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Abstract

Rapid urbanization and technological innovations sparked the generation of massive
volumes of data that is continually improving in resolution. In particular, mobile
phones, having reached penetration levels above 97% in Europe and Americas ac-
cording to the World Bank, transformed into passive sensors of urban mobility by
signaling movement at the individual level. The data generated by these devices has
a wide range of applications concerning how people and cities interact through the
infrastructure. This thesis presents new analysis tools that utilize large geolocated
datasets to provide new insights towards human mobility, road networks, congestion,
and energy. In the first part of this work, we analyze the emergence of vehicular con-
gestion in an urban road network through the use of a simple traffic flow model. We
show that spatial constraints and the topology of the road network are determinant
factors that shape the nature of the city's phase transition to a congested state. In
the second part, we outline a methodology that processes raw geolocated data to ex-
tract aggregate mobility information that is comparable to local surveys and existing
origin-destination matrices for five different metropolitan areas. Next, we analyze
how the unique congestion fingerprint of a city is produced through the combination
of travel demand, population density, road supply and route choice. We evaluate the
potential of implementing socially aware routing solutions for congestion alleviation,
and assess the implications of such solutions. Finally, we couple urban travel demand
with energy demand of electric vehicles, and present their relationship while exploring
the potential benefits of optimized arrival hour and charging timeshifts.

Thesis Supervisor: Marta C. GonzAlez
Title: Associate Professor
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Chapter 1

Introduction

This chapter consists of two sections. The first paints a picture of the literature that

sets the context for the subject of the work described in this thesis. More specifically,

the literature review is divided into five distinct parts: the explosion of data, human

mobility, transportation demand modeling, traffic flow and science of cities. The

second and last section presents an overview of the remainder of the dissertation for

the reader.

1.1 Literature Review

1.1.1 Big Data

In early 20th century, information was mostly stored in analog, namely in paper,

vinyl, cassette players or floppy disks. Starting from late 1980s, with the introduction

of personal computers, data started being digitized. A decade later, digital storage

started to make its way into personal computers in the form of compact disks, portable

hard disks, and flash drives. The new millennium introduced a sharp decline in

hardware and storage costs, where at the same time, as predicted by Moore's Law,

transistor density in integrated circuits continued to double every two years, fueling

further this paradigm shift. Today, most new data is stored digitally- and older

data is being digitized as well. Technological innovation continually replaces analog
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devices with digital ones, consequently producing data in increasing volume, variety

and velocity. This lead to cloud storage and computing solutions, more specifically, a

group of remote servers hosted over the Internet that process or store data. Companies

like Amazon have built business practices around providing web services to anyone

willing at low rates.

This trend of digital devices replacing old analog ones combined with low costs of

computing and storage consequently started the age of what is labeled as the Internet

of Things. What this phrase refers to is a network of devices, such as one's cellphone,

thermostat, vehicle or any other electronic equipment that can communicate with

other similar devices by collecting and transferring data. When considered in the

context of urban living, the collection of devices act as a swarm of sensors signaling

information about the elements of a city: where its people are, how congested the

roads are, what the air pollution levels are, and so on. This implication results in a

grand vision, a smart city, where all infrastructure can be maintained electronically

through generated data and can be returned to the people as valuable information.

For example, the information we generate through the use of cellphones feed the

live traffic maps we use to check the traffic. The same information is also used by

traffic control centers to act on problematic regions. Therefore it can be said that

the massive amount of data generated can be utilized in assisting decision making

for policy, as well as improving quality of life for citizens. This dissertation makes

significant use of one such type of dataset, namely mobile phones, for the goal of

generating information to assist both policy makers and citizens. These devices log

the location of every call to a certain precision, which can be used of various purposes

for the benefit of society. In our case that purpose is to better understand urban

mobility and propose solutions to improve it.

A resulting and understandable concern is that of privacy and security. The con-

nectedness of electronic devices and improved understanding and control of complex

sociotechnical systems envisioned by the ideas of internet of things and smart cities

come at the cost of loss of privacy and increased security risks. In their work [561,

de Montjoye et al. demonstrate the privacy boundaries in mobile phone data. As

24



U

A 1.0
o 0.8

I mis U 1s20.6 I~l=

04

n 0.2-C

D 0.0
2 3 4 5

Number of spatio-temporal points

Figure 1-1: An illustration of a mobile phone trace of a tylical user, and the unique-

ness of such traces versus the ininiber of spatiotemporal points taken at random [56].
Five points are enough to distinguish one person from all others in the dataset alnost

completely.

illlstrated in Figure 1-1. the movements of a mobile phone uiser can tvpi(ally be ob-

tained at a certain spatial resolution from their digital traces. In this work, authors

also measure the llnli(ueness of these traces for increasing iniber of spatiotemporal

points to find that as few as four such points randomly picked is enough to distin-

guish the specific user oit of millions. This finding specifically highlights the need of

appro)riate security and privacy )recautions that need to be taken by data providers

and users to keep the inforniation safe.

1.1.2 Human Mobility

The subject of understanding how people move in a niassive scale is aptly referred

to as human nmobility. This line of research is relatively recent, as its introduction is

simuiltaneous with the perimeation of large geolocated datasets into academia.

One of the first works in this area was carried oit by Brockmann et al. 132]. where

authors presented an analysis of how bank notes circulated in the US. To gather this

unique data, the authors creatively created a platform where the holders of specifically

annotated banknotes reported their location. Considering the fact that bank notes

(aan only be moved by the people who are in their possession, the set of all these

25



check-ins generated a valuable dataset on human mobility at the country scale. In

this work, the authors demonstrate that Ar, the displacement between consequent

records used to measure the movement characteristic, follows a scale-free random walk

otherwise referred to as a Levy flight process. That is, the probability distribution

P(Ar) is heavy tailed, and humans infrequently make long trips.

This work was immediately followed by [70], where authors used the mobile phone

traces of 6 million anonymized individuals from a European city to test a similar

hypothesis. The work set out to investigate the underlying mechanism that produces

the scale-free outcome of P(Ar). In doing so, authors introduced a new metric rg,

the radius of gyration, to measure an individual's movement:

rg(t) N(t)

) N(t) Z(r - rcm)

where N(t) is the number of observed locations and rc is the center of mass for

the user. The results, similar to that in [32], showed that P(Ar) followed a truncated

power-law, as shown in Figure 1-2. This seminal work tested three hypotheses of

which the first was that made in [321. Gonzalez et al. conelded that the statistics of

individual trajectories P(Arglrg) and the heterogeneity of P(rg) convolve to produce

the resulting P(Ar). Essentially, the Levy flight process proposed in [32] did in fact

hold but only in each individual's characteristic rg. Moreover, once normalized for rg

and anisotropized, mobility patterns collapsed onto a single universal pattern. This

finding pointed to a very significant implication: humans are unique yet very similar

in the patterns with which they move. Following this work, new sources of geolo-

cated movement data opened up previously unimaginable avenues in understanding

movement of individuals.

A large body of work soon followed, mainly focused on providing an improved

understanding of aggregate individual mobility. Among these works, [154] and [153]

provide a good overview about the ways people visit locations, and some of the main

contributions are shown in Figure 1-3. First, people demonstrate high regularity R(t),

the probability that in a specific hour of the week, a user will be in their most visited
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Figure 1-3: (a) The hourly regularity 17(t) of users throughout a typical week 11541.
17(t) ranges between 0.55 and 0.9, implying that humans are highly regular in terms
of locations they stay in. (1) The number of unique locations visited S(t) versus

t(b), time iu hours. S(t) grows sublinearly with ft06 for r, levels ranging from 32 to

256 kilometers. 11531 (c) The visitation frequency F,, of the kth most visited locatiom
follows Zipf's law, across segments with S ranging from 20 to 60. [153j

location for that hour. In fact, an average person is to lbe fouiid in their most visited

location for that hour miore than 80% of the time. a staggering mmmber providing a

lower bound to location prediction. Secondly. for a range of values of 19, the number of

unique locations visited 5(t) grows sublinearly with time. People are slow explorers,

an(d are biased towards visiting locations they already have. Thirdly, fs, defined as

the visitation frequency of the k1th most visited location for a user, follows Zipf's law

for varying levels of S. In other words, the frequency at xwhich peoIple visit a place

is inversely proportional to its ranking based on the number of times that place is

visited. In overall, these findings shoxv that people sublinearly explore new locations,

are highly regular in their visited locations and in fact stay relatively confined to a

slpecific sulbset of these locations.

Schneider et al. further built on these findings in 11441, where they analyzed the

motifs with which people visited locations using a similar mobile phone dataset. As

demonstrated in Figure 1-4, people demonstrate only about 19 distinct nmotifs formed

by at most 6 unique locations. The xvork also presents an analytically tractable

Markov chain framework that reproduces empirical findings from the mobile phone

data as wvcll as those observed in previolisly conducted surveys.

The evolution of this literature increasingly showed the potential of utilizing ge-

olocated data to understand movement. Within several years, models that could
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Figure 1-4: Probabilities as perceneages p(ID)% of finding each of the 17 enumerated

mobility motifs across Paris and Chicago and iobile phone data, surveys, and models.

The red nodes depict home location, the fractions below motifs denote the number

of most observed configurations to those )ossible. 11441

replicate surveys at the aggregate level were produced with promising results. The

know-how required to transform these newly generated datasets into insights can feed

our solutions to coml)lex sociotechnical problems. The most obviously related coin-

plex system is trans)ortationl. The next step, and the big challenge., is bringing these

new findings and approaches into the specifics of trailsportation aiid urbai travel.

In this context, Wang et al. 11711 made the first attempt to bring the demand

information obtained froi mobile phonies into the trails)ortation world. In this work,

the authors aimed to analyze road usage patterns iii two metropolitan areas in the US:

Greater Boston and the San Francisco Bay. By estimating transient origin-destination

patterns from user trajectories, authors estimate the vehicular demand for a tyiical

weekday muornimng in both regionms. They define MDS for each road segment, namely

the major driver sources., froii which they imeasure K,,j as the count of how many

distict MDSs a road segment attracts travellers from. Anthors combine this metric

with the topological nmeasure of betweenness ceitrality 163, 131 that measures the

tendeicy of a segment iii the road network to lie on shortest paths, and l)rovide

a novel classification of roads in a metropolitan area: conmiectors that have high
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Figure 1-5: A color coded depiction of Kro 1 and a breakdown of the MDSs for two

road segments. A,0d values are typically higher for road segments that are more

central. The degree (listribution is approximated by a normal distribution. 11711

betweeonness and high Kroo(/. peripheral connectors that have high betweenness hut

low Kro(t. attractors that have low betweeniless but high (K,'I, and locals which

have low betweeiness and low K1,(. Figiure 1-5 illustrates some of these findings in

this work.

On another front very closelv related to transportation. Simini et al. 11491 test

(( )lliiionlly used gravitational trip distribution m11odel in the traiisportation literature.

Analogous with Newt)i ons law of gravitation. the gravitY model estimates Tj (number

of' people that move betweeii two locations / aInd j) as
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m n,
Ti = . , (1.2)

f (rij)'

where mi and n3 are the populations in the corresponding locations and rij is

the distance between them. a, 3, and f(rij) are used for calibration. The various

weaknesses of the gravity model (including the lack of a rigorous derivation 'and the

free form of f(rij) among others) led the authors to develop the radiation model:

(Ti) = . . nj (1.3)
(mi + sij)(mi + n3 + sij)

where sij represents the total population in the radius rij centered at i excluding

mi and nj. Their findings show that the commuting flows agree substantially better

with the radiation model, as shown in Figure 1-6. Since this work, a large body

of work was produced to improve the traditional models and those newly proposed

[181, 96, 107].

1.1.3 Transportation Demand Modeling

One of the biggest challenges in transportation is accurate modeling of urban mobility,

as it is a very complex problem with high dimensionality. People, places, activities,

roads, public transportation services all come together to form a very heterogeneous,

almost organic system. When we consider a typical morning commute at the level

of a single individual, many factors determine the nature and the characteristics of

this trip. The most important factors are personal: where one lives, goes to work,

walks his/her dog, where his/her choice of grocery store is, and so on. Some other

these factors are the sociodemographic characteristics of the person, namely income,

education level, and social network. Some other factors are external: modes of travel

available, weather conditions, events such as concerts or sports games in vicinity for

that specific time. Among these, the cost of travel for each mode, not only monetary

cost but also that of time, further influences the traveler's choices. In overall, these

factors and possibly many others are all significant in one's choices regarding whether

or not to make a trip and if so, in what way one makes it.
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Understandably, accurately predicting the travel demand for a metropolitan area

of millions of residents is a very difficult task. Transportation planners undertook

this problem starting early 20th century and developed a series of methods to model

most of these concepts over time. The general framework that encapsulates these

methodologies is referred to as the four step model, as summarized in Figure 1-7.

This modeling framework begins with gathering population data and forming a set

of TAZs (Traffic Analysis Zones) over the region of analysis. Additional inputs such

as economic activity, a breakdown of points of interest such as shops, schools, and

parks are also obtained. First step, trip generation, consists of estimating the total

number of trips generated by each zone. The next step, distribution, produces what's

known as the origin-destination matrix: a breakdown of the number of total trips

between any two zones by time and purpose. Modal split models the choice of mode

of transport for each traveler taking into account the characteristics of various route

options, modes as well as the traveler's sociodemographic characteristics. The final

step is the assignment of these trips to the network of the corresponding mode.

Trip generation models aim to estimate the total number of trips generated and

attracted by each location, broken down by time and purpose. For example, how many

car trips are made from Harvard Square to Boston Common on a typical Monday

morning? To incrementally estimate these numbers, one method is growth-factor

models. These models intake previous findings for these numbers, and estimate the

growth factor as a function of current and future parameters such as population, car

ownership, income, and others. The more general solution in earlier 20th century was

building statistical models (such as regressions) to estimate trip generation rates for

parameters such as those aforementioned. However due to the inherent limitations

regarding dependency, category analyses were proposed in 1960s [1761. These models

stratified the population by each parameter, for example, one strata would consist of

the group of households whose income range between 2000 and 3000 $ per month and

own 1 car. A regression would be carried out independently for each strata.

Trip distribution models are considerably more complex. The production and at-

traction values obtained for each zone do not provide the information regarding the
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distribution of these trips, specifically in terms of pairs. Trip distribution aims to

breakdown the trip number totals to a matrix, where each row and column corre-

sponds to a zone, the sum of rows and columns correspond to the production and

attraction of that zone. This matrix is called an Origin-Destination (OD) matrix.

As mentioned in Section 1.1.2, synthetic models like the gravity model are among

the first examples of trip distribution. For example, gravity model states that the

number of trips between two locations are proportional to each of their population,

and inversely proportional to the distance between them, as described in Equation

1.2. Various calibration and fitting techniques along with different forms of the dis-

tance relationships exist in literature. One other model that has gained traction is

the intervening opportunities model, which states that the decline in trip magnitudes

is not an outcome of distance, but rather opportunities [159, 145].

Modal split is an inherently different problem as it tries to model how individ-

uals make a specific choice among various options. At the core of this problem lies

understanding human behavior and choice. Therefore at this point in the four step

modeling framework, a paradigm shift occurs towards a more disaggregate approach.

In this context, discrete choice models are the most commonly accepted methodology

[231. The simplest of such models, is the multinomial logit model (MNL):

7ri xu= (1.4)
ZE 1 exp(uik)

where 7rij stands for the probability of i making choice j, for utility values calcu-

lated for each choice Uik. Probit models have also been widely used. These models

have since been significantly improved upon and used in complex ways such as mixed,

nested or combination models over the years.

The fourth and last step, assignment, has significantly evolved over the twentieth

century. With the foundation of game theory [1181, the idea of equilibrium permeated

into transportation modeling. The typical equilibrium concept in economics is the

point of balance between supply and demand where the marginal cost of producing

a good is equal to its marginal revenue. In the context of transportation, this occurs
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on the roads- people choose routes in a way that minimizes the travel time, i.e.

incurred cost, until they no longer can. Traffic assignment models try to solve this

problem, that is, how does the network look like in equilibrium, and conversely, out

of equilibrium.

One seminal work on this topic is that of J.G.Wardrop [172], which focuses on

how rational drivers choose routes and its outcomes in terms of travel times. The

paper is widely known for Wardrop's first and second principles and the formalization

of the equilibrium concept in the context of route choice. The first principle states

that the journey times in all routes actually used are equal and less than those which

would be experienced by a single vehicle on any unused route. The second principle

asserts that in equilibrium, the average journey time is minimum. These findings are

another description of Nash equilibrium [1181. Beckmann et al. [191 mathematically

formulated this concept in traffic networks, namely user equilibrium.

Typically, demand information in the form of an OD matrix, a road network repre-

sentation with accurate capacity and speed profiles, and rules regarding route selection

are the inputs of traffic assignment. The first is, as described earlier, obtained in trip

generation and distribution steps. The road network, is generally at hand in most

transportation consulting companies for their subject cities. Nowadays, open-source

repositories such as Open Street Maps (OSM) can be used to obtain this information.

The third input, namely the route choice model, can be rather simple or complex.

Old methods of assignment include static incremental traffic assignment, where the

demand would be assigned to the network in batches in an effort to approximate

equilibrium. Starting late 90s, route and path based assignment procedures made

use of computers in solving for equilibrium more efficiently and accurately. The fore-

front of traffic assignment research today is more concerned with implementations of

dynamic traffic assignment, where OD information varies temporally and stochastic

components are incorporated into route choice [93, 86].

Over the years and still today, the four step model has formed the solid foundation

of travel demand modeling. In their quest to improve this methodology, modelers

focused on the reasons for a trip, that is, for what purpose do people travel? This
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Figure 1-9: The fundamental diagram resulting from the cell transmission model [51],
where qmax represents maximum flow and is sustained by the road for densities within
[ka, kb]. At k the road reaches its jam density and speed drops to zero.

idea led to the interest in better understanding activities and how they influence trips.

In other words, instead of looking at the total number of trips between two locations,

modelers wanted to understand the travel diary of an individual, composed of a series

of activities such as grocery shopping, commuting, picking up kids fro school that

generate trips. Figure 1-8 illustrates the general concept of activity based modeling,

which has become the current state-of-the-art in practice.

1.1.4 Traffic Flow

The modeling of traffic flow on roads is a separate yet rich area of study. Besides

the easily measurable speed, researchers quantified density and flow, as the number

of vehicles per unit of roadway and per unit time passing through it, respectively.

Based on these measurements, microscopic and macroscopic models were developed

[1161. Several fundamental flow diagrams, a commonly used label for the relationship

between the flow and the density in a road segment, were proposed and are still being

revised and calibrated today 11311. One commonly used traffic flow model is the cell

transmission model (CTM), developed by Daganzo et al. [51]. In this model, cars fill

38



up discrete cells that form the road segment. The number of cars that flow into and

out of each cell is kept track of, and thus the number of cars in each cell. This model

of flow continuity enables CTM to capture traffic jams and shockwaves. The basis of

CTM can be mathematically described as,

ni+1 (t + 1) = ni(t)

ni(t + 1) = ni(t) + yi(t) - yi+1(t) (1.5)

yi (t) = min (ni-1I(t), Qi (t), Ni (t) - ni (t))

where ni(t) is the number of vehicles in cell i at time t, yi(t) is the inflow to i at t,

Qi(t) is the flow capacity into i, and Ni(t) is the maximum number of vehicles for cell

i. These formulas describe flow between cells such that flow capacities and spatial

constraints are conserved. The resulting fundamental diagram is shown in Figure 1-9.

