic and human impact from this connectivity loss eas-
ily exceed initial loss estimates (2, 3).

As reconstruction efforts and recovery build momen-
tum, local urban transportation integration projects seek
to review and improve strategic investments for fixing
infrastructure shortfalls while mitigating future disasters.
Post-disaster recovery provides opportunity to improve
resilience (4). Our framework contributes to this by pre-
senting a road vulnerability assessment method that
incorporates network science metrics to assess road net-
work vulnerability to disruption.

We develop a replicable method to assess vulnerabil-
ity and model the performance of the entire road net-
work supply through simulated disruptions in high-risk
areas. Using limited data sources, we pilot this method
to enhance transportation infrastructure planning in
data-scarce environments. Finally, we discuss the
remaining limitations of the approach and potential
improvements.

We first build a topological model of the road net-
work in the Freetown Peninsula where 13,624 nodes rep-
resent road intersections and 16,279 links represent road
transects that run between the nodes (5, 6). The net-
work’s structure under typical conditions is then assessed
to gain an overview of the system’s operational capacity.
Network centrality metrics are used to identify critical
nodes for Freetown’s road network connectivity, then
estimate serviceability and calculate vulnerability to dis-
ruption. Using Geographical Information System (GIS)
mapping technology, we define high-hazard areas to esti-
mate disruption risk and subsequent road supply conse-
quences. High-risk nodes are then removed from the
road network to simulate disruption where, for example,
landslides compromised a series of intersections and ren-
dered them impassible, and network centrality is recalcu-
lated under the disrupted conditions to project changes
in the network’s serviceability. Based on local govern-
ment’s urban transportation plans, we identified sites in
need of greater redundancy or hardening, allowing for
reconstruction efforts to be focused on reducing the risk
of natural hazard disruption to the road network supply.

Related work on maintaining control in case of failure
and establishing methods for preferential repair strate-
gies have been subject of several studies (7).

Overview of Network Disaster Resilience,
Vulnerability, and Risk

Hazards assessment, vulnerability diagnostics, and infra-
structure investments aim to improve urban and trans-
portation system resilience. The concept of resilience has
gained traction through diverse fields, and with special
applications to multiple modes in transportation (8, 9).
It centers on how systems perform and recover after dis-
asters or stress (10, 11).

The United Nations Office for Disaster Reduction pre-
sents a broader definition of resilience as ‘‘the ability of a
system, community or society exposed to hazards to
resist, absorb, accommodate, adapt to, transform and
recover from the effects of a hazard in a timely and effi-
cient manner, including through the preservation and
restoration of its essential basic structures and functions
through risk management’’ (12). We view resilience as the
flipside of vulnerability, which aligns with climate-change

Figure 1. Study location and road network overview.
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scholarship (13). Increased resilience diminishes vulner-
ability and therefore risk, with risk as the product of
hazard likelihood, magnitude, and consequence. (14–17).

Network science is the ‘‘study of the collection, man-
agement, analysis, interpretation, and presentation of
relational data [that] allows us to address deep questions
about human, biological, economic, and other systems
that exhibit interdependent organization’’ (18). As it
builds from graph theory and mathematics, it focuses less
on geography and more on relational connectivity.
Nodes connect to each other through links, and the net-
work’s arrangement of component nodes connected
through links is defined as its topology. To incorporate
the crucial role of physical space, we set nodes as physical
intersections of streets, and links as the street transects
that run between the nodes to construct a topological
model of transportation street network (6).