Cellular automata approaches regarding modeling traffic flow has also attracted

a lot of attention, mostly from the physics community. One such model is called the

Nagel-Schreckenberg (NS) model, where the road is again divided into cells of a fixed

duration At. Each cell is either occupied or unoccupied with vehicles. Each vehicle,

can accelerate if not at maximum velocity and decelerate if there is a vehicle in the

following cell. With added noise, NS model reproduced various properties of traffic

flow as well as providing valuable insights regarding jams and shockwaves.

Today, complex micro and macrosimulators are able to combine traffic flow theory

and general traffic demand models to provide good flow estimates and sensitivity anal-

yses. MITSIMLAB, a microscopic traffic simulation laboratory developed at MIT is a

prime example [121. DYNAMIT, a real time model system for network management

and emergence response is developed by the same group [221. Similarly, resesarchers at

ETH Zurich have built MATSIM, a highly capable multi-agent transport simulation

tool [9].
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1.1.5 Science of Cities

Starting from the beginning of history, humans increasingly clustered together to

generate economies. Acheological findings date the earliest cities, as we understand

them today, back to 5000 BC. Today, popularly referred UN statistics state that more

than half of the world's population lives in cities, understandably inspiring scientists

to try to understand how they form, evolve and operate. Scientists from various

disciplines have aimed to understand how cities grow in population and in area,

how the distribution of population density is evolves, how cities stay monocentric

or transform into polycentricity, and how infrastructures, interactions, socioeconomic

metrics, and rents are interrelated. The commonality in these attempts how difficult

the problem is: cities are results of highly complex interactions between similarly

complex elements. To clarify, one can picture an individual, simply at the microscopic

scale. The individual is difficult to model, even when simplified to be rational, as

exemplified by topics in Sections 1.1.2 and 1.1.3. These individuals live and move

in the city: they go to restaurants, meet with friends, pay rent, consume electricity.

The outcome of this behavior in aggregate determines how dense, expensive, safe,

congested, clean the city is. At the mesoscopic scale, the problem is aimed towards

understanding the intricacy of how a city expresses itself. This leads to the question

of how universal these patterns of expression are, in other words, analyzing a system

of cities. In addition to the spatial scale, the science of cities also vary by temporal

resolution: understanding city growth requires analysis that span decades, whereas in

the problem of disaster response, even seconds are important. Physicists, economists,

urban planners, engineers among others have worked in various spatial and temporal

scales of cities. This section focuses on the literature at the macroscopic level.

A typical methodology in understanding a system is to assess how it scales with

respect to its various properties. In the context of cities, area and population are

the two key properties. Gibrat's Law for cities states that the city area and popu-

lation sizes can be approximated by lognormal distributions. In his interesting work

extending Gibrat's claims [17], Batty examines city and building sizes, populations,
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Figure 1-10: Scaling relationships of (a) building sizes and (b) employment against

population. (c) scaling of employment and population density with respect to distance

from the city center. [17]

population densities and employment. The author argues that growth rates are far

from being random, nor are they favoring large cities. In fact, growth generally is

shifted towards snaller cities, which is arguably the consequence of the higher benefits

of economies of scale in smaller cities both in terms of income and expenses, and the

increased stress imposed oil the road and power infrastructures. Figure 1-10 shows

the findings in this work. specifically that building sizes and employment scale with

population. The scaling against distance from what can be accepted as the central

business district. or the most densely populated area. or the city center can also be

observed.

In 125, 261. Bettencourt et al. more thoroughly examine how various properties

of cities come together and how they scale. These works sumnnarize the observed

exponent ranges for proposed moidels for various city properties. The authors scale

popuIlation N to determine network volune, length, interactions per capita and rents

to provide estimates on the ranges of the exponents with the acceptable assumptions

of D = 2 for number of dimensions and H 1 for the fractal dimension. The observed

exponent ranges are in good agreement with the models, as shown in Figure 1-11.

In 126], authors beautifully classify scaling exponents. Biological organizations have

< < 1, are driven by efficiency, and grow sigmnoidally with long-term population limits.

Productivity, and generation of wealth drive sociological organization and grow with

a series of collapses and booms. thus I > 1.
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V 95% Cl Adj-R2 Observations Country-year
New patents
Inventors
Private R&D employment
"Supercreative" employment
R&D establishments
R&D employment
Total wages
Total bank deposits
GDP
GDP
GDP
Total electrical consumption
New AIDS cases
Serious crimes

Total housing
Total employment
Household electrical consumption
Household electrical consumption
Household water consumption

Gasoline stations
Gasoline sales
Length of electrical cables
Road surface

1.27
1.25
1.34
1.15
1.19
1.26
1.12
1.08
1.15
1.26
1.13
1.07
1.23
1.16

1.00
1.01
1.00
1.05
1.01
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These works have led to many others 115, 16, 11, 99, 1001 analyzing how mobility

and congestion shapes cities, and how polycentricity evolves, among others. More

importantly, they provide a benchmark in understanding the underlying mechanism

of growth and productivity in cities as well as uncovering the nontrivial relationships

between various metrics. This new understanding of cities will eventually produce

more informed and educated local policies.

1.2 Dissertation Overview

In the second section of this thesis, we discuss the problem of congestion from a

physics perspective, with the goal of building on the expertise reviewed in Section

1.1.4. Particle flows in spatial networks are susceptible to congestion. Our goal is

to analyze the phase transitions of road networks to a state of congested transport

and the influence of both tgpology and spatial dynamics on the emergence of this

congested state. Many previous studies in the physics community have focused on

the flows of data packets in the internet and therefore have reasonably overlooked

the role of space and time in particle flows in the networks. In the case of data

packets, the travel time between nodes is negligible and queues accumulate in the

nodes which have limited capacity to process the packets and congestion occurs. In

contrast, in road networks queues are formed on the links which have limited spatial

capacity, and in turn velocities depend on the density of travelers on each link. In

this context, transportation research focuses on capturing traffic flow by making use

of the fundamental diagrams that empirically relate flow, density and speed in road

segments and utilizing them in macroscopic link models. Our goal in this section is to

build on the simple model of the Internet by adding temporal and spatial dimensions

of particle flow and hence construct a framework to analyze congestion in spatial

networks from a network science perspective. Under simplified demand profiles, and

simple flow dynamics, how can we describe the inherent physical phenomenon that

is congestion from the perspective of space and topology? We systematically show

that the value of the critical loading rate at which congestion emerges is affected
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by the addition of spatial dynamics, changing the nature of this transition from a

continuous to a discontinuous one. Our numerical results are confirmed by introducing

an analytically solvable framework. As a case of study, we explore the implications

of our findings in the San Francisco road network where we can locate the roads

that originate the congested phase. These roads are the spatially constrained, and

not necessarily those with high betweenness as predicted by models without spatial

dynamics.

In the third section of this work, we focus on origin-destination matrix estimation

using mobile phone data. A brief literature on travel demand estimation was presented

in Section 1.1.3. Typically, the necessary information to initiate the four step model

is obtained through surveys. These surveys require meticulous design to capture

the mobility of the whole population by the smallest sample of households and as

accurately as possible. The people in the selected households are all asked questions

about the trips they make, the times they make them, the modes they use, where

they work, and other detailed information. However despite the quality of the data

obtained from these surveys, they have a very small sample size, they're expensive,

time consuming, and they require a lot of design, supervision and quality control. On

the other hand, every time we use our mobile phones, a crumb of data containing

a timestamp and an approximate geolocation is generated and stored in the service

providers' servers. This practice was initially adopted by these companies for billing

purposes, as these call logs eventually were used to calculate the monthly bill for the

consumer. As phones become more and more capable, consumers regularly use data

services to not only make calls but to access applications, check emails, and even

listen to music or read. In consequence, the size and potency of the data a consumer

generates is constantly increasing. Moreover, along with the rapid progression of

mobile technology over the last years the adoption has also drastically increased: As of

January 2014, 90% of American adults own a cellphone, and 58% own a smartphone.

The ubiquity of mobile phone usage is persistent in not only the United States but

around the world: usage statistics obtained by the World Bank indicate an average

of 0.93 mobile cellular subscriptions per person for the world. This value drops down
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only to 0.63 for a less developed region like Sub-Saharan Africa. In this context, it

can be argued that data generated from mobile phone use has a lot of implications for

use in transportation modeling due to its richness and ubiquity. Our goal is to test

the power of such data for various cities across the world against the results obtained

from surveys obtained by local authorities. We show that at certain aggregation

levels, CDRs have the potential to inform four step models quite strongly, and at

least support the household travel survey in its role in transport modeling.

The fourth section of this work is focused on bringing together the two concepts

targeted separately in the previous two sections, namely road networks and travel

demand, while providing a comparison of cities to understand the aforementioned

interplay to improve on the literature reviewed in Sections 1.1.2 and 1.1.5 from a

transportation point of view. Currently, most urban areas are ridden with conges-

tion. Increasing population along with agglomeration of goods and opportunities

leads to increased population densities, which in turn leads to peaks in demand for

infrastructures. Energy and mobility are prime examples, load curves for urban ar-

eas are highly peaked, and access to downtown areas in the morning peak traffic is

often infuriatingly difficult. Specifically in developing countries, congestion levels are

staggeringly high: TomTom, a leading GPS company has reported above 60% con-

gestion in cities like Moscow, Istanbul, Rio de Janeiro and Mexico City. In efforts to

alleviate congestion, cities rely on construction of bigger roads, introduction of new

bus lines, carpool lanes, in more dire cases congestion pricing and most extremely

road space rationing. Drivers, to escape traffic, have increasingly resorted to real

time traffic tools which, when collectively used, arguably makes traffic worse. In this

section, we begin by implementing a modern static traffic assignment model to obtain

comparable estimates of travel times for five cities: Boston, San Francisco Bay Area,

Rio de Janeiro, Lisbon, and Porto. We compare our findings to values obtained from

an online map provider. We analyze how total vehicle kilometers travelled and the

total network capacity, when combined with population density, can help explain a

city's response to travel demand. We then analyze the potential travel time benefits

of socially aware routing behavior. From another perspective, we calculate how much
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time is lost solely due to the fact that drivers minimize their own travel times. We

demonstrate distributions of benefits and losses at the individual level, that add up

to generate overall benefit for the society.

In the fifth section, we move our focus towards the electrification of transportation,

namely the electric vehicles (EVs). The electrification of transportation introduces a

spatiotemporal tie between the traditionally independent power and transportation

infrastructures through EV charging. Due to the mobile nature of energy storage in

EVs and the dependency of the resulting energy demand to the trip characteristics,

understanding this relationship is crucial. In this section, we use origin-destination

information obtained from mobile phone location data along with EV charging session

data to study the coupling between energy demand and commuting patterns in Bay

Area, California. We first estimate the mobility patterns specific to EV drivers from

origin destination information obtained from mobile phone data. We then explore

charging behavior to characterize arrival and departure times, visitation patterns,

session durations and flexibility. Next, we analyze the relationship between com-

muting behavior and energy consumption by coupling the mobility information with

energy demand. Finally we develop a smart charging scheme that shaves peak power

load by incorporating smart charging and arrival hour modification, and quantify and

assess the potential benefits and the applicability of such solutions.

In the sixth and final section, we conclude this dissertation with an overarching

discussion and potential avenues for future work.
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Chapter 2

On the role of spatial dynamics and

topology on network flows

Particle flows in spatial networks are susceptible to congestion. In this section, we

analyze the phase transitions of these networks to a state of congested transport and

the influence of both topology and spatial dynamics on its emergence. We systemat-

ically show that the value of the critical loading rate at which congestion emerges is

affected by the addition of spatial dynamics, changing the nature of this transition

from a continuous to a discontinuous one. Our numerical results are confirmed by

introducing an analytical solvable framework. As a case of study, we explore the im-

plications of our findings in the San Francisco road network where we can locate the

roads that originate the congested phase. These roads are the spatially constrained,

and not necessarily those with high betweenness as predicted by models without

spatial dynamics.

2.1 Introduction

Flow networks are inherently liable to congestion. The ability of these networks

to handle demand at reasonable levels is crucial as otherwise a congested phase of

This chapter is based on 1481.
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transport affects the performance across the entire network. Therefore, it is of prime

interest to analyze how and where networks begin to undergo a transition to a con-

gested state and the dynamics of its response. Dissecting flow patterns is essential

to address this problem. In this context, flow of data packets in the Internet is well

understood, as analyses of their traffic dynamics and phase transitions are abundant

1125, 60, 157, 55, 8, 1101. The transition point to congestion is in this case well estab-

lished through analytical solutions and simulations [6, 71, 72, 187, 178]. To interpret

the role of a network backbone for managing flows, optimal paths and minimum span-

ning trees have been studied [163, 177, 40]. The most relevant metric to determine the

vulnerability of internet flows is the betweenness centrality for shortest paths, because

it determines the critical element generating congestion in the network [63, 13].

All these previous studies have overlooked the role of space and time in particle

flows in the networks; a reasonable assumption in Internet applications. In this case

the travel time between nodes is negligible and queues accumulate in the nodes which

have limited capacity to process the packets and congestion occurs. In contrast, in

transportation networks travel time of vehicles or individuals is crucial. Queues are

formed on the links which have limited spatial capacity, and in turn their velocity

depends on the density of travelers on each link. In this context, transportation

research focuses on capturing traffic flow by making use of the fundamental diagrams

that empirically relate flow, density and speed in road segments and utilizing them

in macroscopic link models [67, 53]. The cell transmission model [51, 52] and the

simple point queue models [92, 93, 1201 are well established among such traffic flow

models. Alternatively, cellular automata models for vehicular traffic [117, 431 have

also been used to mimic traffic flow behavior along with many other discrete stochastic

models [146, 116]. In none of these cases, the interaction of the spatial dynamics with

the network topology have been addressed. Our goal here is to build on the simple

model of the Internet by adding temporal and spatial dimensions of particle flow and

hence construct a framework to analyze congestion in spatial networks from a network

science perspective. The proposed framework can be extended to flows in other kinds

of spatial networks [10, 14, 1051, and more importantly could open new avenues of
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the research on urban road networks that would go beyond modeling and topological

analysis for the statistical physics community[139, 15, 1831.

2.2 Methods

We begin by recalling the scheme in 16, 72, 8, 157, 178, 187, 71, 55, 125, 60] and refer

to it as the internet model (IM): the network is loaded with R identical particles at

each timestep t with randomly assigned origins and destinations. A fixed shortest

path routing table guides particles towards their destination. Nodes can transmit

as many particles per timestep as their outflow capacity, C, and travel between two

nodes takes a unit timestep. Queues of particles form at the nodes, and they can

grow infinitely large. Particles are exempt from joining the queue at their destination

and are removed from the system upon arrival. The network response is measured

by the order parameter H 1721:

H (R) = lim (W)(2.1)
t-+T RAt '

where W denotes the number of particles in the system, (AW) is the average change

in the number of particles still in the system after a timestep, At is the unit timestep

and T is the length of the simulation. Figure 2-1 (a) and (b) depict the IM. For low

values of R, the network reaches a rate of particle arrival equal to the loading rate.

W remains constant and consequently H = 0. Conversely, if R exceeds a certain

threshold Rc, a linear increase in W with a slope of H is observed due to excessive

queueing. This behavior maps a second-order phase transition to congestion.

Spatial networks, being embedded in two-dimensional space, give rise to three

heterogeneities that need to be captured. First is non-uniform travel times. This

differs from the Internet where data packets hop from one node to the next in a single

timestep. Second, these networks carry flows along the links. A particle in a spatial

networks has a specific position on the link it is traveling on. The third source of

heterogeneity is a consequence of this: particles occupy physical space and gradually
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fill the segment. Among the various models of traffic flow in the transportation

literature aimed to address these issues, the point-queue model (PQM) used in [120,

93, 92, 591 is an adaptation of the IM that shifts flow from nodes to links, incorporating

the non-uniform travel time distribution and thereby making the flow analysis very

similar to that of the internet. Particles traverse the link freely by hopping through

r slots of unit travel time to join a queue at the end of the link from which they will

be discharged at the outflow capacity. The total travel time consists of the free travel

time and the delay, namely, the timespan between the particle entering the queue and

exiting it. The spatial point-queue model (SPQM) incorporates a single additional

constraint to the PQM: every link has an upper limit for the number of particles

it can hold at once. We will refer to this value as the volume capacity of the link,

V. Links cannot accept any new particles when they reach their volume capacity, as

illustrated in Figure 2-1 (c). This additional constraint has a crucial effect on the

nature of the network response, as links at volume capacity clog upstream links and

cause them to succumb to congestion as well. This spreading of congestion occurs at

rates that depend on the loading rate and the network topology along with specific

link properties. The rate of particles unable to travel determines the speed with which

the congestion spills, which makes the spreading process non-binary unlike traditional

spreading models in the literature. Although the SPQM share some aspects with

several directed percolation models, the movement of non-identical particles along

predetermined spatial shortest paths with non-binary spreading is uncommon and

therefore relatively unstudied [75, 831.

2.3 Results

The critical loading rate R'M has been shown [61 to be equal to

R'M = N(N - 1)(Cma/B ), (2.2)
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Next, we introduce a framework to analytically calculate the entire transition curve

to congestion. For R > Rc, particle inflow at certain elements will be larger than the

outflow. We define R' as the critical loading rate specific to element i. For large

R, the outflow of congested links are maximized to capacity, which in consequence

affects the inflow to the links downstream. To account for this we define the delay

factor, Di(R), referring to the fraction of paths through i that are not suffering from

delay as,

Di(R) = W(R' - R) + t W(R -R'), (2.4)
Ii(R)

where W(x) is the Heaviside step function and Ci and I(R) are the outflow capacity

and the inflow of element i for loading rate R. Di(R) =1 suggests no congestion for

element i, whereas lower values indicate levels of congestion. Using this definition,

the inflow I(R) at a specific loading rate R can be quantified as,

) 
I Zker(i) liek RDj (R)

N(N - 1)

H(R) = (Ii(R) - Ci))H(Ii(R) - Ci), (2.6)
iEAr

where I'(i) is the set of paths passing through element i. Eq.(2.6) accounts for all

the delay factors of the elements upstream of element i by going through the shortest

paths. Eq. (2.4) and (2.5) form a set of coupled equations that can be solved to ob-

tain the inflows for every element. H(R) is obtained by summing all positive values

of I(R) - C. Figure 2-1 (b) also reveals the exact solution for the simple network

around the critical point with the dashed curve H = (7/42)(1 - R,/R). In order to

test different network topologies and examine the effect of space on criticality, we use

a non-periodic lattice as a substrate and rewire each edge (i, j) with probability p to

a new destination j* chosen with probability proportional to d(i, j*)' where d(i, j)

denotes the Euclidean distance [174, 911. Figure 2-2 reveals that the simulations and

analytical results perfectly coincide for transitions in both a two dimensional non-

periodic lattice of N = 1225 and C = 4, and its completely rewired instance. Critical

rates decrease for smaller p as newly introduced shortcuts have higher betweenness
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values. As p increases, the value of a and its effect on network topology becomes

more pronounced: rewired links in networks with lower a values are more localized

and therefore maximum betweenness values are higher in these networks. Conse-

quently the increase in H is sharper for lower a. Figure 2-2 (b) and (d) show sharper

transitions and lower Rc for decreasing a values for network instances with p = 1.

At Rc, the link that triggers congestion, also referred to as the critical element, is

expected to fluctuate between free flow and congested phases. Figure 2-3 (a) exhibits

the frequency distribution of the timespans at which this most critical element oper-

ates at its outflow capacity, as an indicator of the temporality of the phase transition.

Results show that these timespans follow a power law with exponents of -0.58 0.04

for the IM and -0.48 0.04 for the PQM, independent of the network topology.