Network science has been recognized for its applica-
tions to the study of human mobility for nearly two
decades, and subsequently used to identify vulnerabilities
to random and targeted attacks or disruption to transpor-
tation infrastructure in myriad studies (19–21). Some
examples are: the critical elements of the Australian
National Highway system (22), the Swiss road transpor-
tation network vulnerability (23), seismic vulnerability of
rural roads in Italy (24), differentiated network vulner-
ability effect of the Swedish national road system (25),
city road network vulnerability in France (26), critical
links in Florida’s transport network (27), the structural
impact in the 2010 earthquake aftermath in Haiti (28),
the Madrid metro circular system vulnerability in Spain
(29), and the public network vulnerability index of York,
England (30). In that same period, network science was
reinforced through a review as a revealing vulnerability
analysis method with important implications for policy
development and infrastructure planning (31). In addi-
tion, piloting studies have specifically identified the poten-
tial for transportation networks to significantly improve
disaster resilience through topological models based on
their ability to describe systemic performance (32).

This paper builds upon traditional concepts of risk and
network science as pillars to study road network vulner-
ability. For the purposes of this study, analysis of resilience
is focused on network performance amidst disruptions in
data-scarce environments, whereas applications to long-
term recovery and resilience to natural hazards are dis-
cussed but are otherwise reserved for future study.
Additionally, we focus on hydrometeorological hazards,
or natural hazards that originate from atmospheric, hydro-
logical or oceanographic processes (12) which have
become central to climate-change resilience research, (16)
such as river and coastal flooding (sea level rise and storm
surge), landslides and mudslides. It innovates by using cen-
trality metrics to study the different roadway nodes and

links importance to the overall network performance in
data-scarce environments. It thus presents new replicable
methodology to measure vulnerability within natural
hazard and risk theory by identifying ‘‘where failure of
some part of the transport infrastructure would have the
most serious effects on access to specific locations and on
overall system performance’’ (22).

Methodology

Identifying High-Centrality Intersections

Topological centrality is used to identify the most impor-
tant road intersections and transects (33), serving as a
proxy to road network supply or serviceability (34).
Centrality metrics rely upon calculation of the shortest
path, here defined as the shortest possible route between
an origin and a destination. The key metric of between-
ness centrality (BC) quantifies the number of times a
node lies on any shortest paths in the graph, including
every possible pair of origin and destination points. Its
calculation is given by:

BC(v)=
X

i6¼v6¼j

sij(v)

sij

ð1Þ

where v is any node, sij is the total number of shortest
paths between unordered node pairs i and j, and sij(v) is
the number of those shortest paths which pass through v

(35). It thus represents the percent of total shortest paths
that pass through any given node, ranging from 0 to 1 in
value. BC serves as a strong measure of how important
each node is for all origin–destination node pairs within
the transportation network, especially established for
identifying critical transportation junctures which lie on
many shortest paths and have low redundancy in nearby
links (19).

In order to calculate the BC metrics for all nodes in
the Freetown road network, we used GIS data of
Freetown Peninsula’s street features provided by the
World Bank (Sierra Leone 1968 UTM Zone 28N projec-
tion). The Shapely package in Python was used to gener-
ate a list of 13,624 uniquely enumerated and geocoded
nodes, 16,279 edges, and various attributes including the
physical distance measures calculated in GIS software.

Given the lack of data related to traffic counts, trips,
needed destinations, and other demand information, we
used the Dijkstra algorithm in Python’s NetworkX pack-
age to determine shortest paths by distance weights. The
NetworkX package also served to assess the road net-
work centrality in a base case and under disruption simu-
lations. ArcGIS served to assess environmental variables
that identified natural hazard areas and geocoded nodes
with these areas.
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Identifying High-Hazard Areas with Mainstream
Environmental GIS Data

In order to determine those areas where natural disaster
occurrence was likely, we used open-sourced environ-
mental GIS data such as the United States Geological
Survey’s coarse-grain (30-meter resolution) Digital
Elevation Model (DEM) and Freetown’s hydrographic
information provided by the World Bank to build our
hazard models. The World Bank has been active in the
region collecting environmental data sets through part-
nerships with government agencies and local university
institutions with the aim to foster technical assistance
and capacity building, and collaborates with interna-
tional universities to develop research in pressing areas
such as disaster risk reduction. These inputs helped us
develop five hazard layers commonly considered: river
flooding, landslides, mudslides, low sea level rise plus
storm surge, and high sea level rise plus storm surge.