SPQM exhibits a different behavior. For low volume capacities links tend to fill up,

causing links upstream to fill as well. Fluctuations cause a gridlock, a condition

where all elements of a cycle are completely filled and hence flows stop. In case of a

gridlock, the order parameter increases very sharply. In Figure 2-3 (b), for varying

volume capacities we measure the average number of timesteps it takes for a gridlock

to occur, tg, normalized by the length of the simulation T. It can be observed that for

lower V, gridlocks are observed relatively quickly. For large volume capacities, PQM

and SPQM have the same R,, which we will refer to as the PQM-limit. In either

model, at steady state, queues are not expected to be necessarily empty but rather

steady in their size. If the volume capacity of a link is smaller than this steady state

queue size, particles will be blocked in the upstream link which consequently may

suffer from a decrease in its outflow due to this clogging effect. This suggests a lower

critical point for a network with active volume capacity constraints, correspondingly

RPQM > RSPQM. Therefore, to realize the congestion-free transport to the fullest, the

PQM-limit should be aimed. Figure 2-3 (c) illustrates the response of a non-periodic

lattice with N = 625 for decreasing levels of volume capacity and reveals that both

the critical loading rate and the nature of the transition is affected by V. Figure 2-3

(d) shows the effect of the volume levels on R,. In point queue models, the number

of particles on a link is the sum of those in the queue, which was shown to be pro-
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portional to the modified betweenness, and those that are traveling. The expected

inflow to a single slot of travel on a link is proportional to the actual betweenness

of that link, hence the expected number of particles traveling is TBE. Therefore for

small V and strictly deterministic inflows, a link reaches its maximum volume when

V = R, (rBE + BE*)m. /N(N - 1). The inflow to the link is proportional to the

actual routing betweenness so the critical point can be expressed as,

RC = N(N - 1) min ( ( (2.7)
BE*' (7-BE + BE*)a

where BE is the edge betweenness. Consequently a linear increase in Re is observed

up to the point where V = C(TBE + BE*)max/Bmlx. However, the stochastic nature

of the model, along with the first-order nature of its transition, causes fluctuations

that force RC/C below this analytical bound as it converges to the PQ-limit.

Figure 2-4 depicts the transitions for the PQM and the SPQM for the San Fran-

cisco road network with N = 1152 and an average degree of 3.2. The network is

discretized by unit travel times of 10 seconds. Outflow capacity of a road segment

is obtained by using the speed limit and the number of lanes. Volume capacities are

estimated for every road segment assuming that the volume capacity is reached when

speed drops to half of the speed limit. Under these assumptions, the PQM-limit is

not reached as RcQm = 40 (14400 vehicles/h) and RsPQM = 30 (10800 vehicles/h).

To capture network response in the SPQM, segment volumes are recorded at differ-

ent time steps of the simulation t = 720 (2h), t = 1440 (4h) and t = 2160 (6h) for

R = 36, slightly above the critical load. Figure 2-4 illustrates the network response

by mapping road segments that have reached 80 percent of their volume capacities

in the given time periods by color. Congestion originates from an artery leading to

the downtown area and anisotropically spreads to other regions. After 6 hours, most

network elements are suffering from congestion.
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2.4 Discussion

Our findings suggest that in the SPQM, the critical road segment cannot accept in-

coming vehicles as it saturates to its volume capacity before it reaches its outflow

capacity. This outcome can be traced back to the inherence of congestion in down-

town areas: cities with high population densities have concentrated spatial demand

distributions, which result in the inadequacy of urban space to accommodate such

concentrated flows. This work is a step further on a systems analysis applied to

congestion in roads. In further studies, population and facility distributions can be

modeled. In the applications domain an open question is to know how the studied

transition to congestion is influenced by introducing empirical origin-destination ma-

trices that represent the real population's travel demand [171, 149] and how network

topology contributes towards reducing- or maybe aggravating- congestion. While in

the domain of phase transitions, analyzing the set of critical exponents using directed

percolation as a benchmark case remains as an intriguing and open question [75, 831.
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Chapter 3

Extracting Origin Destination

Information from Mobile Phone Data

Rapid urbanization is placing increasing stress on already burdened transporta-

tion infrastructure. Ubiquitous mobile computing and the massive data it generates

presents new opportunities to measure the demand for this infrastructure, diagnose

problems, and plan for the future. However, before these benefits can be realized,

methods and models must be updated to integrate these new data sources into ex-

isting urban and transportation planning frameworks for estimating travel demand

and infrastructure usage. While recent work has made great progress extracting valid

and useful measurements from new data resources, few present end-to-end solutions

that transform and integrate raw, massive data into estimates of travel demand and

infrastructure performance. Here we present a flexible, modular, and computationally

efficient software system to fill this gap. Our system estimates multiple aspects of

travel demand using call detail records (CDRs) from mobile phones in conjunction

with open- and crowdsourced geospatial data, census records, and surveys. We bring

together numerous existing and new algorithms to generate representative origin-

destination matrices, route trips through road networks constructed using open and

crowd-sourced data repositories, and perform analytics on the system's output. We

This chapter is based on 1451 and 11641.
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also present an online, interactive visualization platform to communicate these re-

sults to researchers, policy makers, and the public. We demonstrate the flexibility

of this system by performing analyses on multiple cities around the globe. We hope

this work will serve as unified and comprehensive guide to integrating new big data

resources into customary transportation demand modeling.

3.1 Introduction

The accelerating growth of cities has made the estimation of travel demand and the

performance of transportation infrastructure a critical task for transportation and

urban planners. To meet these challenges in the past, methods such as the widely

used four-step model and more recent activity based models were developed to make

use of available data computational resources. These models combine meticulous

methods of statistical sampling in local [50, 1501 and national household travel surveys

[158, 1381 to process and infer trip information between areas of a city. The estimates

they produce are critically important for understanding the use of transportation

infrastructure and planning for its future [169, 155, 104, 98, 78, 77, 76, 101, 41, 211.

While the surveys that provide the empirical foundation for these models offer a

combination of highly detailed travel logs for carefully selected representative pop-

ulation samples, they are expensive to administer and participate in. As a result,

the time between surveys range from 5 to 10 years in even the most developed cities.

The rise of ubiquitous mobile computing has lead to a dramatic increase in new, big

data resources that capture the movement of vehicles and people in near real time

and promise solutions to some of these deficiencies. With these new opportunities,

however, come new challenges of estimation, integration, and validation with exist-

ing models. While these data are available nearly instantaneously and provide large,

long running, samples at low cost, they often lack important contextual demographic

information due to privacy reasons, lack resolution to infer choices of mode, and have

their own noise and biases that must be accounted for. Despite these issues, their

use for urban and transportation planning has the potential to radically decrease the
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time in-between updated surveys, increase survey coverage, and reduce data acquisi-

tion costs. In order to realize these benefits, a number of challenges must be overcome

to integrate new data sources into traditional modeling and estimation tools.

Analyzed on its own, data generated by the pervasive use of cellular phones has

offered insights into abstract characteristics of human mobility patterns. Recent work

has found that individuals are predictable, unique, and slow to explore new places

[70, 32, 56, 154, 153, 39, 371. The availability of similar data nearly anywhere in

the world has facilitated comparative studies that show many of these properties

hold across the globe despite differences in culture, socioeconomic variables, and

geography. The benefits of this data have been realized in various contexts such as

daily mobility motifs [144, 147], disease spreading [20, 175] and population movement

[1021. While these works have laid an important foundation, there still is a need to

integrate these data into transportation planning frameworks.

To make these new data useful for urban planning, we must clarify their biases

and build on the progress made by transportation demand modeling even in the face

of limited data resources. We must combine this domain knowledge with new algo-

rithms and metrics to better understand travel behaviors and the performance of city

infrastructure and we must update technologies to accommodate the computational

requirements of processing massive geospatial data sets. Individual survey tracking

and stay extraction [7], OD-estimation and validation [36, 121, 171, 84], traffic speed

estimation 111, 186], and activity modeling [129, 135] have all been explored using

new massive, passively collected data. However, these studies generally present al-

ternatives for only a few steps in traditional four-step or activity based models for

estimating travel demand or fail to compare outputs to travel demand estimates from

other sources. Moreover, many methods offered to date lack portability from one city

to many with minimal additional data collection or calibration required.

Here we fill this gap with a modular, efficient computational system that performs

many aspects of travel demand estimation billions of geo-tagged data points as an

input. We review and integrate new and existing algorithms to produce validated

origin-destination matrices and road usage patterns. We begin by outlining the system
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architecture in section 3.2.1. In section 3.2.1 we explain our methods of extracting,

cleaning, and storing road network information from a variety of sources. We discuss

recent advances in OD creation from mobile phone data in section 3.2.2 and implement

a simple, parallel incremental traffic assignment algorithm for these trips in section

3.2.2. We present comparisons of these results to estimates from traditional survey

methods in section 3.3.1. Finally, in sections 3.3.2, 3.3.3, 3.3.4 we present a variety

of measurements that can be made with the proposed system as well as an online,

interactive visualization for conveying these results to researchers, policy makers, and

the public. To demonstrate the flexibility of the system, we perform these analyses

for five metro regions spanning countries and cultures: Boston and San Francisco,

USA, Lisbon and Porto, Portugal, and Rio de Janeiro, Brazil.

3.1.1 Description of Data

Travel surveys are typically administered by state or regional planning organizations

and are integrated with public data such as census tracts and the demographic char-

acteristics of their residents, made available by city, state, and federal agencies. New

data sources, however, come from new providers. Large telecommunications compa-

nies, private applications, and network providers collect and store enormous quantities

of data on users of their products and services, presenting computational challenges

for storing and analyzing them. Billions of phone calls must be processed, data from

open- and crowd- sourced repositories must be parsed, and results must be made more

accessible to individuals that generated them. At the same time, it is critical that

measurements from these new sources are statistically representative and corrected

for biases inherent in new data. This process requires integration of new pervasive

data with reliable (though less extensive) traditional data sources such as the census

or travel surveys. We combine the following data sets to illustrate the capabilities of

the system architecture here proposed:

1. Call Detail Records (CDRs): At least three weeks of call detail records from

mobile phone use across each subject city. The data includes the timestamp
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and the location for every phone call (and in some cases SMS) made by all

users of a particular carrier. The spatial granularity of the data varies between

cell tower level where calls are mapped to towers and triangulated geographical

coordinate pairs where each call has a unique pair of coordinates accurate to

within a few hundred meters. Market shares associated with the carriers that

provide the data also vary. Personal information is anonymized through the use

of hashed identification strings. For reference, 6 weeks of CDR data from the

Boston area containing roughly 1 billion calls made by 1.6 million unique users

consumes roughly 70 gigabytes of disk space in its raw format. In cities with

longer observation periods, data size quickly becomes a performance issue.

2. Census Data: At the census tract (or equivalent) scale, we obtain the popula-

tion and vehicle usage rate of residents in that area. For US cities, the American

Community Survey provides this data on the level of census tracts (each con-

taining roughly 5000 people). Census data is obtained for Brazil through IBGE

(Instituto Brasileiro de Geografia e Estatfstica) and for Portugal through the In-

stituto de Nacional de Estatistica. All cities analyzed in this work have varying

spatial resolutions of the census information.

3. Road Networks: For many cities in the US, detailed road networks are made

available by local or state transportation authorities. These GIS shapefiles gen-

erally contain road characteristics such as speed limits, road capacities, number

of lanes, and classifications. Often, however, these properties are incomplete or

missing entirely. Moreover, as such road inventories are expensive to compile

and maintain, they simply do not exist for many cities in the world. In this

case, we turn to OpenStreetMaps (OSM), an open source community dedicated

to mapping the world through community contributions. For cities where a de-

tailed road network cannot be obtained, we parse OSM files and infer required

road characteristics to build realistic and routable networks. At this time, the

entirety of the OSM database contains roughly 4 terabytes of geographic fea-

tures related to roads, buildings, points of interest, and more.
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Table 3.1: A comparison of the extent of the data involved in the analysis of the
subject cities.

City
Boston SF Bay Rio Lisbon Porto

Population (mil.) 4.5 7.15 12.6 2.8 1.7
Area (1000km 2) 4.6 18.1 4.5 2.9 2.0
# of Users (mil.) 1.65 0.43 2.19 0.56 0.47
# of Calls (mil.) 905 429 1,045 50 33
# of cell towers N/A 892 1421 743 335
# of Edges (ths.) 21.8 24.3 22.7 28.1 15.1
# of Nodes (ths.) 9.6 11.3 22.1 16.1 8.6
# of Tracts 732 1139 729 295 272

4. Survey and Model Comparisons: Wherever possible, we obtain the most re-

cent travel demand model or survey from a particular city and compare the

results to those output by our methods. In Boston, we use the 2011 Mas-

sachusetts Household Travel Survey (MHTS) and upscale trips according to

standard procedures, in San Francisco, the 2000 Bay Area Transportation Sur-

vey (BATS), in Rio de Janeiro, a recent transportation model output provided

by the local government, and in Lisbon, the most recent estimates from the

MIT-Portugal UrbanSim LUT model that uses the 1994 Lisbon transportation

survey as input[61]. We found no recent travel survey or model for Porto.

Table 3.1 compiles descriptive statistics for these data sources for each city we

explore in the latter sections of this section.

3.2 Methods

3.2.1 System Architecture and Implementation

Architecture

The system architecture to integrate the data sources above must be flexible enough

to handle different regions of the globe which may have different data availability

and quality and efficient enough to analyze massive amounts of data in a reasonable
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Figure 3-1: A flowchart of the system architecture.

amount of time. The proposed system must also be modular, so that components

can be updated easily as new technologies and algorithms become available. To

meet these requirements, we choose an object-oriented approach with loose schema

requirements. A final object is to make results accessible to a range of end users via

online, interactive visualization. To satisfy these constraints, we propose the system

architecture depicted in Figure 3-1.

Parsing, Standardizing, and Filtering User Data

One of the biggest challenges in parsing and analyzing travel survey data is the

incredible variety in data schema, collection, and reporting practices. Each planning

organization typically constructs its own set of data codes and definitions and provides
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data in unique formats. This makes it very difficult to compare surveys done in

different cities. Call detail records, on the other hand, are typically available for

many cities from the same provider and in the same format, and in most cases,

translating between the formats of different carriers is simply a matter of shuffling

columns. The first component of our system is a simple architecture to convert all

CDR data to a standard format that can be expected by the rest of the components.

Given the size of these data sets and the rapidly evolving schema requirements

of new models, choosing the proper data structure is critical. Google's open source

Protocol Buffer Library is an ideal choice as they provide fast serialization for speed

and space efficient file storage as well as flexible schemas that can be changed without

compromising backwards compatibility. These structures were designed to serve some

of the largest databases in the world and are more than enough for our task.

We take a user centric approach to CDR data. We define a user_ data protocol

buffer message that will form the core data structure for our custom User class in

an object-oriented programing model. Each User object can be assigned a number

of attributes such as the number of calls they make, their home and work locations,

and mobility characteristics such as the average time between calls or the average

distance traveled on each trip. More sophisticated methods can compute the number

and distribution of their trips and even expand them based on census information.

We define similar structures and classes for OD matrices, trips, and census data.

The serialization routines built into the protocol buffer library ensures that storage

of raw data is efficient. To analyze a new city, the user only needs to write two

simple routines, one to parse a single line of the CDR file and populate relevant

user attributes and one to populate census data objects. Standardizing the CDR

data format in this way makes it very easy to compare the output of our estimation

models across different cities.

Creating and storing geographic data

A relational database is used to store road network and census information for every

city in a standard format. Given the current cost of computing resources, these
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systems provide adequate performance for storing static GIS and census data and

have convenient, mature interfaces for easy access. We also use this database to

store aggregated results from our estimates so that they can be made available to

interactive web APIs and visualization platforms. We use a Postgres and the open

source spatial extension PostGIS to store and manipulate census and road network

data.

While census tract or TAZ (Traffic Analysis Zone) polygons and demographic

information are stored in this database, it is computationally inefficient to perform

point-in-polygon calculations for each user or call record in our CDR dataset. To

dramatically speed these computations, we rasterize polygons into a small pixel grid,

where pixel values is a unique identifier for the census tract covering that pixel. This

raster is then used as a look-up table to convert the latitude and longitude of calls

into census tract IDs. The rasterization introduces some error along the boarders of

tracts, but these errors are minimized by making pixel sizes much smaller than the

size of the raster and resolution of the location estimates of calls (between 10m and

loom).

While the platform supports road networks supplied by local municipalities in the

form of shapefiles, we have implemented a parser to construct routable road networks

from OpenStreetMap (OSM) data due to its global availability. Transportation net-

works in OSM are defined by node and way elements. Nodes represent points in space

that can refer to anything from a shop to a road intersection, while ways contain a list

of references to nodes that are chained together to form a line. In our context, rele-

vant ways are those used by cars and relevant nodes are intersections within the road

network. Ways and nodes may also contain a number of tags to denote attributes

such as "number of lanes" or "speed limit". Many roads, however, do not include

the whole set of attributes necessary for accurate routing. For example, city roads

often lack speed limit information required to estimate the time cost, which in turn

is used to find shortest paths based on total travel time. To infer this missing data,

our system supports the creation of user-defined mappings between highway types

and road properties. For example, ways tagged as "motorways" are generally major
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highways and have a speed-limit of 55 mph in the Boston area. They tend to have

3 lanes in each direction. "Residential" roads, on the other hand, have a speed-limit

of 25mph and 1 lane in each direction. Each road segment is also given a capacity

based on formulas suggested by the US Federal Highway Administration. Using these

mappings, we parse the OSM xml data to create a routable, directed road graph with

all properties required to estimate realistic costs driving down any given road.

We implement two additional cleaning steps to improve efficiency. The first filters

out irrelevant residential roads. These small local roads are filtered from our network,

as they are not central to the congestion problem, yet tend to increase computation

time significantly. Finally, in OSM data, a node object can refer to many things, for

example an actual intersection or simply a vertex on a curve used to draw a turn. The

latter case results in a network node with only one incoming and one outgoing edge

(assuming U-turns are not allowed). These nodes are superficial and increase network

size and routing algorithm run times needlessly. We simplify networks by removing

these nodes from the network and only connecting true intersections, keeping the

geographic coordinates of the nodes so that link costs still reflect actual geographic

length of roads rather than straight line distances between start and end points.

The parsed and cleaned edges are then loaded into the Postgres database, preserving

attributes and geometry. Pseudo-code of the algorithm to parse and simplify OSM

networks can be found in Algorithm 1 in the supplementary materials.

3.2.2 Estimating Origin-Destination Matrices

The following sections review algorithms for transforming billions of geo-tagged data

points into validated origin destination matrices and assigning these flows to trans-

portation infrastructure. Some of these algorithms are important for their deviation

from traditional approaches and some are important for their computational efficiency,

a requirement when faced with such massive data sets.
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Measuring Flow

Current methods to estimate the flow of people or vehicles from place to place in a city

generally fall into two categories: four-step or activity based approaches. The former

class of models breaks the process into a sequence of four steps from which it earns

its name. The first three steps in a four-step model - trip generation, distribution,

and mode choice - are designed to estimate origin-destination matrices containing the

number of trips from place to place within a city. Traditional modeling approaches

use data from travel surveys possibly combined with land use and point of interest

information to generate estimates of trip production and attraction for locations.

These trips are then distributed from their point of origin to destinations across the

city using gravity or radiation models. Modes of transit are assigned using models

estimated from survey data and information on the transit infrastructure. More recent

activity based models approach travel demand from an individual level. Assuming

that travel demand is created by the need to fulfill activities, these models use similar

survey data to estimate utility curves for travels and predict behaviors using probit

or logit models based on these preferences.

While new data sources such as CDRs do not provide the same detailed demo-

graphic and contextual information about individuals or trips, they do provide an

opportunity to measure travel more directly. With billions of data points, high spa-

tiotemporal resolution, and long observation periods, passive data collected by mobile

devices provide unparalleled scale of observation. New methods to estimate travel de-

mand must balance trade offs between small, but complete data for a short period

of time and large, but incomplete data over a longer period of time. In both cases

noise and biases must be carefully dealt with to produce valid measurements. In this

section we adapt and integrate previous works that have tackled parts of this problem

into a full implementation of travel demand estimation for cities.

Mobile phones offer good, but imperfect measurements of geographic position.

The coordinates of a mobile phone event are either recorded as the location of a

nearby tower through which the event was routed or as a triangulation based signal
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strength from multiple towers. This creates uncertainties of a few hundred meters

in estimates of a user's location. Moreover, observations are only recorded when

an individual uses his or her device, resulting in heterogeneous sampling frequencies

between users and at different times for a given user. While sampling rates and data

density are increasing rapidly with rising penetration rates and usage, these issues

present statistical challenges.

Initial methods by Wang et al. construct transient origin-destination matrices by

simply counting a trip for pair of consecutive calls made within the same hour from

two different towers. However, this method lead to an abundance of short trips and

provided a very biased view of movement. Instead, mobile phone trajectories must

be de-noised to remove spurious points or calls made in the the middle of routes

rather than origins or destinations. To extract meaningful locations, termed as stays,

algorithms have been developed to smooth out this noise and control for these biases.

Jiang et al. provide a thorough review of these techniques in [881 and we adapt the

stay point algorithm originally described by Zheng et al. in [1881.

Given a user's trajectory of spatiotemporal points P = {p1(xi, yg, ti) I i C [0, n]},

the goal is to discover meaningful locations at which a user repeatedly stays for a

significant amount of time. The algorithm begins by considering each call in a time

ordered sequence. Two consecutive (pi, pi+1) points are considered to form the start of

a candidate set of points at the same semantic location if the distance between them

is less than a threshold Ari,i+l < 3. Subsequent points are added to this candidate

set if they also meet this criteria, e.g. Pi+2 is added if Ari+1,i+ 2 < 6. The result is a

candidate set S = {p,(x,, ys, t), . . , pt(xt, yt, tt)} containing a number of consecutive

calls. A candidate set is considered to represent a single candidate stay if time between

the first and the last observation in the subsequence S are separated by a time greater

than a threshold At. > r. The geographic location of a candidate stay is set to be

at the centroid of points in S. Due to noise in locations and daily call frequencies,

multiple candidate stays that are actually the same place may be estimated at a

slightly different geographic coordinate on different observation days. To account

for this, a final agglomerative clustering algorithm is used to consolidate candidate
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stays to a single semantic location regardless of the temporal sequence of individual

calls. Though many agglomerative clustering algorithms exist, we implement a simple,

efficient grid based approach by assigning each filtered location to a grid cell and then

defining a final stay point as the centroid of all filtered locations in each cell. A final

pass through the original calls assigns any call within a distance 6 from a stay point

to that stay point regardless of whether or a not a consecutive call was recorded from

that location. This algorithm removes noisy or spurious outliers from the data set

while preserving as much information on visits as possible. It may also be run on both

triangulated and tower-based CDR data, in the latter case it removes noise associated

with calls from the same location being routed through different nearby towers due

to environmental factors. Pseudo-code can be found below.

With de-noised trajectories of stay points, the next step is to infer contextual

information about each location. Alexander et al. and Colak et al. [3, 45] improve

on methods by Wang et al. and Iqbal et al. [171, 84] by using visit frequencies

and temporal data to infer contextual information such as a location's function or

trip purpose. A user's home location is defined as the stay point they are observed

at most frequently between the hours of 8pm and 7am on weeknights. Their work

location is defined as the stay point other. than home that a users visits the most

between the hours of 7am and 8pm on weekdays. Because many individuals do not

work, we leave the work location blank if the candidate location is not visited more

than once per week or if the location is less than 500m from their home location.

All remaining non- home or work stay points are designated as other. Figure 3-5

illustrates the aforementioned procedure.

Daily trips are estimated from filtered users by analyzing consecutive observations

at different stay points during a given time window. They begin by defining an

effective day as a period between 3am one morning and 3am on the next consecutive

morning. This definition is used to minimize the number of trips that are prematurely

ended due to the assumption that users start and end each day at home. A home-

based work (HBW) trip is counted if a user is observed to travel between home and

work, a non-home based (NHB) trip is counted if a user moves between two non-
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ALGORIThM 2: Stay Point Algorithm - Step I - Initialize

t: {Ench user object has a number of attributes)

2: call = a call object with an associated latitude, longitude, stay index

3: caUs = vector of a user's calls ordered by timestamp

4: candidateSet = empty set of consecutive calls that meet criteria for a stay

: candidateStays - a vector of centroids from candidate sets

6: 6 = distance threshold between consecutive calls (in meters)

7: r = time threshold between entry into ad exit from the stay (in seconds)

: ds = a grid size for the agglomerative clustering algorithm (in meters)

9: stayCalis = an empty vector of calls from stay points

50: {Notes}

it: *Centroid(c VSet) returns an object whose latitude and longitude are the

centroid of all points in the input

12: cDaUtance)etweenCafs(call, cnU2) returns the geographic distance be-

tween calls in meters

13: *TimeBetweenCaUs(cdl 1,ca2) returns the time between call in seconds

ALGORITHM 3: Stay Point Algorithm - Step 2 - Candidate Stays

I: {For each user, loop through all calls and find candidate stays}

2: candidatelndex - 0

3: candidateSet =

4: for i = 0 to i = cals.sizt() - 2 do

5: If DistareBetweenCalls(calls[i, calls[i + 1]) < 6 then

candiact Set appendtnsi+13)

7: else

8: if Ti> eric enCels~candidnteSet{0,candidate ezi) >

then

9 for cadl in enndidateSet do

10: cRnstaylnex = mandidatelndex

It: candidateStay - Centroid(candidateSet)

12- arndidateSta&s.append(candidattStay)

13: candidateSet = {ealls[il}

14: candidateindew = candrdatelndex + 1

Figure 3-3: Pseudocodes for initialization and selection of candidate stays for the stay

point algorithm.
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ALGORITHM 4: Stay Point Algoritlun - Step 3 - Agglomerative Clustering

1: grid = construct a aniform grid that covers all of a usert s calls with cell

dimensions da x a

2: stay ndex = 0

3: for grid cells containing a mndidateStay do

.: c didat 51ay Zr {ji.taf m ndidate~tayincdll}

Al ay = Cntredcandid t Siyp)

' for c l made from a candidateStay in this cell do

: cLIorg tude = stay.angitude

S! call.atitude = staylatitude

9: call.siay ider = taginder

1.0: sin C 1&sappend(cnifl

11: slayindex = stayInde: + 1

ALGORIThM 5: Stay Point Algarithm - St p 4 - Final Pass

1: {Final pass to add any remaining calls to the stay}

2. for i - 0 to i =- cals.size() do

3 if call not part of a stay and DistanceBetweenCall(call, stay) 6 for

any stay then

4: mdllongitude = staydangitude

5: ten latitude = staylatitude

6: callstayindez -,- stayIndez

7: stayCdlIssappend(eadI)

& Sort stayCalls by tumestanp

9:

Figure 3-4: Pseudocodes for agglomerative clustering and final pass for the stay point

algorithm.
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Figure 3-5: Schematic example of phone records converted to daily trips for a typ-
ical mobile phone user. Activities are inferred in stay locations and daily trips are
neasured by time of day between these stays.

home stay points, and a lione-based other (HBO) trip is counted if a user is observed

moving between their home location and a location labeled as other.

Though a user must have traveled between two different observed stay points

at some in time. we do not know the precise departure time. We assign a random

departure tine based on the conditional probability that user departed during an

hour between the time they were last observed at the origin and the time they were

first observed at the destination. This conditional probability function for departure

time can be derived from surveys such as the National Household Travel Survey or

estimated empirically using observed call frequencies of all users over the course of

the day. Alexander et al. show that this method produces CDR trip departure time

distributions in line with multiple surveys for the Boston region. Having assigned

departure times and purposes to each trip, we can construct trips made by a given

user. Generally, we are interested in trips between geographic areas such as towns or

census tracts so here we convert origin and destination points to IDs of the tract of

zone they are in. The result is a vector of trips between locations in the city for each

user in our data set.

While a trip represents an observation of movement of at least one person between

two locations, we expand these trip counts to represent all individuals in a city.
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Expansion is a critical step in models relying on survey data where the sample sizes

are typically less than 1% of the population. Here we generally have hundreds of

thousands of users in our sample, but must still be careful to control for differences in

market share and usage rates across a city. We first scale trips based on how often an

individual uses their phone. For each user, we calculate the average number of trips

made during a given time window by dividing the number of trips counted by the

number of days that user was observed making a call. This step effectively measures

the average number of trips a user makes between two locations on a day given that

they are observed in our data set.

Due to differences in daily usage of mobile phones among the population, not

every user makes enough calls on a typical day to infer their movement patterns. For

this reason, we must filter out users that do make enough calls. This step requires

trade-offs between sample size and amount of data we have on each selected user.

Because we will eventually be routing these trips through the transportation network,

it is important to correctly estimate the total number of trips taken as well as the

distribution of trips across the city. In practice, we find that filtering out users who we

measure to make fewer than 2.5 trips per day leaves a large sample size of active users

and results in valid estimates of trip tables and OD matrices as shown in subsequent

sections. Those implementing these methods may find that different filtering criteria

produce samples suited for different tasks.

We then expand the average trip counts of filtered users to account for market

penetration rates. As with survey participants, the ratio of cell phone users to the

population is not uniform within the region. Each user is assigned a home census

tract and expansion factors are computed for each tract by measuring the ratio of the

number of users assigned there and the reported population. In cities such as Boston,

these expansion factors tend to be less than 10, but can be higher in places with lower

market share. They are generally much lower than surveys which may only choose

two or three individuals to represent hundreds or thousands in an area. Each user's

typical daily trip volumes are then multiplied by the expansion factor corresponding

to their home tract and the now represent the movements of some fraction of the
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tracts population. The spatial and magnitude distributions of the expansion factors

obtained for Boston and Rio de Janeiro are shown in Figure 3-6.

Finally, we may wish to consider only trips via a certain mode, e.g. vehicle trips.

Though CDR data does not provide resolution required to measure mode choice,

vehicle trips can be approximated by weighting person trips by vehicle usage rates in

the home census tract of users. In this way, full OD matrices for vehicle or person

trips are computed by summing the expanded trip volume computed for all users

between all pairs of census tracts. We also construct partial OD matrices containing

only trips of a certain purpose during a certain time window. Due to the relative

consistency of CDR data around the world, we can adopt this same OD creation

procedure in all cities. Pseudo-code to generate OD matrices has been adapted from

[3, 451 and can be found at the end of this section. The results from this method are

compared to the output of traditional models where applicable. A mapping of raw

origin destination flows for Boston and Rio de Janeiro are depicted in 3-9. Trip tables

and correlations plots can be found below in section 3.3.1.

Trip Assignment

Having estimated OD flows, our next task is to efficiently assign these trips to trans-

portation infrastructure, in this case a road network. The first step takes tract to tract

OD matrices and distributes trips among nodes, or intersections. A trip originating

in a census tract is assigned uniformly at random to an intersection in that tract and

to an intersection within its destination tract. This distributes flows such as not to

create artificial congestion points and reflects general uncertainty in the exact origin

of trips. Other approaches, however, may consist of using abstract centroid nodes

unique to each tract and connect to a number of other intersections within that tract

using what's referred to as centroid connectors. With intersection to intersection

flows, the next task is to assign traffic to routes.

Traffic assignment is another mature domain that has been studied extensively

by urban and transportation planners. Static non-equilibrium models approaches

consist of treating all users as homogenous agents who make route choices prior to
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ALGORITHM 1$: OD Creation Algorithm - Step 1 - Home / Work Expansion

1: (Data objects}

2 tracts = cens"s tract data objects containing demographic variables

3: OD(o, dp, t) = 0 for origin o, destination d, purpose p, and period t

4:

5: {Detect home and work for afl users and compute expansion factors}

6: for user in users do

7: userstays r vector of calls at stay points sorted by time

8: user.home= index of stay point visited the most between 8pm and lam

on weekdays

9: usfr c ork index of non-home stay point visited the most between 7am

and 8pm on weekdays

to: if user visits work less than once per week then

It: userwork = null

12 for stay in aser-stays do

13: stay abel assigned as home, work, or other

14: userseekdays number of weekdays a user records a stay

15: userarorkdays number of weekdays a user records a stay at work

16: tract[sser=hrxerun Users tradcuser.homebnumUsers + I

[7: for trad in frats do

18: tracLexpon sionFador = trtmpopudation/tractnuimsers

Figure 3-7: Pseudocode for home and work expansion of the OD creation algorithm.
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ALGORIlliM 7: OD Creation Algorithm - Step 2 - Trip Couzting

1: {Count and expand trips}

2 for user in u.ers do

: trips = empty vector to store trips taken by a user

4: for i = 1 to i 7 rstay zc() do

si 30 =s srstriysi - Vl

: 1 user.s tayil

if so SI then

5: continue

: if sQ and si are on the same effective dav then

10: trip = new trip from sA to As

,1: trip.purpose = Pl)pose~ronDods(s1)

12: tripatorkdoy = true if workday for user, false otheraise

13: tripdeparture - GetConditionalDepartwreTi e(s, s1)

14: trips.append(trip)

15: elses and si are not on the same effective day

1: rnorning create trip from ho ne to first recorded sty

17: Ut = create trip from last recorded stAy to home

18: fttsappend(mcrning)

M: trps.append(night)

M: for trip in trips do

21: O trp.ortgr

2 d = trip.destintion

Zl! p trip.purpose

2: t = trip Aeparture

25: If tripworkday true then

f low

27: else

25 host' = tract juser.hoinc] axpansiorrFactor/jusersuwekdnys

29: OD(o, d,p, t) = OD(o, d, p, t) + flow

31: {Noves}

32: *PurposeFroaLabels(#, si) returns a trip purpose (HBW, NUB, HBO)

based on the label of origin and destination stays

33: *etConditionalDepartureTire(sal) returns a departure time based on

the observation tines at origin and destination

A: *an effective day is defined as a period between Sam today until 3am on the

next consecutive morning

Figure 3-8: Pseudocode for trip counting in the OD creation algorithn.
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Figure 3-9: A spatial illustration of flows comparing inter and intra town slul)district

OD pairs.



departure based on some heuristic related to current traffic conditions (e.g. the path

that minimizes travel time). Incremental Traffic Assignment (ITA) is a variant of

these static non-equilibrium assignment models that assigns batches of trips serially

and updates costs between increments, as an improvement over the simplest all-or-

nothing assignment methods. However, it is known that dynamic equilibrium models

are more realistic in assigning trips as outcomes are closer to the Wardrop principles

1172], or Nash Equilibria, where drivers seek paths that minimize their travel time

and in the final traffic conditions, no driver has an incentive to change their route.

To take a step further from static models, Dynamic Traffic Assignment (DTA) [1111

models take an iterative and temporally more coherent approach. The addition of

these complexities help model traffic flow at finer granularity, enabling road segments

to have different conditions within themselves and consequently the representation of

phenomena like congestion spill-back, FIFO principle, and others [481.

Our system is modular so that it may implement any number of traffic assignment

algorithms. Here, however, we take a simple ITA approach, as it is computationally

efficient for many trip pairs in detailed road networks and allows us to keep track

of each vehicle as it is routed through the network. We develop a set of tools to

perform large scale routing and traffic assignment using parallelization for speedups.

First, the parsed and optimized road network is loaded into a graph object. In our

implementation, we use the Boost Graph Library for its flexibility and efficiency. We

can then compute shortest paths based on a user defined cost (in this case travel

time on road segments). We choose the A* algorithm among the wide range of

shortest path algorithms, as it's widely used in routing on geographic networks for

its flexibility and efficiency. The A* algorithm implements a best-first-search using

a specified heuristic function to explore more promising paths first. The euclidian

distance between nodes provides an intuitive heuristic that ensures optimal solutions

are found. While this algorithm provides the same results as Dijkstra's algorithm,

we find that it becomes more efficient to compute paths one by one for sparse OD

matrices.

On most city roads, free-flow speeds are rarely achieved due to congestion. As a
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Figure 3-10: Our efficient implementation of the incremental traffic assignment (ITA)
model. A sample OD matrix is divided into two increments and then split into two
independent batches each.

result, traffic patterns may significantly change the time costs associated with using

a particular route. To address this, we implement an Incremental Traffic Assignment

(ITA) algorithm [126]. A simplified schematic explaining the procedure can be seen

in Figure 3-10. This algorithm assigns trips in a series of increments and updates the

costs of edges in the network based on the number of vehicles that were previously

assigned to that road between increments. For example, the first increment assigns

40% of trips for each pair assuming each driver experiences free-flow speeds. The

travel time cost associated with every road segment is then adjusted based on how

many drivers were assigned to that road and the total number of cars a road can

accommodate in unit time. The next 30% of drivers are then routed in the updated

conditions. This process is repeated until all users have been assigned a route. The

shortcoming of this method is that once a driver has been assigned a route it does not

change, and consequently the approach does not converge to Wardrop's equilibrium

even for very small increment sizes. Yet we use it here due ease of implementation and

the fact that it is still insightful for the purposes of demonstrating the implementation

of a modular data-driven travel demand model. Future work will explore the use of

newer methods.

Relating travel performance to traffic conditions has been a long standing prob-

lem in transportation. Many different characterizations exist, ranging from conical

volume-delay functions to more complex approaches [31, 156, 21. One of the most

simplistic and common metrics used in determining the travel time associated with a
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specific flow level is the ratio between the number of cars actually using a road (vol-

ume) and it's maximum flow capacity (volume-over-capacity or V/C). At low V/C,

drivers enjoy large spaces between cars and can safely travel at free-flow speeds. As

roads become congested and V/C increases, drivers are forced to slow down to insure

they have adequate time to react. Based on the volume-over-capacity (V/C) for each

road, costs are updated according to Eq. 3.1, where a = 0.15, 13 = 4 are used per

guidelines set by the Bureau of Public Roads1 .

tcr.ent = tfreef . (1 + a(V/C)3) (3.1)

Though increments must be routed in serial, all routes discovered within an in-

crement are independent. To speed up the routing process, we divide all trips in an

increment into batches and send these batches to different threads for parallel com-

putation. Because the road network remains fixed in each increment, we only need

to store a single graph object shared by all threads. When a shortest path is found,

we walk that path and increment counts of the number of vehicles that were assigned

to each road and sum the counts from all batches after the increment has finished.

We also keep track of the origin and deCtiuation census tracts of the assigned vehicles

in a bipartite graph for later analysis. After all trips have been routed, we compute

final V/C ratios and other metrics of each segment and update these values in the

database so they can be used for other applications or visualization. Pseudo code for

this ITA procedure can be found in Algorithm 3-11.