We recognize that in data-poor environments, hydro-
meteorological risk maps may not be available.
Therefore, we additionally utilized ESRI Mapping soft-
ware’s recommendation of using geographic buffers
around medium- to high-slope areas and river polylines
to estimate areas at risk of riverine flooding, landslide,
and mudslide in Colorado (36), and applied these meth-
ods to Freetown to gain an approximation of the extent
of high riverine hazard areas. These methods returned
almost identical results to the local samples of hydro-
graphic information, flooding and landslide hazard maps
while only relying on DEM and polyline river shapefiles.

With the DEM, low and high sea level rise plus storm
surge hazard areas are proposed based on average verti-
cal predictions of sea level rise and extreme sea level
events caused by storm surges and high tides for Sierra
Leone. Global predictions indicate that by 2100 there is
high confidence that the lowest sea level rise will be of
0.2 m (0.65 ft.) and the highest sea level rise will be of 2m
(6.56 ft.) above current mean sea level (37). According to
global hydrodynamic models, the 100-year return period
storm surge event estimates for the Sierra Leone coast
vary from 2 to 2.5m (6.56 to 8.2 ft.) (38). Overlapping
these five hazard layers allowed us to build a multi-
hazard constraint map for Freetown’s peninsula.

For the river flooding hazard levels, the hydrographic
GIS data was used and Euclidean buffered zones of 100
and 200m (328 and 656 ft.) around the river polylines
were defined as higher and lower likelihood, respectively,
of flooding. For the landslide hazard levels, we calcu-
lated Euclidean buffered zones of 100 and 200m around
slope polygons with degrees varying between 20–40 (39)
giving us higher and lower likelihood, respectively, of
landslide events. To define the mudslide hazard levels,
we first identified intersections of river flooding and
landslide hazard to determine mudslide initiation zones.

Secondly, we applied 100-meter buffers for higher likeli-
hood (328 ft.) and 200-meter buffers for lower likelihood
(656 ft.) around river polylines extending up to 1 km
downstream from mudslide initiation zones. For the
identification of low and high sea level rise plus storm
surge hazard areas, inland surfaces adjacent to the coast-
line equal or inferior to 2 and 5 m (6.56 and 16.4 ft.),
respectively were assessed as low flooding hazard likeli-
hood. Finally, we combined the different hazard likeli-
hood weights into one multi-hazard constraint layer that
resulted in nine levels of hazard likelihood (depicted in
Figure 2).

This constraint layer summarizes the general likeli-
hood of any given area to suffer disruption from a
weather-related hazard or coastal flooding. This method
derives from McHarg’s concept of ‘‘Suitability Analysis’’
(40) that investigates best, and in this case, worst envi-
ronmental conditions for human habitation with the use
of transparent map overlay techniques to identify these
conditions in space. These constraint layers only aim to
project areas that are more at risk in general in the long
term, for example for river and coastal flooding, and do
not consider that all these hazards have the possibility of
converging in time for a specific disaster event. For
multi-hazard disaster events, it is important to consider
hazard combinations with similar triggering factors such
as rainfall for river flooding, landslides, and mudslides.

Previous hazard assessments done in Freetown
allowed us to validate the quality of our constraint layers
and hazard estimations. Additionally, our models coin-
cided with the impacted areas of the 2017 mudslide,
which supports our method’s approximate accuracy (2).

Figure 2. Multi-hazard constraint map for Freetown’s peninsula
illustrating the convergence of the ratings for river flooding,
landslides, mudslides, sea level rise, and storm surge likelihood
and extent.
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With the highest centrality intersections defined in the
street network, we aimed to identify subsets of nodes
with high natural disaster risk. This allowed us to formu-
late a risk assessment.