3.3 Results

In the following sections we demonstrate the range of outputs provided by our sys-

tem. We first report trip tables and compare origin-destination matrices produced

by our system to available estimates made using travel surveys. We then report road

network performance as well as characteristics of road usage patterns enabled by the

'Travel Demand Modeling with TransCAD 5.0, User's Guide (Caliper., 2008).
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ALGORITHM S: Incrmental Trafic Assignment

graph = road network

OD(pi) = origin-destination matrix for purpose p and tine window i

B =_a bipartite network iortaining roads and census tracts

incrSze = vector of increftent sizes, e.g. 10.4, 0.3, .2. .1k

nBatches = number of threads to use

for i =0 to i < incrSize.size() do

for b=0 to b< nBatches do

create new thread

batch - GetBatch(OD, b)

for all o, d pairs in batch do

f low OD[o, d.flow .incrSizei|

route A* (a, d, graph)

for all segment s in route do

s.f low = s.flow + flow

=BW + flow

wait for all threads to finish

for segment s in graph do

smeost +- s.freeFlo.Tie - (1+ a(r4gdt)

GetBatch(OD, B) returns only the subset of OD pairs pertaining to a batch

- A*(o, d, graph) returns the shortest path between o and d if a path exists

Figure 3-11: Pseudocode for the ITA algorithm.
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construction of a bipartite road usage network.

3.3.1 Trip Tables and Survey Comparison

In order to understand when and where these new data will be effective and how

the results differ from traditional approaches, we compare the output of our system

to previous travel surveys wherever possible. In four of the cities studied, we find

estimates of travel demand from surveys: the 2011 Massachusetts Household Travel

Survey (MHTS) in Boston, the 2000 Bay Area Travel Survey (BATS) in San Francisco,

a 2013 transportation plan in Rio de Janeiro, and estimates from a 2012 LUT model

in Lisbon[61]. While these surveys do not always produce all estimates we are able

to generate with our system, we make comparisons wherever possible.

Trip tables report the total number of trips of a given purpose or during a given

time of day for a city and represent the total load placed on transportation infras-

tructure. In Table 3.2, we report trip tables for each city in this study. We find close

agreement with trip tables estimated using CDR data and surveys in Boston and the

San Francisco Bay Area and less agreement in Rio de Janeiro. We note, however,

that the 3.74 million person trips estimated for Rio is far too low given the popula-

tion of the region and highlights the difficulty in finding reliable planning resources in

many areas. Finally, we note that in Lisbon, the survey results represent vehicle trips

only, while we report person trips. When adjusting for mode car ownership rates in

Portugal, our numbers align more closely. We were unable to find a survey or model

for comparison in Porto.

In addition to trip tables, it is also necessary to compare the distribution of trips

from place to place around the city. In order to make this comparison, the area unit of

analysis for the survey and our model must be aligned. Given the resolution of mobile

phone data, our system is designed to create ODs at the census tract (or equivalent)

level while many surveys aggregate to larger traffic analysis zones or super districts.

For comparison, we aggregate the OD matrices from CDRs to the coarser grained

resolution provided by the survey and compare results. Figure 3-12 show correlation

histograms comparing OD matrices at the largest spatial aggregation available pro-
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Table 3.2: Trip tables estimates. Where possible, our results are compared to es-
timates made using travel surveys. For each city, we report the number of person
trips in millions for a given purpose or time. Trip purposes include: home-based
word (HBW), home-based other (HBO), and non-home-based (NHB). Trip periods
include: 7am-10am (AM), 10am-4pm(MD), 4pm-7pm (PM), and the rest of the day

(RD). We note that the exact boundaries of the surveys do not exactly coincide with
those used in our estimation so direct comparisons are not exact. In general, trip mag-
nitudes align closely, with the exception of Rio de Janeiro, where the survey results
report far too few trips, illustrating the difficulty of obtaining sensible measurements
via certain techniques. No comparisons could be found for Porto. *Note that the

Survey only contains estimates of vehicle trips in millions.
City HBW HBO NHB AM MD PM RD [Total

Boston 5.76 8.99 6.72 3.71 7.68 5.75 4.33 21.47
MHTS 3.22 12.83 9.49 5.32 8.87 8.20 3.15 25.54
SF Bay 4.07 10.05 7.04 4.47 7.81 5.35 3.53 21.16
BATS 4.60 11.54 4.66 4.18 6.90 4.22 3.00 20.80
Rio 9.92 17.17 11.46 7.71 14.09 10.47 6.29 38.55
Survey 2.06 - - 1.31 1.19 1.24 - 3.74

Lisbon 1.08 2.01 1.21 0.79 1.67 1.26 0.58 4.30
Survey* 0.61 - - - - - - -

Porto 0.49 0.87 0.46 0.32 0.70 0.54 0.27 1.83
Survey - - - - - - - -
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duced by our methods and those produced by traditional methods. In general we

find very high correlations in Boston, San Francisco, and Rio, with lower correlations

in Lisbon. Lisbon, however, has the smallest units of aggregation and these results

demonstrate the limitations of these comparisons at very high spatial resolutions. We

hope future work explores how these correlations relate to the modifiable area unit

problem. Finally, there is significant uncertainty in all models and we hope future

works will explore this uncertainty further.

3.3.2 Road Network Analysis

The first output of this procedure is volume, congestion (volume-over-capacity), and

travel times for all road segments. Using the outcomes of our analyses, we calculated

the distributions of volumes on roads, along with V/Cs in Figure 3-13. Interestingly,

the results suggest qualitatively similarly distributed volumes and V/Cs for our five

subject cities. Moreover, our findings are consistent with general congestion studies

that identify Rio de Janeiro as one of the most congested cities in the world and the

San Francisco Bay Area not far behind. Smaller cities such as Boston and Porto have

fewer problens with congestion.

3.3.3 Bipartite Road Usage Graph

In addition to measuring physical network properties of roads, the system architecture

enables detailed analysis of individual road segments and neighborhoods within a city.

Though the transient OD matrices constructed by Wang et al. 11711 correlate poorly

with OD matrices developed by the methods above and traditional surveys, their

work highlights new metrics of road usage patterns that can be measured via these

new data sources. To this end we create a bi-partite usage graph. Every time a

route between two location is assigned, we traverse the path and keep a record of how

many trips from each driver source (census tract) used each road. This record is then

used to construct a bipartite graph containing two types of nodes: road segments and

driver sources, as shown in Figure 3-14. Roads are connected to driver sources that
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Figure 3-13: Distributions of travel volume assigned to a road and the voluimne-over-
capacity (V/C) ratio for the five cities. The values presented in t lie legend refers to

the fraction of road segments with V/C > 1.

contribute traffic to that segment and census tracts are connected to roads that are

used by people who live here.

kroad A 0 ,, sor 3 (3.2)

0{, if vehicles from tract o use road s

0, otherwise.

We then examine the degree distributions of roads and census tracts using Eq.3.2

in this bipartite graph to reveal patterns of road usage in Figure 3-15. The number of

roads used by residents of a given location is much mnore consistent between different

cities and appears less affected by the size of the road network. On the other hand.,

the number of driver sources contributing traffic to a given road segment is broadly

distributed, suggesting that most roads are local in that they serve only a few loca-

tions, while a few roads in the tail of the distribution are used for large fractions of the

population. While this result is intuitive given that highways are designed for just

this purpose, we hope future work explores the relationship between this bipartite

usage graph and road network topology further.
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An example of such an application was proposed by Wang et al. to classify road

segments based on the relationship between topological and demand based metrics.

Comparing the topological properties of roads in the physical network to the bipartite

usage graph provides insights into their role in the transportation system. Edge

betweenness centrality [119] captures the importance of a road by counting how many

shortest paths between any two locations UOD must pass through that edge UoD(e)

(Eq. 3.3). While this measure captures some aspects of importance, it treats all

potential paths as equally likely and tends to be biased towards geographically central

links. The degree of a road in the bipartite usage graph reflects the number of locations

in the city that actually rely on that road because trips were assigned there from actual

travel demand. With these two metrics, betweenness centrality and a roads degree

in the usage network, we can classify the role of a road in the cities transportation

network.

bc,= UOD(S) (3.3)
o,d 

0 0OD

A simple classifier divides the betweenness uisage degree snare into four quadrants

surrounding the point representing the 75th percentile for betweenness centrality and

usage degree. Roads with betweenness and usage degree above the 75th percentile

are both physical connectors and are used by large portions of the region. These

roads tend to be bridges or urban rings. Roads with low betweenness, but high usage

degree are attractors, receiving a higher proportion of trips than would be expected

assuming uniform demand. Roads with high betweenness and low usage are physical

connectors and serve an important purpose geographically, but may not be utilized

by actual demand. Other roads, with low betweenness and low usage are local roads

and primarily serve populations living and working nearby. Figure 3-16 shows each

road according to this classification using data from the ODs calculated via mobile

phones.

Finally, this bipartite framework of analysis allows us to augment visualizations

of congestion maps in two ways. The first focuses on a single road segment. For
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Figurie 3-16: Maps depicting the proposed road classificatioll. sumnarized in the

lcgenid. for the five subject cities.
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Figure 3-17: Two screen images from the visualization platform. (a) The trip pro-

ducing (red) and trip attracting (blue) census tracts using Cambridge St., crossing

the Charles River in Boston. (b) Roads used by trips generated at the census tract

including MIT.
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example, when we identify a segment of a highway that becomes highly congested

with traffic jams each day, we can easily query the bipartite graph to obtain a list of

census tracts where drivers sitting in that traffic jam are coming from and where they

are going to. The census tract nodes can also be given attributes from containing

any demographic data a user wishes. With this information, it is possible to identify

leverage points where policy makers can offer alternatives to these individuals or

even power applications such as car sharing, by notifying drivers that others sharing

the same road may be going to and from the same places. Moreover, businesses

considering products or services based on who may be driving by or near different

locations may find value in these detailed breakdowns.

Rather than selecting a road segment node, we may also select a single census

tract, and check its neighbors to construct a list of all roads used by individuals

moving to or from that location. For example, for a given neighborhood in a city

we can identify all major arteries that serve that local population. This information

provides a detailed look at a central location based on how much road usage it induces.

Moreover, geographic accessibility, critical to many socio-economic outcomes, can now

be measured in locations that were previously understudied.

3.3.4 Visualization

To help make these results accessible to consumers and policymakers, we build an

interactive web visualization to explore road usage patterns in each city. Most GIS

platforms can connect directly PostGIS databases to visualize and analyze road net-

works with our estimated usage characteristics. While these platforms are preferred

by advanced users familiar with GIS data, they are opaque to many consumers who

may benefit from more detailed information on road usage. A simple API is imple-

mented to query the database and generate standard GeoJSON objects containing

geographic information on roads as well as computed metrics such as level of service.

We also implement queries to answer questions such as "What are all the census tracts

used by drivers on a particular road?" or "What are all roads used by a given location

in the city?". These data are then parsed and displayed on interactive maps using any
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of the available online mapping APIs and D3.js allowing users, with functionality that

enables one to select individual roads and areas. Two screen images of this system is

shown in Figure 3-17.

3.4 Discussion

This section has presented a full implantation of a travel demand model that uses

new, big data resources as input. We have presented a system that combines and

improved upon many disparate advanced in recent years to produce fast, accurate,

and inexpensive travel demand estimates. We began by outlining methods to extract

meaningful locations from noisy call detail records and estimate origin-destination

matrices by counting trips between these places. Normalized and scaled trips counts

are compared to estimates made using survey data in both trip tables and at the

OD pair level. These flows are then assigned to road networks constructed from

OpenStreetMap data using an incremental traffic assignment algorithm. As routes

are assigned, a number of metrics on road usage are measured and stored.

While these results show great progress in making big data useful for transporta-

tion engineering, there are still limitations inherent in this data and our model. Specif-

ically, we highlight three areas that are ripe for further study.

1. We have shown the the level of aggregation applied to OD matrices can affect the

correlation observed between model outputs. This is a standard manifestation of

the modifiable area unit problem and a more detailed exploration may indicate

which levels of analyses were better suited for different data sources. Moreover,

a more detailed analysis of uncertainty in model estimates may make it easier

to assess their correlation and validity.

2. Our traffic assignment algorithm is efficient, but simple. In the future, a stochas-

tic dynamic user equilibrium assignment methods should be explored and com-

pared. Moreover, route choice modeling may be significantly improved by the

availability of high resolution GPS trajectories of drivers. We believe our sys-
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tem's modular design makes it easy to incorporate these new models.

3. Our mode choice model remains simple and will likely require more sophisti-

cation for modeling trips not taken in private vehicles. This, combined with

improvements in route choice, may make it possible to estimate multi-modal

trip demand, as public transportation, bike lanes, and even water transporta-

tion networks are included in OpenStreetMap data.

Transportation engineers and urban planners have a rich history estimating flows

of people within cities and mapping this flow onto transportation infrastructure. How-

ever, these efforts are often constrained by limited data resources. The rise of ubiq-

uitous mobile sensors has generated a wealth of new data on human mobility, but

new tools must be developed to integrate these data and insights into traditional

transportation modeling approaches. To this end, we have demonstrated a full im-

plementation of a travel demand model utilizing mobile phone data as an input.

We presented algorithms to generate routable road networks from open source data

repositories, generate validated OD matrices and trip tables from CDR data, and

route these trips through road networks using a paralleled ITA algorithm. We have

demonstrated a number of possible analyses that can be performed on the output of

this system including network performance and classification measurements and an

online, interactive visualization platform.

As more data becomes available in the form of calls, gps traces, or real time traffic

monitoring systems, we are excited at the prospect of updating and improving these

systems further.
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Chapter 4

Understanding congested travel in

urban areas

4.1 Introduction

Cities have a long-standing history cultivating technological innovations which

allow citizens to efficiently access goods and opportunities. However the ease of

access has been increasingly difficult to maintain under rapid urbanization [68, 17,

26, 5, 25, 79, 85]. As growing population densities create excessive demand for cities'

infrastructure, the increasing penetration and advancement of technology generates

massive amounts of multidimensional data that can be utilized to study and mitigate

this demand. Specifically, the availability of mobile phone data has led researchers to

quantify fundamental spatiotemporal patterns to better understand human mobility

in urban areas [70, 32, 153, 154, 561. With the continuous increase in the volume and

accuracy of new data sources, new methods that process and distill mobile phone data

are consistently refined, and traditional models of mobility like the gravity, radiation,

or activity based models are being updated in tandem [159, 136, 149, 179, 144, 1711.

In the context of travel demand estimation, previous efforts focused on developing

models that combine household travel surveys with census and land use information

This chapter is based on 1471.
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[126, 9]. Despite the robust methodology and meticulous implementation of these

models, the high costs associated with obtaining the infrequent and small data has

proven to be the bottleneck. To supplement these approaches, traffic simulations

and demand estimation models have begun incorporating big data sources into their

forecasts, building portable data pipelines to create data-driven decision making tools

for policy makers [164, 3, 451.

Understanding of the complex interplay of road infrastructure and travel patterns

to model travel times and congestion in not a single city but many at once has been

a particular challenge in this line of research [100, 123, 991. Road networks, the circu-

latory system sustaining a city's accessibility and cultivating its economic prosperity

[94, 139, 14] are seized with congestion in most large metropolitan areas. In their

2013 report, TomTom, a leading GPS company, states that in cities like Moscow,

Istanbul, Rio de Janeiro, Mexico City and Beijing, people on average spend more

than 75% extra time traveling due to traffic. The resulting loss of time, money, and

energy are borne by the city's citizens and travelers. Municipalities continually in-

vest in road infrastructure construction and maintenance to increase supply, although

controversies on whether more roads alleviate congestion persist [301. Other efforts

to reduce congestion aim to decrease driving demand by promoting alternative travel

modes, high occupancy driving lanes, carpooling, congestion pricing and in extreme

cases, road space rationing. Even with all these measures congestion remains inher-

ent and drivers are increasingly leveraging real time information through GPS devices

and online routing tools to move faster. With everyone having easy access to traffic

information, drivers make decisions without coordination based on near-perfect in-

formation, resulting in suboptimal system configuration. This general trend of using

raw real time information in decision making has significant implications, as it might

be also used as a tool to guide drivers to make choices for the benefit of the city, thus

creating a more optimal traffic configuration. The extent of the global inefficiency

has been of great interest [168, 141, 140, 1421 in many contexts ranging from wireless

networks to transportation [170, 172, 29, 183, 148, 491. Theoretical approaches to

bring the system to optimality generally converge to marginal cost taxation, which
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essentially forms the basis of congestion pricing schemes today [130, 151]. Despite

the abundance of research on optimal flow configurations and their implications in

the transportation, urban planning and economics literature, there is a shortage of

works that utilize big data sources to understand the role of travel demand and actual

travel times in metropolitan regions when comparing cities. This highlights a need to

build a framework that can be replicated to systematically generate meaningful travel

times to not only understand cities better but also test solutions to urban problems

such as congestion or pollution.

In this work, we address this issue by coupling travel demand profiles and travel

time estimates to analyze how efficiently people move across cities. We begin by

modeling the supply by parsing publicly available OpenStreetMap data to obtain

road networks. To model travel demand, we mine massive mobile phone datasets,

also referred to as call detail records (CDRs) [28]. This procedure requires home and

work location detection for millions of users, mining of their location shifts, and the

proper sampling procedures to represent accurately the trip tables for the whole city.

4.2 Methods

4.2.1 Mobile phone data

Mobile phone datasets, also referred to as CDRs (Call Detail Records), used in this

study consist of at least three weeks of records of all mobile phone users of a partic-

ular carrier across each subject city. Each individual call detail record consists of a

hashed user identification string, a timestamp, and the location of the activity. The

spatial granularity of the data varies between cell tower level, where calls are mapped

to tower locations and distributed uniformly within the Voronoi cell that it forms,

and triangulated geographical coordinate pairs, where each call has a unique pair of

coordinates accurate to within a few hundred meters. Market shares associated with

the carriers that provide the data also vary.

The nature of the activity varies: for all cities calls made by the user is included.
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ID Time Lat Lon Location
12345678 24/12/2012 09:00:00 42.397 -71.121 A
12345678 24/12/2012 10:00:00 42.360 -71.057 B
12345678 24/12/2012 10:05:00 42.360 -71.057 B
12345678 24/12/2012 12:00:00 42.360 -71.094 C
12345678 24/12/2012 16:00:00 42.360 -71.094 C 8090,
12345678 24/12/2012 20:00:00 42.397 -71.121 A

Figure 4-1: A typical depiction of rows of CDR data in Boston. User 12345678 makes
a call from location A (Davis square), then goes on to make two calls from location B

(Boston City Hall), then makes one call location C (MIT) at noon and another later,
and makes one final call again from the location A at 8pm.

Received calls, SMS activity, and various location signals may also be included. A

minimum of three weeks of phone call records are available, although for some cities

the period of the data is significantly longer. The granularity of the spatial component

of the data in Rio de Janeiro is at the cell tower level: where calls are mapped to the

Voronoi cells formed to model the coverage area of each tower. For other cities, the

spatial information comes in triangulated latitude-longitude pairs, where each call

has a unique pair of coordlinates with and accuracy of roughly few hundred meters.

Market shares associated with the carriers that provide the data also vary. Table 4.1

compiles descriptive statistics for these data sources for each city we explore in this

section.

Each individual call detail record consists of a hash string identifying the mobile

phone user, a timestamp marking the time of the activity, and the described spatial

information regarding the activity. Figure 4-1 depicts am example daily log of a user

living in Boston, where the location field is inferred as unique locations visited.

CDR data inherently contains noise, as expected in any similar dataset. Onte

reason for noise is the set of algorithms mobile plhone carriers use for tower-to-tower

call balancing to improve service. This operation creates discontinuities in the data

that do not represent actual movement. To remove this noise and correct for other

similar discrepancies. we apply a procedure generally used for GPS traces, referred

to as a stay-point algorithm. Jiaiig et al. provide a thorough review of these tech-

Iniques in 188] and we adapt the stay point algorithin originally described by Zheng
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et al. in [1881. In summary, stay-point algorithm simplifies a sequence of calls within

a specified spatiotemporal area. In other words, calls within a certain radius and

timeframe are bundled together. The pass-by points are removed, and stays remain.

This mapping is made such that the representative point is the medoid of all such

calls. For all cities here, except Boston where the data is triangulated, this algorithm

is applied in a modified way. A tower-based CDR dataset only roughly describes the

region from which the call was made, that is, the estimate of a user's position is only

known up to the Voronoi cell for that tower. For this reason, the simplification of

the series of calls is applied by serializing the calls made from towers within a certain

distance. For the temporal dimension, these calls are labeled as stays only if the user

is known to be in that location for at least 10 minutes.

One key point worth noting is that CDRs are of passive nature: except for a very

tiny portion of the data, a mobile phone user's location information is only visible in

the data when he/she interacts with his/her phone. Therefore it is certainly possible

for a user to be in the location the data point classified as a pass-by, or alternatively be

visiting other locations that cannot be distinguished due to lack of phone interaction.

This issue and other similar shortcomings resulting from the nature of the data are

discussed in detail in previous work [164, 3, 451.

4.2.2 Census and travel survey data

At the census tract (or equivalent) scale, we obtain the population, vehicle usage rate,

and median income of residents in that area. For US cities, the American Commu-

nity Survey provides this data on the level of census tracts (each containing roughly

5000 people). Census data is obtained for Brazil through IBGE (Instituto Brasileiro

de Geografia e Estatistica) and for Portugal through the Instituto de Nacional de

Estatistica. All cities analyzed in this work have varying spatial resolutions of the

census information. Wherever possible, we obtain the most recent travel demand

model or survey from the subject city and compare the results to those output by

our methods. We use the 2011 Massachusetts Household Travel Survey (MHTS) for

Boston, 2000 Bay Area Transportation Survey (BATS) for the Bay Area, a recent
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transportation model output provided by the local government for Rio de Janeiro.

For Lisbon, the most recent estimates from the MIT-Portugal UrbanSim LUT model

that uses the 1994 Lisbon transportation survey as input are used. We found no

recent travel survey or model for Porto.

At the census tract (or equivalent) scale, we obtain the population and the vehicle

usage rate of residents in that area. For US cities, the American Community Survey

provides this data on the level of census tracts (each containing roughly 5000 people).

Census data is obtained for Brazil through IBGE (Instituto Brasileiro de Geografia

e Estatistica) and for Portugal through the Instituto de Nacional de Estatistica. All

cities analyzed in this work have varying spatial resolutions of the census information.

Figure 4-2 exhibits properties of the administrative boundaries used. Boston and

Bay Area, regions in the United States, exhibit uniformity in their distributions of

population per zone, as the populations are generally around 5000. Lisbon and Porto

demonstrate higher deviations for a similar median, whereas the magnitude of the

spread in Rio de Janeiro is higher than the other cities. To get an estimate of the

vehicle usage rates, we use the following relationship:

VUR(i) = Pdrive alone(i) + Pcarpool(i)/S,

where Pdrive alone(i) and Pcarpooi are probabilities that residents in zone i drive alone

or share a car, respectively. S = 2.5 is estimated to be the average carpool size [1711.

Conversely, Boston and Bay have the highest vehicle usage rates whereas in Rio

de Janeiro people are less car-oriented. To assess how similar our five cities are in

terms of CDR data sampling we compare their expansion factors, defined as the ratio

of the number of people living in a tract to the number of people assigned that tract

as a home location. All cities have a mean below 100, although outliers exist.

4.2.3 Extraction of validated origin-destination information

Traditional modeling approaches to origin-destination (OD) information utilize data

obtained from travel surveys, possibly combined with land use and point of interest
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Figure 4-2: The population, vehicle usage rate and the expansion factor distributions

of the five subject cities.

information to generate estimates of trip production and attraction for locations.

While new data sources such as CDRs do not provide the same detailed demographic

and contextual information about individuals or trips, they do provide many high

resolution (ata points over a far longer observation period. Mobile phones offer good,

but imperfect measurements of geographic position due to the uncertainty of the

location estimates and the nonuniform sampling frequency.

Origin-destination (OD) information is traditionally modeled with data obtained

from travel surveys, land use information and census data. First, estimates of trip

production and attraction for zones are produced. These trips are then distributed

among possible destinations across the city using calibrated gravity or radiation or

similar models. Information from the survey are combined with mode (lhoice models

to split trips among travel alternatives. CDRs do not provide as detailed demographic

and contextual information about travel patterns and behavior as household travel

surveys do. Mobile phones offer good. but imperfect measurements of geographic

position due to the uncertainty of the location estimates and the nonuniform sam-

pling frequency. However millions of high resolution data points over a far longer

observation period make CDRs a high poteitial data source. Methods developed

to imcorporate CDRs therefore aim to find a balance between a small and comiplete

dataset that is household travel surveys, and a large but incomplete dataset, namely
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CDRs.

In incorporating CDRs into such methods, Alexander et al. and Colak et al.

[3, 45], outline a general framework. Location frequencies are found to estimate each

location's function for a user, and classify it as home, work or other. Consequently

the trips between these locations are assigned a trip purpose: home-based-work (com-

muting, home-based-other or non-home-based are inferred. Morning peak commuting

and total trips are estimated from filtered users by analyzing consecutive observations

at different stay points during the morning peak period (6am-10am). These trips are

then normalized to accurately represent actual daily number of trips by measuring

how often a user uses their phone, their average number of trips, and the number

of days that they were observed. Finally, the number of trips are expanded by the

ratio of the population of the source tract to the number cell phone users in that

tract. To consider trips made only by vehicles, we weigh obtained person trips by

vehicle usage rates in the home census tract of users. To estimate the peak hour

traffic volume, the morning period of to 6am-10am was weighted in accordance to

trip departure time distributions obtained in [45]. Peak hour demand occurs between

7:30am and 8:30am, and the average morning hour demand is multiplied by 1.5 to

reflect the peak as per the departure time distributions. Another issue relating to

the accuracy of findings is the choice of the administrative boundaries, that is, due to

the spatial precision of the data, certain aggregation levels work better than others.

This problem is analyzed in detail in previous work, where pseudocode to generate

OD matrices and the comparisons to the outputs of traditional models can also be

found [3, 45, 164j.

Using this information of the trip distribution within the city, we estimate morning

peak vehicular volumes from origins to destinations and compare the inferred travel

times based on demand with the estimates of an online map provider in the respective

routes and hour of the day. We then explore the relationship between travel distance

and travel time across many cities. We show that the time lost due to congestion

in each city can be accounted by a dimensionless parameter F that measures the

ratio between the vehicular travel demand and the road infrastructure supply for the
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city. To a lesser extent, the differences in congestion levels depend on the population

density and the spatial distribution of population. Next, we calculate the detrimental

effects of selfish routing by comparing obtained travel times to those that would be

observed if the routes were selected to attain the social optimum. We then explore the

bounds of the benefits of leveraging information technologies to influence route choices

in ways that would help create a more optimal system configuration for vehicular

travel. To do so, we implement a generalized selfish routing model that generates

expected travel times for varying levels of consideration of overall social good, or A.

We analyze the system gains of socially aware driver behavior, as well as exploring

the distributions of benefits and losses at the individual level. We present our findings

for five major cities around the world: Boston and San Francisco Bay Area in USA,

Rio de Janeiro in Brazil, and Lisbon and Porto in Portugal.

4.2.4 Road networks

For many cities in the US, detailed road network data are made available by local

or state transportation authorities. These datasets generally are well maintained,

however, many properties are often incomplete or missing entirely. For this purpose

we infer required road characteristics to build realistic and routable networks using

OpenStreetMap (OSM), an open source crowd sourced mapping tool.

While road networks supplied by local municipalities in the form of shapefiles can

often be useful, we have implemented a parser to construct routable road networks

from OpenStreetMap (OSM) data due to its global availability. Nodes in OSM data

represent points representing points of interest or tags or an intersection, and ways

contain references to nodes that are grouped. They may also contain attributes such

as number of lanes or speed limit, although many roads have this information missing.

What all roads have in common though is the road classification, varying between

motorway, trunk, primary, secondary, tertiary, residential and trunk roads, as well as

a some other irrelevant categories. For our purposes, we filter out roads with irrelevant

categories, and residential roads as they are not central to the congestion problem,

yet tend to increase computation time significantly. For easing computation, we also
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simplify the network by collapsing roads with only one incoming and one outgoing

road, if they're in the same road classification. To infer the missing data, we map

assign every road a speed limit, number of lanes and a corresponding capacity based

on its category and information in [173]. Motorways are generally major highways and

have a speed-limit of 60 mph with 3 lanes in a direction, whereas primary roads are

40mph with 2 lanes. We assume the free travel time on a segment i is tf,i = 1.3*Li/vi,

with Li the road segment length and vi the speed limit. To estimate the capacity C

(vehicles per hour) of a road segment, we utilize the following relationship [1731 using

the speed v (mph) and the number of lanes nr:

950 x ni, if v < 40,

C = (1500 + 30 v) x ni, if 40 < v < 60,

(1700 + 10 v) x ni, if v > 60.

More information about the road networks can be found in Table 4.1.

Road network modeling is a lot more complex then the simple extraction of the

topology. Realistic estimation of road capacities, lengths and travel times is essential.

We demonstrate our findings in Figure 4-3. The road length and free travel times

seem to follow a power-law, free travel times can range from ten seconds to as much

as 20 minutes, and similarly for road lengths. Capacities are a direct result of road

classes in OSM data: highways, trunks, primary, secondary and tertiary roads are all

modeled to have different capacities and number of lanes. To assess overall supply

more accurately, we also look at the product of the capacity and the length of the

road networks. Our findings suggest that Bay Area, also in accordance with its size,

has comparably larger supply.

4.2.5 Traffic flow and travel time

Relating travel performance to traffic conditions has been a long standing problem in

transportation. Many different characterizations exist, ranging from conical volume-

delay functions to more complex approaches.

A long-standing problem in highway engineering has been the characterization of
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Figure 4-3: Properties of the road networks of five subject cities. Distributions of

road segment length L, free travel time tf, hourly vehicle flow capacity C. and a

measure of total supply S.

the relatiolship between munber of vehicles oil a road segment, i.e. its mo/umc. with

the observed travel time on that road segment. Throughout the years a number of

different characterizations have been developed ranging from conical volume-delay

functions to more complex approaches 131. 156, 21. One of the most simple and

common metrics used in determining the travel tine associated with a specific flow

level is the ratio volume of vehicles on the road and its inaximum flow capacity, also

referred to as volume-over-capacity or IVoC. At low VoCs, drivers enjoy large spaces

between cars and can safely travel at free-flow speeds. As roads become congested

and VoC increases, drivers are forced to slow down. Based on the guidelines set by

the Bureau of Public Roads 1106], the VoC of each road segment is used to estimate

the travel tie according to Eq. 4.1:

fBPRj(oC. bf) =t * (I + o (VoC) * fy, (4.1)

where tf refers to the travel time under free flow conditions. o = 0.6 and 3 = 4 are
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Figure 4-4: BPR function for obtaining travel time from volume and capacity.
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Figure 4-5: A depiction of connector modeling. Tract centroid T is connected to

nearest four intersections.

calibration parameters. The relationship is depicted in Figure 4-4. J, is a city-specific

correction factor: f = 1.4, fri(= fb(IY 1.3, and ff= = 1.0.

As a second calibration step. once the path-level travel times are obtained. we

adjust the travel times by

t, = t + kejy * tfree, , (4.2)

where kbo0 = krO = kbay = -0.1, k1j = 0 and kpor :: 0.1.

4.2.6 Traffic assignment

Traffic assignment is a mature domaili that aims to bring together travel demand with

road infrastructure to better understand traffic and has been studied extensively by

urban and transportation planners. In this work, we follow an efficient. static. origin-
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based assignment algorithm that focuses on the equilibration of a directed acyclic

graph structure emanating from every origin node.

Traffic assignment is a very mature domain that has been studied extensively by

urban and transportation planners. Static non-equilibrium models approaches consist

of treating all users as homogeneous agents who make route choices prior to departure

based on some heuristic related to current traffic conditions (e.g. the path that min-

imizes travel time). Incremental Traffic Assignment (ITA) is a variant of these static

non-equilibrium assignment models that assigns batches of trips serially and updates

costs between increments, as an improvement over the simplest all-or-nothing assign-

ment methods. However, these methods results in solutions far from the Wardrop

principles [172], where in the resulting system no driver should have an incentive to

deviate from their route choice. Many methods to compute the equilibrium have been

proposed in the literature [1281, the easiest being from Frank-Wolfe (FW) solutions.

FW based algorithms are quick to implement but slow to converge to the optimal

solution. However they provide no information about which OD-pairs provide what

amount of flow to which road segments. Path based algorithms take a step towards

path enumeration, but in large networks with a high number of origin-destination

pairs and alternative paths, the memory and computational requirement grow very

quickly [87, 57, 86]. The more efficient approach is through the use of origin based

algorithms, which are computationally feasible, have a fast convergence rate and do

store path flows [95, 641. More complex assignment models aim to take into account

the variability in travel times by adding stochasticity to link travel times [54]. The

process with which people choose routes is also of great interest to researchers, un-

der the umbrella of route choice models. Prato (2009) presents a good overview of

the wide literature on this subject, ranging from logit models to path set generation

algorithms [132]. For the scope and the aggregate nature of our work, we opt to

implement a static assignment model.

In this work, we will follow Algorithm B, proposed in [571 along with modifications

and improvements outlined in [1221, an origin based algorithm that focuses on the

equilibriation of a graph structure referred to as a bush, a directed acyclic graph
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(DAG) emanating from every origin node introduced to the graph as the centroid of

the origin tract. These structures are used with the reasonably assumption that in

the equilibrium flows, no directed cycles should exist as no driver has an incentive

to increase his/her travel time. The computational efficiency of this algorithm stems

from the fact that DAGs can be traversed in linear time. The algorithm used in this

work is outlined in Figure 4-6.

In these algorithms, the objective is to minimize the the distance between the

current solution and the optimal solution. In this work, relative gap is used as the

measure of convergence.

rg=l- ,d (4.3)
Zec=E teVe

where tod and dod represent the demand and the travel time between an origin and a

destination, and t, and v, represent the travel time and the volume on a road segment

e. The numerator and the denominator essentially measure the same thing: the total

travel time in the system. Theoretically, rg is supposed to be equal to zero. This

ensures that all drivers in the system are in fact taking the shortest possible routes,

and the optimization problem is fully solved. Traffic assignment algorithms aim to

bring rg as close to zero as possible.

A critical design element of the implementation of origin based algorithms is the

modeling of tract centroids, representing an aggregation of all the actual origins and

destinations within the area, and the connectors, the hypothetical segments repre-

senting driver movement within the tract before joining the modeled road network

1133}. Figure 4-5 depicts the implementation of connectors in this work, where tract

centroids are connected to the four nearest intersections.
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ALGORITHM B(N)

Initialize B as the shortest path tree rooted at the origin.
Assign all flows to links to B.
while rg > 0.001

for all origins o

do Add to B, edges e with negative reduced costs.
do Solve the Restricted Master Problem for B.

Simplify B0 by removing {eIxe= 0}.

RESTRICTED MASTER PROBLEM(Bush B, c)

Update costs on all links on B.
Calculate the longest route tree with paths P and costs Uj.
Calculate the shortest route tree with paths pi and costs uj.
if max{Uj - ui,Vi} < e , stop.

else continue.
for all j

set of links in pi not in Pi : S = pi \Pi
set of links in P not in pi : L, = P \ pi
difference in costs to j : g = (uj - uj) - (U - Uj)

do total marginal cost of sets S and Ljh = EeCSJULj Ce
flow to be shifted: dx = min{9/h, min{xeje E L3}}
add flow to shorter path : xe = xe + dx, e E S
remove flow to shorter path : xe = xe - dx, e E Lj
update travel times: te, e E Si U Li

Figure 4-6: Algorithms used in the computation of equilibrium. [57, 122]
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4.3 Results

4.3.1 Approach

We formalize the traffic problem by modeling route choice as follows: Every driver i

makes a choice of the route p to their destination. This choice depends on a personal

utility ui = EeE Ce (Xe), expressed as the sum of the costs c of every road segment

e along the chosen route. For simplicity, we assume that the cost of a road segment

for driver i is equal to the travel time, Ce(Xe) = te(xe), where te(xe) represents the

travel time t observed on road e for vehicle flow Xe. We can then define the total

cost incurred by all users as C =EE, Xete (Xe). The flow configuration that results

in the optimal cost is referred to as the socially optimal flows obtained by a typical

minimum cost network flow program [11:

minimize C
xeVeEE

subject to f=t fSt

P (4.4)

xy f-s
t 65 tN) )

3 t p

Xe 0, f, > 0.

where x, refers to the flow on road e, fp t is the flow between the source s and target

t on route p, and 3 st(p, e) = 1 when road e lies on route p.

As drivers make selfish choices, the system settles into a suboptimal state. Al-

though driver i only experiences and considers his/her own travel time, the cost the

whole system incurs also includes the marginal cost driver i imposes on all other

drivers on the road segments he/she takes. The set of flows that occur when every

driver minimizes their own travel time is referred to as the user equilibrium flows.

Theoretically, in the resulting system state, no driver can benefit from deviating from

their route. This idea, essentially describing a Nash equilibrium in roads, is captured

in Wardrop's principles in transportation [172]: the journey times on all the used

routes for an origin-destination pair are equal, and are less than those which would
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Figure 4-7: Illustration of routing equilibrium. (a) In this small network. 100 drivers

are going from A to D. The road labels represent the costs of travel as a function of

vehicle flows. User equilibrium allocates the flows between paths as fABD = fACD = 25

and fABCD = 50, and the average travel time is 3.75 minutes for all drivers. Socially

optimal flows decrease total travel time to 3.5 by fABD =xn= 50 and fABCD = 0.

with road BC remaining unused. (b) Achieved percentage of potential savings for

increasing values of social good weight A: 10%) and 20% social good weight results in

40% and 60( of potential savings, respectively.

be experienced by a single vehicle on any unused route. This routing game is solved

through a potential function t,(x,) ff t (x)dx such that 1 (e) te(X() 1131.

The convex program for the user equilibrium probleim has been formulated 119] as

follows:

minimize Z .e Z / t((x) dx
xVeEE cE eEE 0 (4.5)

subject to constraints in Eq. 4.4.

Figure 4-7(a) depicts an example that captures solutions for equilibrium and op-

tinal flows for a widely used toy iietwork. For the demand of (14= 100, the user

equilibrium flows allocate 50 drivers on path ABCD and 25 drivers oil paths ABD

and ACD each. resulting in a travel time fromi A to D of 3.75 regardless of the path

chosen. The socially optimal configuration avoids allocating too much flow on the

path ABCD, as its marginal cost is higher than those of paths ABD and ACD. By

minimizing the marginal cost, path ABCD receives no flow and the average cost is

minimized at 3.5.

In order to assess the benefits of different scenarios based on travel demand infor-
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mation we make use of the formulation proposed in 142]. We reconfigure the utility

function of a driver as a linear combination of the cost he/she will incur and the total

marginal cost his/her choice imposes on everyone else:

C'(Xe) = (1 - A)te(Xe) + Ad (4.6)
e dx , (4.6)

dte(xe)
= te(Xe) + AXe dxe

A defines the weight towards social good; it is a parameter ranging between 0

and 1. A driver with A = 1 chooses routes with respect to the marginal costs, thus

moving the system closer to the system optimum. Conversely, a user with A = 0 only

considers the cost of his route and potentially moves the system away from optimality.