Measuring Risk through the Interaction of Topological
Centrality and Multi-Hazard Constraint Layers

Disaster risk assessment is commonly done by identify-
ing hazards, exposed elements, and their intrinsic charac-
teristics (12). This is also referred to as the crossing of
likelihood and consequence. Hazards can be character-
ized by their location, probability, frequency, and inten-
sity; whereas the exposed elements can be described by
their vulnerability through their various properties, such
as physical, social, environmental, etc. In this project,
hydrometeorological hazards such as riverine floods,
landslides, mudslides, and coastal flooding are character-
ized by their approximate area of extent and their likeli-
hood of occurrence and causing road disruption l(D).
Our subject of study, or exposed element, is the road net-
work in the Freetown Peninsula. The road intersection
and transects BC quantifies the node or link’s impor-
tance to the network’s overall connectivity. The network
element’s vulnerability or BC relates to the consequences
of disruption c(D) in case of a hazard occurrence.

Considering the above, disaster risk R is here repre-
sented by the conceptual formula:

R= l(D)*c(D) ð2Þ

Our risk matrix design was inspired by Cox’s theory
(41) for building semi-quantitative screening tools for
risk assessment, based on the principle of weak consis-
tency between the categorization and ranking of risk.
Thus, the idea that any given ranking of high risk needs
to be separated by at least one other class from low risk,
which assumes the minimum need for three risk classes
(depicted in Figure 3).

Considering that we are looking at the potential for
loss from disruption or damage to the road infrastruc-
ture, the novelty here is using network centrality metrics
to assess vulnerability, gauging systemic consequences or
loss. Network science allows for measuring significance
of individual elements in terms of connectivity within the
overall network. Therefore, our risk calculations assess
how the disruption or damage of a street crossing might
impact the street supply system in the overall network
developed to serve the Freetown Peninsula. The risk clas-
sification thresholds are based on quartiles for BC and
for hazard ratings. As our BC values for the Freetown
Peninsula road network nodes range from 0 to 0.4, Low

c(D) class correspond to 0.000180–0.001424; Moderate
c(D) class correspond to 0.001425–0.007268; and High
c(D) class correspond to 0.007269–0.400221 values. Our
multi-hazard classes constraint weights range from 1 to
9, where Low l(D) corresponds to areas with 1–3 hazard
constraint weights; Moderate l(D) corresponds to areas
with 4–6 hazard constraint weights and High l(D) class
corresponds to areas with 7–9 hazard constraint weights.

Figure 3. Showing risk categories for (a) road intersections, and
(b) road transects, based on (c) multi-hazard risk matrix.
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Findings

Road Disruption Risk Matrix

The road intersections (nodes) in the Freetown Peninsula
network were categorized as a function of their risk to
all hazards studied in this project (Figure 3a). The node
risk level at the end and beginning of each street transect
was averaged to obtain the risk for the network links or
transects (Figure 3b). We can identify a total of 412
nodes and 26.7 km of links that present high BC and
high exposure to natural hazards corresponding to high-
high risk network components. In Figure 3a and b,
results identify specific road nodes and links that are
highly exposed to natural hazards and if disrupted will
most likely cause the most severe consequences to the
Freetown Peninsula’s road supply network. The high-
high risk nodes serve important roles in the everyday
connectivity of the network and are at high risk of failure
due to natural hazards. Figure 3c illustrates the risk
matrix built for the multi-hazards constraint with the
number of nodes under each risk class.

Road Disruption Simulations in High Risk Areas and
Consequential Changes in Centrality

High-high risk nodes were removed to simulate where
specific natural hazard types have the highest likelihood
of disabling a road intersection with the highest impact
on the overall connectivity. Figure 4 identifies five simu-
lations of high-high risk node elimination. The simula-
tion areas were chosen from the top twenty highest risk
nodes to represent different parts of the city and a diverse
array of natural hazards. Simulations 1 and 3 show road
disruption scenarios in high-hazard mudslide areas over-
lapping the arterial Bai Bureh Road in Hastings coastal
town and in Wellington suburb, respectively; Simulation
2 shows a disruption in high-hazard landslide area cross-
ing the inland arterial highway of Youyi, between Regent
and Bathurst villages; Simulation 4 tests the road net-
work cut off due to both river and sea level rise flooding
hazards in Freetown’s central business district (CBD)
near Bambara Spring and Nicol Brook River; finally,
Simulation 5 eliminates road intersections surrounding
the Peninsular Highway in high-hazard mudslide areas in
the Lumley suburb, mimicking the 2017 disaster impact
to the road network in that region (2).

Although single nodes that coincide with those identi-
fied in the risk matrices are readily identifiable, eliminat-
ing only one key node has a relatively small effect on a
system. To account for this and model the likely extent of
a hazard-specific road disruption, neighboring nodes
classified as high-high risk from the same hazard typol-
ogy were eliminated as a group. Centrality for all nodes
was then recalculated following each of the simulations

to project areas where there is gain and loss in BC. Deltas
for each node were calculated by subtracting the BC after
simulation from the base BC, with resultant values rang-
ing from possible extremes of 21 to 1, and 0 representing
no change (Figures 5 and 6).

A summary of the impact to road network serviceabil-
ity in Freetown from each of the five disruption simula-
tions in high-hazard areas are presented below:

� Simulation 1: The disruption simulation at the
mudslide high-high risk area in Hastings would
disable Bai Bureh Road, the arterial highway of
the peninsula, leading to a large redirection of
centrality from the southeastern coastal road to
the inland Youyi Highway. This translates to a
detour of up to 25km over roads with greatly
decreased capacity to access the same nodes in the
network. Important to note is that in this sce-
nario, the nodes which become more central to
the network also have high risk weights for rain-
fall triggering hazards and are therefore not reli-
able as an alternate route in the case of landslide
and flooding weather conditions. In this respect,
one policy implication may be the necessity to
harden bridges against riverine hazards.

� Simulation 2: The inland landslide moderate-high
risk area simulation disables intersections in a high
landslide hazard but moderate to low centrality
area in Youyi Highway. The result is low and dif-
fuse gains in centrality throughout the system,
with changes in centrality at approximately 10%
the magnitude of other scenarios.

� Simulation 3: The coastal arterial mudslide high-
high risk area cutoff at Wellington causes very simi-
lar results to Simulation 1, with a large redistribu-
tion of centrality towards the inland Youyi

Figure 4. Road disruption simulation locations based on high-
high risk node eliminations.
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Highway. However, here the disruption is projected
at the midpoint of the Bai Bureh Road segment,
rather than the far southeastern corner, causing the
remaining arterial highway’s centrality to decrease
more significantly in comparison with Simulation 1.
In Simulation 1, people directly north of the

disaster would still have to travel reasonably far
north along Bai Bureh Road to reach any given
destination, whereas they would have less distance
to travel along this route in Simulation 3.

� Simulation 4: Freetown’s CBD river and coastal
flooding high-high risk area road disruption may

Figure 5. Simulation 1: Southeastern mudslide, Hastings town BC in: (a) baseline scenario; (b) after simulation; (c) change in
betweenness centrality.
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have potentially devastating effects on loss of
property and life, but the grid-like plan of the
road network makes this zone more resilient in
terms of road connectivity than all the other high-
risk areas cutoff scenarios. Although the magni-
tude of change in centrality is similar to other
simulations, fewer nodes experience significant
gains and losses in centrality and the variations
radiate over shorter distances.

� Simulation 5: The 2017 mudslide impact zone sce-
nario results in an effective bifurcation of
Freetown Peninsula’s network creating two large

subnetworks. Since these two subnetworks are
fully separated, each subnetwork has a smaller set
of origin and destination nodes. Because BC rep-
resents the percent of a network’s shortest paths
that pass through any given node, within each
subnetwork almost all nodes experience low loss
in centrality. Thus, it is important to put this
metric into functional perspective: the bifurcation
of the network—not the changes in BC—has
grave consequences for the smaller western sub-
network that becomes almost completely cut off
from the capital.