The resulting convex program for the socially aware routing problem is as follows:

(Xe

minimize Ce'(Xe) - Xedxe
XeVeEE eEE (47)

subject to constraints in Eq. 4.4.

For the city depicted in Figure 4-7(a), the user equilibrium configuration results in

an average cost of 3.75 minutes per driver versus 3.5 minute for the system optimum,

meaning solely by adjusting routing behavior to A = 1, a benefit of 0.25 minutes

can be achieved per driver. Figure 4-7(b) shows that for A = 0.1, when the drivers

begin valuing social good as well, the average cost drops to approximately 3.65, and

almost 40% of potential savings are realized. In fact, the social optimum is achieved

at A = 0.5.

4.3.2 Travel times

To understand the relationship between travel demand and driving travel times, we

begin by comparing our five cities during estimated morning peak period traffic con-

ditions. The areas of analysis are significantly diverse: Rio is very highly populated

over its large extensions; while Porto's population density considerably decreases af-
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population (mil.)
area (1000 kM 2 )

# of total users (mil.)
# of calls (mil.)

data period
data type

# of cell towers

# of edges (th.)
# of nodes (th.)

# of tracts
roads (th.miles)

all trips (mil.)
commutes (mil.)

Table 4.1: A comparison
subject cities.

of the extent of the data involved in the analysis of the

Table 4.2: A comparison of general properties of the
City

subject cities.

Rio SF Bay Boston Lisbon Porto
Population (millions) 12.6 7.15 4.5 2.8 1.7
Area (1000 km2) 4.6 18.1 4.6 2.9 2.0
Demand (veh km hr-) 3.1 9.1 5.4 2.9 1.1
Supply (veh km hr 1 ) 17.6 43.0 39.7 25.5 11.7
Demand-to-supply (IF) 0.18 0.21 0.14 0.11 0.09
Expansion factor 890 100 32 96 164
Vehicle usage (veh person-1 ) 0.25 0.67 0.67 0.56 0.62

ter r > 20 km from the most dense location.

Lisbon extend across Guanabara Bay, the Bay,

many inhabitants commuting on few bridges.

Rio de Janeiro, the Bay Area and

and Tagus, respectively, and have

As a consequence of their differences, cities demonstrate varying traffic conditions,

as shown in Figure 4-8. The volume-over-capacity ratio (VOC) measures how suc-

cessfully a road segment is able to cope with the assigned volume of vehicles, with

high VOC values indicating more congestion. High VOCs are generally observed on

highways, as they provide faster means of travel due to their wider roads, increased

number of lanes, and higher speed limits. Additionally, bridges and roads that lie
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City
Rio
12.6
4.6

2.19
1045

5 months
tower
1421
40.9
22.1
381

6
0.432
0.183

Bay
7.15
18.1
0.43
429

3 weeks
tower

892
24.3
11.3
1139
20

1.015
0.353

Bos
4.5
4.6
1.65
905

2 months
lat-lon
N/A
21.8
9.6
732
12

0.916
0.401

Lis
2.8
2.9

0.56
50

14 months
tower
743
28.1
16.1
295

7
0.324
0.151

Por
1.7
2.0
0.47
33

14 months
tower
335
15.1
8.6
272

3
0.171
0.084



straight-line distance fit, KS statistic
Rio Bay Bos Lis Por

power-law 0.138 0.193 0.142 0.200 0.177
exponential 0.087 0.035 0.082 0.016 0.026

lognormal 0.049 0.023 0.028 0.021 0.018

Table 4.3: KS test statistics for lognormal, exponential and power-law distribution
fits for the straight-line distances.

central in the network topology are typically congested due to a lack of alternative

routes.

We begin by analyzing the efficiency of urban mobility for the five regions to

understand the mechanisms underlying observed travel times. The main determinant

of congestion is travel demand, which is heavily tied to commuting trip distances

during weekday peak travel times. In Figure 4-9(a) we demonstrate that the straight-

line (Euclidean) commuting distances, d, follow a lognormal distribution, f(d) =

1 e-be n(d)-)2/2,2 with means ranging from 5 to 8 kilometers (p = 1.6 - 2.1) and

standard deviations ranging from 2 to 4 kilometers (o- = 0.7- 1.2). It can be observed

that majority of trips span relatively short distances, and trips over 25 kilometers are

uncommon. However what makes a city more traversable are the speeds at which

drivers can span these distances. In Figure 4-9(b) we investigate the effective speeds

in both free and congested traffic conditions. It can be observed that cities exhibit

similar free travel speed distributions, normally distributed with y fluctuating around

50 km hr-1 with mean values reported in the legend. The differences in road network

supply S = E Oe e eCe (km vehicles hr-1), where l and Ce are the length (km) and

the flow capacity (vehicles hr-1 ) of a road segment e, explains the slight differences

in free flow speeds, as seen in Table 4.2. These differences are significantly more

apparent in speed distributions under real traffic conditions: the effective OD travel

speeds in Rio, the Bay Area and Boston decay considerably compared to those in

free traffic conditions; while the speeds in Porto and Lisbon change less. We explore

further these two different responses given the demand profiles of each city.

To that end we analyze the experienced travel times per distances traveled in

Figure 4-9(c). We observe a strong yet very simple relationship that pronounces the
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volume over capacity (VOC) - 0.00 - 0.25 0.25 - 0.75 0.75 - 1.25 - > 1.25 10 10 kms

Figure 4-8: The maps of VOCs (volume over capacity) of the roads in the user equilibrium configuration. The depicte(l eities are
(a) Boston. USA. (b) San Francisco Bay Area, USA. (c) Lisbon. Portugal. (d) Porto. Portugal, and (e) Rio de .Janeiro. Brazil.
Higher VOCs are generally observed in highways as they provide faster means of travel. (Boston is 2x the distance scale.)
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Figure 4-9: Comparisons of cities and their congested travel. (a) Distributions of commuting trip distances, d, in the morning

peak period with parameters of the fitted lognormal distribution depicted in the legend. (b) Distribution of trip free flow
speeds. cf, and in traffic conditions, vt. (c) Commuting travel times versus route distances of connuters, d. (d) Estimates of
overall mean % of time lost in congestion versus population density p for TonTon Traffic Index estimates and our analysis. (e)

Relationship of overall mean % congestion to the demand to supply ratio, F. for the five subject cities, with errorbars specifying
the standard deviation. (f) Average population densitv p as a function of distance from most dense area in the region, r.
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Figure 4-10: The probability distribution fits for the straight-line distances.

differences between the subject cities: Rio de Janeiro is the slowest city and is followed

next by the Bay Area, and Porto is the fastest. All cities exhibit a linear relationship,

with the exception of long distance trips in Porto and Lisbon where a different regime

appears for longer distances. To explain this observation. we model travel times by

city-specific paraimeters describing the demand, the capacity, and observed free traffic

speeds. In doing so., we define demand-to-supply ratio of a city as,

F eE lele
Zrc >0.eCEE eC

(4.8)

This dimensionless ineasure is a simple ratio of the total distance traveled by all

vehicles to the upper bound of the total vehicle kilometers the road network can

support per hour, thus capturing the load on the road infrastructure by bringing

together trip distances, trip magnitudes, road capacities, and the distances they span

as shown in Table 4.2. Using this measure along with cf, the average free travel speed

(If each city, we are able to better explain the linear relationship between travel time

and distance by
(1 + F)"'

t(dr) = di + I,
Jv5

(4.9)

121

I

J



where a values vary between 1.3 - 2.5, essentially describing the sensitivity of the

city to the stress imposed by travel demand on its road infrastructure.

In order to untangle the particular ordering of cities in terms of speed and un-

derstand why some cities are more congested than others, we investigate a typical

relationship in Figure 4-9(d) to test the common conception that cities with higher

population densities tend to exhibit more heterogeneity in their demand profiles, and

therefore tend to be more congested. For this purpose, we measure the ratio of the

time lost in traffic to the travel time under free flow conditions, known as the traffic

index, along with those measured for many other urban areas by TomTom, a leading

GPS company. We consider the percentage of congestion, defined as the percentage

of additional travel time due to traffic compared to free flow conditions, for differ-

ent population densities in these various cities. We observe that Boston, Lisbon and

Porto fall on the fit model, whereas the Bay Area and Rio demonstrates a significantly

higher level of congestion. The outlier appearance of the Bay Area is a consequence

of the arbitrary definitions of urban areas and its influence in population density as

pointed out in [5]. To account for this, we plot the subdivisions of San Francisco and

San Jose which support the relationship as they lie closer to the fit, Interestingly,

the dimensionless demand-to-supply ratio IF lacks this problem and presents a better

linear trend with congestion for the five analyzed urban areas as depicted in Figure

4-9(e), despite the broad behavior of the traffic response. The two most congested

cities have the highest ratios, the Bay Area closely followed by Rio de Janeiro while

Porto and Lisbon, the two least congested cities, have lower ratios.

To finalize our analysis, in Figure 4-9(f) we measure how population densities are

spatially distributed from the most densely populated region in each of the subject

cities based on the chosen administrative level. The results show different spatial

distributions in the population density of the five cities. First, it verifies the expected

effect of higher population densities in increasing congestion. It also highlights the

importance of the spatial distribution around the highest density point. Lisbon and

Porto present densities of population below 500 people km-2 for distances of r >20

km; while the other three cities stabilize in values greater than 1000 people km-2.
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Figure 4-11: % congestion distributions for the five cities. (a) Overall % congestion

levels obtained fro user equilibrium compared to values from TomTom. (b) Distribu-

tions of % congestion for trips for the five cities.

These differences can explain the two types of responses in the effective travel speeds

presented in Figure 4-9(b) where Lisbon and Porto belong to a city type of lower

density, in agreement with the characteristics described in 1241. Taking these results

together, we observe that congestion increases with F and appears to be influenced

by the spatial distribution of population density and its gradient.

4.3.3 Selfish Routing

In this section. we compare the travel times for connuters in free flow, socially

optimal and user equilibrium flow configurations. Our findings in the five subject

cities are outlined in Table 4.4. Although the estimated free travel time averages

are similar. congestion plays a significant role: Lisbon connuters lose 2.1 minutes

on average by selfish routing preferences. Rio de Janeiro exhibits an average loss of

2.6 minutes on average incurred by selfish routing. The results show that on average

15-30% of total uminutes lost in congestion is caused solely by selfish routing.

Although a more nuanced methodology incorporating stochastic traffic assignment

and probabilistic origin destination matrices would likely improve validatiO, our

formulation and central findings would remain robust as they are based on aggregate

and endogenous, albeit simplified, behavior of our system. Furthermore a principled

and singular validation source does not exist for our cities: we instead use an online

map provider as a validation benchmark. Although the validation data is also the

product of internal models and estimations, it is of value as they are obtained from
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Table 4.4: Comparison of cost findings in the subject cities for the morning peak
hour. Colored rows indicate the loss of travel times from free travel times to socially
optimal flows, and from socially optimal flows to user equilibrium flows for commuters,
respectively (FTT: free travel time, SO: social optimum, UE: user equilibrium, % S:
percentage of total congestion attributed to selfish routing, S = 100 * Benefit/Loss)

City
(min) Rio SF Bay Boston Lisbon Porto
FTT 20.6 21.1 19.3 22.4 15.3
Loss 14.1 12.5 8.2 8.0 4.0

UE 34.7 33.6 27.5 30.4 19.3
Benefit 2.6 2.6 1.3 2.1 1.1

SO 32.1 31.0 26.2 28.3 18.2
%S 18 21 16 27 28

travel time distributions, regression statistics
coef st. error P> tJ R2 AIC

Rio 0.7400 0.007 0.000 0.839 1.239 * 1o4
Bay 0.6490 0.006 0.000 0.876 1.129 * WO4

Bos 0.5770 0.005 0.000 0.882 0.904 * 104
Lis 0.6297 0.006 0.000 0.854 1.232 * 104
Por 0.7602 0.005 0.000 0.922 1.078 * 104

Table 4.5: Regression statistics for travel time estimations.

an independent data source to ours. In Figure 4-12(a), we compare the distributions

of obtained travel times with those obtained from the map provider in the morning

peak hour between 7:30 and 8:30 for 2000 origin-destination pairs with the highest

commuting flows. There is an overall overestimation of travel times, which strengthens

the notion that route choice in reality might not be a perfect user equilibrium or a

social optimum, but somewhere in between. Neither the provider's nor our findings are

expected to have accurate travel time variability as these comparisons are estimates

of typical travel times for the given OD pairs and they act as a first step towards the

validation of our estimated travel times based on the assigned traffic flows obtained

from the phone data.
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4.3.4 Weight of Social Good

In assessing the effects of socially aware routing behavior for the subject cities, we

calculate the average commuting time for various levels of A. The inset of Figure

4-12(b) depicts the decrease in average commuting travel times for increasing A in all

five cities, ranging from an average of 1 to 3 minutes. More importantly, the shape

of the curves indicate that even modest social consideration weights can realize a

significant portion of the potential savings. Figure 4-12(b) collapses these curves to

represent realized potential savings as a percentage to exhibit a striking similarity

between the five cities in terms of response to socially aware routing. To assess the

economies of such routing behavior, we measure the Gini index of the obtained curves,

by definition higher values of G indicate higher savings for smaller levels of social good

weight. Our findings show that G ranges from 30 - 40%: Grio = 41%, Gbay = 42%,

Gbos = 33%, G1 s = 30% and Gpor = 34%. These findings indicate congested cities

benefit more from incorporating social good considerations into routing behavior.

4.3.5 Travel time benefit distributions

In the previous section we characterized the percentage of potential savings that can

be obtained for increasing levels of social consideration. However these benefits are

achieved at the expense of time of drivers who adjust their commute for the benefit of

others. The unwillingness to give up time is the defining factor in drivers' failure to

reach an optimal state on their own. This highlights the importance of fairness of the

distribution of who has to sacrifice versus who benefits in terms of both the success

potential of the implementation of policies or a reward/punishment reinforcement

schema. Figure 4-13 (a) demonstrates one such schema, where drivers are shown a

route that corresponds to a choice of A which might result in a travel time sacrifice.

Our findings, in accordance with the results of the previous sections, indicate a net

bias towards benefits, meaning the number of drivers that benefit outnumber those

who sacrifice. Figure 4-13(b) summarizes the benefit distributions for the five cities

for A = 0.1 and A = 1. The former exhibits a less spread distribution than the latter
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but the skewness remains inherent to the distributions. Although the average benefits

described in the previous sections appear small, it should be noted that 10 minute

benefits can be observed for tens of thousands of vehicles. Figure 4-13(c) describes

in more detail how the positive skewness evolves for increasing social consideration.

For higher A, the % decrease in congestion distributions are shifted towards positive

values, indicating a net benefit. This result demonstrates the potential of incentive

schemes which could compensate the few drivers who sacrifice under consideration of

social good.

4.4 Discussion

The economic and social costs of congestion are crippling. In addition to the overall

loss of time, congestion underlies many major economic and urban issues such as

increased gas consumption, infrastructure deterioration and CO 2 emissions. In this

work we utilize massive amounts of data to estimate peak hour travel demand and

understand travel times. We then explore the power of information based routing on

congestion nlleaion.

Our findings suggest very interesting similarities in the behavior of the five subject

cities to explain congestion and potential benefits of social routing. Commuting dis-

tances follow a lognormal distribution and free travel speeds are normally distributed.

A city's unique congestion fingerprint is strongly related to measurable characteristics.

The population density and its spatial distribution together with the IF parameter of

demand-to-supply ratio are the two driving factors of the observed congestion in a

diverse range of cities. Further, given the current state of traffic, we then estimate

how centralized routing schemes using the power of information would reach possible

benefits in travel times. Such information is important, as it allows the assessment of

the upper bounds of routing policies, if effective in implementation, would influence

the traffic on a city scale. In practice, this would imply that we could have similar

routing applications that we use today with the incorporation of demand profiles to

provide routes that are not necessarily the shortest, but also the best for decreasing
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overall congestion.

We find that routing solutions that mimic socially optimal configurations, i.e.

A = 1, have a limit of decreasing time lost in congestion by up to 30%. This is

in contrast with the effectiveness of direct and costly interventions where 1% target

decrease in demand can achieve 18% decrease in travel times [1711. While in both

scenarios the collective benefits for the whole city can be significant (15% - 30%

decrease); the observed time benefits the average individual receives are marginal,

ranging from 1 to 3 minutes. Furthermore, these times are below the travel time

variability based on events, weather conditions, or traffic lights 1271. Our findings

indicate that in the best-case scenario, time savings would be imperceptible for the

majority of the drivers. From this, it is clear that such routing solutions can't fix

the traffic problem for individual drivers but rather would contribute to the city as

a whole. The advantage is that in the context of the implied routing application,

the number of vehicles sacrificing their travel time is significantly smaller than the

number of those that benefit. Lower levels of weight towards social good will also

moderate the magnitude of benefits and losses, consequently making the policies fairer

and easier to implement.

Open work in this subject contains, but is not limited to, a more generalized

bottom-up approach to comparison of cities that includes various modes of trans-

portation to demonstrate their similarities, differences and their consequences. As

the volume, the variety and the resolution of data increase along with the expected

disruptions from connected self-driving cars and similar technologies, this front of re-

search will become more relevant to facilitate the study and planning for the future of

urban mobility. With more updated demand models extracted from communication

technologies, understanding the network effects on congestion will become easier to

pinpoint and address. In addition, planning tasks on urban mobility previously diffi-

cult to tackle may now be addressed at lower costs and with much larger samples of

the population. For example, a thorough analysis of how travel time and congestion is

distributed among the population and its split by income and other sociodemographic

characteristics remains an open front.
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Chapter 5

Coupling Electric Vehicle Charging

with Urban Mobility

Transportation electrification introduces a spatiotemporal tie between the tradi-

tionally independent power and transportation infrastructures through plug-in elec-

tric vehicle (PEV) charging. With the steadily increasing rates of PEV adoption in

urban areas, the imminent paradigm shift in electricity consumption poses a chal-

lenge for researchers to untangle the relationship between mobility and electricity

demand. In this work, we provide an understanding of PEV mobility by coupling

origin-destination information obtained from mobile phone data with PEV charging

session data for the San Francisco Bay Area, USA. We first lay out a methodology

to extract mobility patterns of PEV drivers in the area. Next, we present the spatial

and temporal characteristics of charging sessions and show that commuting patterns

and PEV energy consumption are closely linked. We develop charging schemes that

investigate the impact of arrival time scheduling and shifting of charging activity in

reducing the power load in the peak hour. Finally, we quantify and evaluate the

potential benefits of such schemes to demonstrate that substantial savings are achiev-

able. Our results advance our ability to better manage the current and future state

of electrified urban mobility by coupling the transportation and electricity needs.

This chapter is based on 1461.
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5.1 Introduction

With growing population and rapid urbanization, the demand for mobility and elec-

tricity in urban areas are not only increasing in magnitude, but also are becoming

more concentrated spatially and temporally. The infrastructures that serve these

needs, namely the road networks and the power grids, are under high levels of stress

in efforts maintain reliable service. The low costs associated with the extraction and

processing of petroleum and coal have led us to historically rely on these high emis-

sion fossil fuels to meet the ever-increasing transportation and electricity demand.