Figure 6. Change in BC in: (a) Simulation 2: Inland landslide between Regent and Bathurst villages; (b) Simulation 3: Coastal arterial
mudslide, Wellington suburb; (c) Simulation 4: River and sea level rise flooding in Freetown CBD; (d) Simulation 5: 2017 mudslide impact
in Lumley suburb.

8 Transportation Research Record 00(0)



Centrality Variations from Disruption Simulations on
Potential Road Interventions in Freetown

Beyond these scenarios, network science allows for
another dimension of analysis on the impact of the
potential road interventions (Figure 7). By representing
these intervention sites as nodes within the transporta-
tion network model, we have assessed the centrality of
each node in relation to the overall network serviceabil-
ity both as it operates daily and as it would operate
under five specific disruption simulations based on our
risk assessment. Understanding which hazard types are
most dominant at certain areas is the first step to invest-
ing in appropriate design and planning strategies.

In this section, we assess the relation between the level
of risks and potential infrastructure projects in the
region. Namely, we evaluate the exposure of the areas
where potential road interventions are planned. The

considered risks are flooding, landslide, and mudslide

that are evaluated separately. This is a primary result to

guide specific design interventions that could be incorpo-

rated into these projects’ production plan. By hardening

the infrastructure or increasing redundancy of critical

nodes and links, resilience to climate-change threats can

be increased at a system level. Our results show that most

of the nodes and links targeted for the transportation

interventions planned by the federal government do not

fall directly under high-risk categories for flooding, land-

slides, and mudslides (Figure 8), except for the transpor-

tation projects located at the Lumley Market. The road

intersections here fall under high-moderate risk of land-

slide and mudslide and high-high risk of river and coastal

flooding. This area is one of the regions that are under

reconstruction and recovery from the 2017 flooding and

mudslide impacts.

Figure 7. Target nodes under potential interventions and (a) flooding, (b) landslide, and (c) mudslide risk assessment for surrounding
nodes and links.
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Although more of the infrastructure projects were not
categorized under high-high risk for flooding, landslides,
or mudslides, it is important to take into consideration
their connection with nodes that are under high-high risk.
Figure 8 illustrates how the disruption of high-high risk
nodes tested through Simulations 1 through 5 could
impact the road network by changes in centrality, specifi-
cally by examining their effects on the centrality of poten-
tial interventions nodes.

The most significant changes in centrality are pre-
dicted for one specific node at Allen Town Transit
Market intersection. As the Allen Town Transit Market
intersection is a central node under normal circumstances,
almost all disaster simulations result in centrality decrease
here. The decrease ranges from approximately 0.08 to 0.31,
indicating loss of connectivity importance in case of disrup-
tion from simulations 1, 3, 4, and 5. However, Simulation
2, which disables the inland Youyi Highway, results in a
centrality gain of nearly 0.05, indicating an increase in
importance of this intersection in case of landslide-related
interruptions between Regent and Bathurst villages.
Smaller centrality losses of approximately 0.04 are pre-
dicted for the road intersection improvement at Lumley in
reference to Simulation 5 only. Once again, as Simulation
5 projects hazard occurrence that impacts the Lumley proj-
ect intersections themselves, variations are limited. All
other targeted nodes for projected urban transportation
interventions exhibited negligible centrality variation to the

five simulations. This is likely due to the fact that these
nodes are located at the periphery of the network and
therefore already have low centrality.

Table 1 presents preliminary design suggestions to the
potential transportation intervention sites. These sugges-
tions are based on our hazard-specific risk assessments,
the changes on the nodes centrality in the overall net-
work, and changes in centrality measured specifically at
the targeted intervention sites following the five disrup-
tion simulations. The suggested design incorporations
derive from transportation planning literature for
increasing disaster resilience and are here focused on
safeguarding network connectivity in the face of near-
and long-term weather hazards.

Specialist research groups on transportation policy on
the adaptation of infrastructure to weather-related
hazards, guidelines from the Conference of European
Directors of Roads (CEDR) (42), and the International
Transport Forum (ITF) (43) reiterate that current trans-
port projects provide an unprecedented opportunity to
increase resilience to near- and long-term weather
hazards. Therefore, these seven transportation project
areas are here considered as priority locations for flood,
landslide, and mudslide hardening and/or alternative
adaptation methods that would reinforce the road net-
work supply capacity and reduce risk for users. Some
examples of hardening techniques cited by CEDR and
ITF include creating or improving rainfall drainage

Figure 8. Centrality variations measured after high hazard, l(D), disruption simulations 1–5 of road intersections targeted for
transportation interventions.
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infrastructure, designing stormwater infrastructure that
takes into account lower frequency events in strategic
areas (e.g., 10-year to 50-year rainstorm return period),
increasing safety factors for slope stability and increasing
concrete strength, and building strategic flood and mud-
slide protective walls. For alternate adaptation methods
known as ‘‘soft measures,’’ examples include guarantee-
ing redundancy of high-risk transects, and incorporating
maintenance and operational systems that are sensible to
risk and can be used to increase awareness in the com-
munity through road signal and early warning systems.

Conclusions and Further Research

We present a method by which network science measures
can be applied with disaster risk analysis to evaluate
transportation network performance amidst unscheduled
disruptions in a data-scarce environment. This serves as
an important first step in progressing towards resilience,
which in addition to disruption includes the entire recov-
ery time and process.These methods require only limited
open-source data as processed through NetworkX. The
key data required are mainstream environmental GIS for

Table 1. Potential Interventions Design Considerations for Climate Change Resilience for Freetown City’s 2018 Transportation Projects

2018 transportation intervention site Risk summary Design suggestion

1. Congo Cross Junction intervention
Only low landslide risk. No gain

in centrality after disaster
simulations.

Continue as planned.

2. Wallace Street Multi-Level
Car Park intervention/
City Centre – traffic management intervention

A large dense network of
streets leads to high levels of
redundancy and low BC.

Continue as planned.

3. Guard Street intervention
Near the water in a high-

moderate risk area from river
and sea level rise flooding.

Consider hardening against
flooding.

4. Kissy Ferry Terminal Junction intervention
Along the Bai Bureh major

highway. Not in a high-risk
area but surrounding nodes
are particularly susceptible to
large decrease in BC given the
disruptions in Simulations 3
and 5 from high mudslide risk
and BC increase from the
flooding in Simulation 4.

Consider increasing supply
capacity in case of mudslides in
Freetown’s CBD.

5. Allen Town Transit Market intervention
Parallel to Bai Bureh major

highway. Under low risk, but
centrality increases in case of
mudslide disruption in
Wellington suburb (Simulation
3).

Consider increasing supply
capacity in case of mudslides in
Wellington suburbs.

6. Lumley Projects
(Circle and Transit Terminal interventions)

In high-high risk areas for
flooding and moderate-high
risk areas for landslides and
mudslides.

Consider ensuring redundant
paths nearby.

A major terminal point for
intercity buses. Because it is
on the western edge of the
network, elimination results in
the network being fully split
into two subnetworks.

Consider physically hardening
against landslides, mudslides,
and flooding.

A major poda poda (private
minibus) and taxi route
terminus with adjacent market.

7. King Harman Road/Old railway
line intersection intervention

Low centrality decreases in all
simulations except 2.

Consider hardening against
mudslides and ensuring
redundant paths nearby.

At moderate risk of mudslides.
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accessible hazard mapping techniques. This was also the
result of a collaboration with the World Bank, that has
been active in Freetown collecting environmental data
sets through partnerships with government agencies and
local university institutions with the aim to foster techni-
cal assistance and capacity building. As such, this work
overall represents a collaborative effort between global
institutions, local and regional government, and educa-
tion institutions.

By innovating traditional risk formulas, we assess vul-
nerability of transportation networks through topologi-
cal models and centrality analysis. We built a topological
model of Freetown, Sierra Leone and used betweenness
centrality to calculate each road intersection’s impor-
tance to the network. Hydrographic information, open-
source DEMs and global sea level rise and storm surge
predictions were used to identify hydrometeorological
hazard risk and areas prone to landslides, mudslides,
river flooding, and coastal flooding (sea level rise and
storm surges). By overlapping Freetown’s road network
with our multi-hazard constraint layer, we built a risk
matrix for each hazard and for all hazards combined,
reflecting likelihood of road disruption from weather
events and associated consequences to the network’s sup-
ply and serviceability.

These mainstream hazard assessment methods come
with uncertainties from low spatial resolution and low
availability of environmental GIS data. Our hazard
exposure analysis presents a primary overview of likeli-
hood and extent. More in-depth modeling is required to
increase accuracy of natural hazards estimates. Risk
matrices are built based on the assumption that there is a
positive correlation between likelihood and conse-
quences. Therefore, they require caution for risks that
have low likelihood and high consequences, or ‘‘black
swan’’ events, and for risks that have high likelihood and
low consequences. More broadly, risk matrices’ intrinsic
uncertainties include the fact that the definition of the
thresholds usually follows statistical classification meth-
ods that should be empirically validated to correspond
to thresholds defined by observed hazard occurrences
and local stakeholders.

Road network disruption simulations were tested by
eliminating the nodes with the highest landslide, mud-
slide, river flooding, and storm surge risk categories.
Each of these simulations resulted in variations of cen-
trality throughout the network that helped us understand
the effects of connectivity loss in Freetown Peninsula.
Additionally, centrality gain and loss were also measured
for each disaster simulation on planned urban transpor-
tation intervention sites. Road intersections that gain
centrality become more important for the overall net-
work connectivity during simulated hazard-related dis-
ruptions, inferring the higher pressure from users and the

need for hardening or reinforcing redundant paths. The
results show that although certain areas, such as Allen
Town Market, are under low risk, safeguarding this
area’s serviceability is important in reducing Freetown’s
road network vulnerability to the high mudslide risk
identified in Wellington suburb, by reinforcing redundant
low-risk paths. These highlight the importance of taking
into account the system’s vulnerability when assessing
road infrastructure risk and not only physical and single-
asset oriented assessments. Including physical properties
in future research, such as road type, pavement quality,
length, and number of lanes, aggregated with network
connectivity factors, would improve the applied method
for systemic vulnerability assessment (44). Enriching the
road network data would facilitate additional study of
recovery time after disruption and thus overall resilience.

This paper serves as a strong proof of concept for
supply-side modeling. Given the current lack of traffic
counts, transit ridership or other measures of demand,
centrality to total shortest distance paths in network was
used to understand vulnerability as a consequence of
connectivity failure. Including other attributes in the
links such as road width, surface condition, and average
vehicle speed could change the centrality metrics.

Moving forward, network weights should also be
modeled as a function of true demand and usage volume,
where betweenness centrality reflects nodes with the most
trips passing through them. These could be modeled
through a stochastic subset of origin destination pairs or
by using mobile phone data and emerging techniques,
the centrality could be weighted by trip flows rather than
random origin destinations (45). Using these demand
side measures would improve the identification of critical
nodes based on the number of travelers impacted and
provide transportation demand data for prioritizing
investment decisions.

Another possibility is using accessibility changes such
as closeness to schools, jobs, and health services to mea-
sure the impacts of hazards and degradation on access to
critical services, as was done by Chen et al. (46) with a
road network. This information combined with popula-
tion data is useful to rank zones and groups most vulner-
able to loss of key services in a disaster scenario.

Finally, this paper combines network science metrics
with natural hazards estimates to improve transportation
infrastructure decision-making and investments. By apply-
ing this approach to Freetown, Sierra Leone, it pilots new
methodology optimized for data-scarce, disaster-prone
and capacity-constrained environments.
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