As a consequence, in 2013, global C02 levels exceeded 400 ppm, a mark previously

deemed as the critical threshold above which the effects on earth's climate would be

irreversible [1521. Decades before reaching this mark, rising C02 emission levels had

triggered the search for cleaner alternative fuels for transportation. Although the

alternatives developed over the years failed to overtake conventional vehicles that use

gasoline [1091, today's plug-in electric vehicle (PEV) technology is the most promising

candidate up to date. In the early stages, issues like range anxiety, charger unavail-

ability and high prices hindered the adoption of PEV technology. However, these

issues are overcome today with improvements in battery technology, tax breaks and

subsidized charging programs. As a result, PEVs are becoming a more viable means

to move and are being adopted by drivers at steadily increasing rates. According to

the US Energy Information Administration, the number of PEVs in the USA doubled

between 2013 and 2015 and is expected to reach 20 million by 2020 [1651. As PEVs

become more ubiquitous, road networks and power grids will become tightly inter-

locked in their efforts to meet the mobility and electricity demand of the people. This

coupling calls attention to an imminent need to understand the typical characteristics

of the demand for electrified transportation to build solutions for its management.

Facilitating and expediting the movement of people and goods across cities has

been a perennial goal of scientists, engineers and planners. To better plan for the

mobility demand, transportation planners founded meticulous modeling practices

that provide travel demand information at both aggregated and disaggregated levels.
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These models contain modules that capture commuting patterns, activity profiles,

mode and route choices, as well as short and long term trends such as changes in

rates of car ownership or population growth [1261. In their implementation, travel

demand models typically make use of synthetic populations obtained by household

travel surveys to better mimic the behavior of all travelers. These surveys are costly

and require a lot of labor, therefore can be carried out infrequently for small sam-

ple sizes. Recently, models that utilize mobile phone data have been introduced to

the literature, providing cheaper and complementary means to generate travel de-

inand information. Although the data used in these models lack the level of detail

and precision of travel surveys, they make up for various disadvantages of surveys,

as they capture the movement of millions as opposed to thousands and can be pro-

cessed quickly at lower cost [28, 88, 3, 164, 451. Despite the abundance of research on

this front, there is currently a scarcity of works that aim to measure and assess the

mobility of PEVs.

The planning for the mobility needs of PEVs are particularly important in the

context of the vulnerability of the power grid to outages that can cascade drastically.

This was most recently exemplified by the severe power outage observed in India in

2012 that affected approximately 650 million people. Although smaller in comparison,

large power grid failures were also observed in Europe and in the United States over

the last decade [80]. Failures of this scale signified a need to recontextualize the

electricity infrastructure, and transdisciplinary approaches were promoted in tackling

the complexity of the problem [341. In addition to this already burdened landscape,

the introduction of PEVs signal a substantial increase in total load as well as currently

unpredictable changes in the norms of energy consumption. Therefore extending the

current know-how of solutions that more efficiently manage the power grid at the

urban scale has been of utmost interest to researchers. In this topic, a body of

literature specifically focused on the nature of network reliability, the role of network

topology on the spread of cascading failures [127, 108, 35, 81, 33, 581. Other works

analyzed urban microgrids [73], and the implications of the introduction of new clean

sources to the energy market [1151. In the particular subject of PEVs and their
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impact, methods of optimization and control of PEV electricity consumption [90,

18, 38, 114] is a rich avenue. Problems that researchers tackle on this front include

measuring impact on the grid [44, 161, 74, 97, 134, 162, 82], developing accurate

PEV models [184], energy management [137, 167, 166], smart charging strategies

that probe centralized and decentralized approaches [103, 89], scheduling [160, 180],

peak shaving, emissions, pricing models 1185, 65], and joint optimization of power

and transportation networks [4]. A common shortcoming observed in these works

is the narrow scope in incorporating mobility information into the analyses, often

limited to the estimation of arrival or departure hours. The literature currently lacks

the incorporation of mobility patterns at the metropolitan scale into the models of

electricity demand management in a systematic way.

In this work, we target these gaps in the literature to extend the current knowl-

edge of transportation based electricity demand from a complex systems perspective.

For this purpose, we bring together three independent data sources: (i) mobile phone

activity of a large sample of the residents of the San Francisco Bay Area, (ii) charging

sessions obtained from PEV supply equipment in the same region, and (iii) surveys

on the use of conventional and electric vehicles, together with census data for income

information at the zipcode level (see Methods). In the first part of the work, we

estimate vehicular mobility in the Bay Area using the mobile phone activity of a

large sample of residents (Figure 5-1). We then present a methodology to estimate

PEV trips from the overall mobility patterns by utilizing information obtained from

surveys regarding the income and travel distances of PEV drivers (see Methods). In

the second part, we analyze the various aspects of charging activity to characterize

the nature of electricity demand at charging stations. We present observations re-

garding visitation frequencies, arrival and departure hours, typical per session energy

consumption patterns, and power levels. We observe that PEV charging patterns

are highly regular with morning and evening peaks. Charging sessions have temporal

flexibility, that is, PEVs are typically charged for only a portion of the time they stay

plugged in. In contrast, the power consumption happens immediately upon arrival,

and makes no use of this flexilibity. In the third part, we explore the relationship be-
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Figure 5-1: Coupling PEV charging with urblan mobility. (a) Mobile phone trajecto-

ries are used to estimate mobility patterns. (b) Charging sessions used to characterize

session and electricity demand curves. (c) These findings are combined to analyze

the relationship between commuting patterns and electricity demand. (d) Charging

activity is shifted to relieve peaks in demand and generate savings.

tween the travel distance of PEV commuters incoming to a charging station and the

observed electricity demand at individual charging stations. We discuss how mobility

patterns can provide insights towards a region's characteristic PEV based electricity

consumption profile. In the fourth and final part, we lay out a charging optimization

scheme that a(jmusts arrival tinmes or delays charging activity to temporally distribute

power consumption and mitigate the stress on the grid. Ve estimnate the resulting

effects on the conuinuting travel tines and the mnonetary benefits to assess the value

of such optimization solutions and their viability.
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5.2 Methods

5.2.1 Data

The three main sources of data used in this study are described below.

1. Mobile Phone Activity: Also referred to as Call Detail Records (CDRs), this

data has been widely popular in the last decade, especially in the context of

mobility modeling [28, 88, 3, 164, 45]. For this work, we make use of the CDRs

for the Bay Area including approximately 430,000 users and about 429 million

calls they made over 3 weeks. The spatial resolution is discretized to the service

areas of 892 distinct cell towers. This information is used to estimate the travel

demand for the Bay Area for a typical weekday.

2. PEV Charging Sessions: This data contains 580,000 records of PEV charging

sessions in commercial PEV supply equipment (EVSE) locations across the Bay

Area in 2013, including any vehicle with a battery that can be charged. For each

charging session, the following information is available: (i) one-time information

on the EVSE location type, unique driver ID, total energy transferred, and plug-

in/plug-out times; and (ii) charging power readings obtained every 15 minutes.

The locations of the charging stations are anonymized to zipcode level. As a

preprocessing step, we filter out records lasting shorter than 1 minute, are not in

2013, or have erroneous power measurements exceeding typical cable capacity

and maximum charging rates.

3. Census and Survey Information: The census data used in this study consists of

shapefiles describing zip code regions, their population, and income information.

The survey information is obtained from the California Plug-in Electric Vehicle

Driver Survey carried out in 2013 [62]. This survey contains information on

various sociodemographic characteristics and travel behavior of PEV drivers in

California. We utilize information regarding income and average daily vehicle

miles travelled in the estimation of PEV mobility.
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Table 5.1: Characteristics of PEV drivers. Distribution of (a) average daily miles
driven and (b) annual income by PEV drivers in California, USA [621.

(1000$) Conventional PEV (miles) %
Unknown 20% 17% < 15 14%

< 50 20% 2% 15-30 50%
50-100 30% 13% 30 50%

100-150 14% 20% 3045 8%
> 250 15% 47%

5.2.2 Electric Vehicle OD Estimation

We denote an OD-pair, a trip between a source od, and a target ode, as od. We

denote EV as the random variable that represents the occurrence of the event that a

car trip is made by a plug-in electric vehicle. IM is the random variable that denotes

the income of the trip maker, and P(IM) follows a standard normal distribution

centered at median income of the source zipcode, od,. Ded is the random variable

that denotes route distance and is equal to D(ods, odt) between od, and odt, constant

for the specific od. Our goal is to estimate P(EV I Iod, Dm) for each od, or in other

words, the probability that a trip for a given OD pair is in fact made by a PEV. We

assume that for a given od, IM and PM are independent, and P(Io, Dod I EV) =

P(Iod | EV)P(Dod I EV), that is, IM and PM are also conditionally independent

given PEV.

We begin by expressing the Bayesian relation,

P(EV I Iod,Dod) P(Id, Dod I EV)P(EV) (5.1)
P(Io0, Dod)

By imposing our aforementioned assumptions on Eq.5.1, we obtain

P(EV I Jd, Do) = P(Iod I EV)P(Dod I EV)P(EV) (5.2)
P(Iod)P(Dod)

In estimating this value, we assume P(EV) = 0.62% as the share of PEVs within

all cars in the Bay Area. We make use of the PEV driver survey information re-

garding income and distance travelled, namely P(Iod I EV) and P(Dod I EV)P(EV),
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respectively. We randomly assign an Iod to each od from P(Iod), and calculate the

Dod by using a publicly available online API service for routing. Given that Dod is

constant for all od, P(Ded) = 1. Once P(EV I Iod, Dea) is estimated, the probabilities

are used to reweight the flow of each unique (ze, zt) pair. Figure 5-2 represents the

D,, distribution of the posterior P(Dd I EV).

5.2.3 Optimization Model

We begin by discretizing a day into 15-minute intervals such that each day starts

at t = 0 and ends at t = 95 [891. For each charging session i among N in a day

at a charging station, we define t' as the arrival time index, t' as the time index

where charging is complete, and t' as the departure time index. We represent the

time indices by the vector T, and the power consumption by vectors P' and Qi, all

defined as follows:

TI= [t" ,

P" = , P9T5]T (5.3)

Qi P,.. ]T

By shifting Qi within P' by an amount d' for all sessions, we can modify the overall

power demand curve. We define M' = (t' - t') + 1 as the total number of non-zero

power measurements in this charging session (i.e. total number of elements in Qi),

given that charging sessions start immediately upon arrival. We enforce continuity

of the charging process, the non-violation of departure times, and amounts of session

energy.

To capture the constraints proposed above, we introduce the following formal

constraints:
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> 0

T < 95

T! > t' + CP Vi E [1, N], l4

r :5 t' + d Vi E [1, M%]

rj < Tj'i

We construct the proposed constraints using a binary decision matrix to represent

charging or non-charging time slots within the optimization duration. To represent

the candidate time slot at which Q can be positioned, we create binary row vectors

x each consisting of 95 binary decision variables: xk E {0, 1}, Vj E [1, Mi], Vi E

[1, N], Vk c [0, 95].

[X] X1,0 X1,95]

Xi = = I . (5.5)

LX~~j X ",O X~Vi 95J

Finally, we write the variables in the constraints given in (5.4) using the binary

decision variable as follows:

0

ri = Xi (5.6)

. 95

The aggregate power vector AP is given as follows:

N Q1 Xi

AP = ' Pi =H(5.7)
i= = QN xN

The resulting formulation is a mixed-integer linear program, with decision vari-

ables X, Peak, and d' of which the latter two are integers. The problem can be

proposed to minimize the daily peak load Ppeak for a group of PEVs arriving to the

139



same zip code location:

minimize Peak
xi ,Ppeak,di

subject to (5.4) and the following additional constraints:

AP' < Ppeak, Vi E [1, N], Vt E [0, 95] (5.8)

5.3 Results

5.3.1 Estimating Electric Vehicle Mobility

We begin by estimating the overall vehicular mobility of the Bay Area by following

the methodology outlined in [164, 45, 3]. In doing so, we make use of the mobile

phone logs of a large subsample of the population (see Methods). This process begins

with the extraction of stay locations by cleaning the noise in the trajectories of each

individual[88]. Each location is then labeled accordingly based on temporal proper-

ties of the call activity. Once home and work locations are successfully identified,

sequences of trips are collected for each individual and categorized by their time and

purpose as well origin and destination. When carried out for the whole sample, this

process captures the observed mobility of the mobile phone users. Then, from the

samples obtained for each region, the mobility patterns of the whole population in

that region are estimated, in consideration of the ratio between the sample and the

region population. The result is what is known as the origin-destination information

(ODs): the number of car trips taken from and to different points in the area.

The next and key challenge in this section is the conversion of this OD informa-

tion, representing the mobility of all vehicles, to that of PEVs. In order to statistically

capture PEV drivers within all car drivers, we make use of the California Plug-in Elec-

tric Vehicle Driver Survey carried out in 2013[62J. This survey, while highlighting the

increase in PEV adoption, presents various sociodemographic characteristics of PEV

owners. One of the more noticeable results in this context is the comparison of the

140



household income distribution of PEV drivers compared to that of conventional car

owners. PEV drivers' income distribution is skewed towards higher income segments,

unlike conventional vehicle owners where the income distribution is relatively uni-

form. In particular, the percentage of those with average annual income above 150K$

among conventional vehicle drivers is 15%, compared to the 47% observed among

PEV drivers. The survey also highlights the typical distances PEV drivers travel:

64% of PEV drivers travel less than 30 miles per day (Table 1). Although newer

generations of electric vehicles have increasingly higher ranges, PEV drivers typically

have low daily travel distances. We make use of these survey findings to accurately

subsample PEV trips from total vehicular ODs by implementing a Bayesian sampling

procedure (see Methods). In this methodology, we use income distributions at the

zipcode level and typical route distance of each individual origin-destination pair to

estimate the probability of that trip being made by an PEV. Figure 5-2 summarizes

our findings by comparing the distributions of route distance, D, and the commuting

travel time under free flow conditions, T, for PEV trips to those of all vehicle trips.

The applied methodology moderates the distribution of trip distances for PEVs, more

visibly for trips shorter than 5 kms and longer than 30 kms, in agreement with the

findings of the survey. The observed bimodality of the distance distribution is an

outcome of the commuting patterns and the income distribution across the region.

5.3.2 Electric Vehicle Charging Session Profiles

In this section, we comprehensively analyze PEV charging by examining various as-

pects such as visitation patterns and adoption rates, temporal qualities of arrivals

and departures, and typical energy and power consumption levels. PEV drivers dis-

play varying degrees of regularity in terms of how often they visit charging stations.

Figure 5-3(a) reveals that for the majority of PEV drivers, the number of sessions per

day, Nday, beginning from the day of their first record, is less than 1. The bottom

left inset of Figure 5-3(a) displays the logarithmic distribution of the number unique

PEV charging stations (EVSEs) visited, NEVSE, by each PEV driver: 95.6% of PEV

drivers have at least one charging activity in less than 20 distinct EVSEs. The top
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right inset of Figure 5-3(a) depicts the rate of PEV adoption observed throughout the

year. The 3000 drivers observed ii January 2013 increases by an average of 1000 per

month, doubling twice over the course of 2013. The implication of this rate of adop-

tion for the power grid is in fact more severe than at first glance, since the new PEVs

entering traffic will not uniformly distribute the demand across the region but rather

further increase the spatial concentration. This will result in a superlinear scaling of

energy demand to number of PEVs in popular regions, reiterating the pressing need

to understand electricity demand resulting from lnobility needs and the development

of efficient charging solutions.

Next, we look at the arrival and departure hours of charging sessions, h, and I,. in

Figure 5-3(b). Approximately 50% of all arrivals take place in the Gai-ilam morning

period, and as expected. the morning and the evening peaks are highly pronounced.

This points to the parallels between the temporal component of overall travel demand

to electricity demand. The morning and evening demand peaks are abundant in all

travel deniand models, and this observation indicates that the temporal component

of charging demand is directly translated from that of travel demand. To go into

further detail regarding of arrivals and departures, in the inset of Figure 5-3(b) we
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look at the distribution of interarrival and interdeparture times, Ah, and Ahd, i.e.

the time between two consecutive charging sessions for the same driver ID. These

distributions are peaked at multiples of 24 hours, pointing to the diurnal periodicity

of PEV drivers' charging behavior. In conjunction with findings regarding arrival

and departure times and visitation patterns, this finding reinforces the notion that

commuting and charging behavior are highly related.

Next, we shift our focus to per session measures such as energy, duration, and

power. Figure 5-3(c) exhibits the average energy consumption per session, Es. The

battery sizes of Nissan Leaf (24 kWh) and Chevrolet Volt (16 kWh), two of the most

commonly used PEVs in the region are marked. Typically ES are well below these

capacities, indicating that PEV drivers typically stay within the range of their PEVs.

The charging activity typically does not fill emptied batteries, in contrast to what

range anxiety suggests. In fact, at these levels of flexibility, PEV drivers appear

considerably free to choose whether to charge their vehicles at home or not, without

having to fear not being able to complete their commute the next day. In line with

this, the incentives in place that promote workplace charging [1241 blur the one-to-one

mapping between a single commuting trip and the electricity demand in the charging

session that follows, as they enable PEV drivers to not necessarily start their commute

at full capacity. On the other hand the distribution of session durations reveals that

98.4% of all charging sessions last less than a day (Figure 5-3(c) ), in line with the

strong ties to commuting previously mentioned. When findings regarding commuting-

like temporal behavior and flexibility in terms of battery capacity are considered in

conjunction, it is reasonable to expect that the session energy ES will likely represent

not a single commuting trip, but rather a number of them.

Since the actual charging activity does not last as long as the session duration 6s, in

Figure 5-3(d) we look at how the power changes as the session continues. We divide

sessions into four categories based on their session duration, and plot the average

power consumption for each segment at various percentages of the total duration. At

this point, it should be mentioned that there are three power rating levels observed,

namely Level 1 (Li), Level 2 (L2) and Level 3 (L3). The first two deliver 120V
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and 240V, typically corresponding to 3.3kW and 6.6kW, respectively. L3 chargers

are mainly for fast charging at 480V and are relatively uncommon. In fact, Li and

L2 chargers make up 99.9% of all the sessions in the dataset. This composition of

power ratings explains the 4 kW upper limit to average power consumption observed

in Figure 5-3(d). For sessions lasting less than 4 hours, average power stays above

3 kW up to 80% of the duration into the session. Conversely, for sessions that last

longer than 12 hours but less than a day, only in the starting 25% of the session

duration there is active charging. This corresponds approximately to 3-6 hours, and

the power remains zero thereafter. This is consistent with constant-current constant-

voltage battery charging behavior and it suggests that currently there is no strategy

to charging involved: charging begins as soon as a session begins and ends when

the battery is full. Despite their flexibility in terms of session durations and battery

capacity, PEVs are charged immediately upon arrival.

5.3.3 Energy and Travel Demand Relationship

As we established in the previous section, there currently is no strategy in place to

better manage the load PEVs impose on the power grid. In order to develop effective

strategies for this purpose, understanding the unique electricity demand of each region

is a necessity. In estimating a single PEV's electricity demand, it is possible to make

use of the fact that the charging session energy demand is an outcome of the trips

that PEV has previously taken. Similarly, at the spatial resolution of a zipcode, the

mobility patterns of commuters to that zipcode can be used to profile the average

electricity demand at that zipcode. Following this reasoning, our goal in this section

is to analyze the extent to which aggregate mobility patterns can be used to estimate

average energy demand of a region. For this purpose, we look at how the average

electricity demand at a zipcode, measured by using charging sessions, is related to the

average commuting distance to that zipcode inferred from our EV mobility estimates.

We begin by analyzing d, T, Tc, and Es, representing trip distance, trip travel time

under free flow conditions, trip travel time in traffic, and session energy, respectively.

The probability distributions of these metrics are depicted in Figure 5-4(a), with the
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cumulative distributions in the inset. The peaks in the distribution of Es demonstrate

the heterogeneity in the electricity demand, as well as the battery capacities of various

PEVs. The 3-4 kWh peak is a combination of low energy demand as a consequence

of short commuting trips and plug-in hybrid electric vehicles (PHEVs) that typically

have a battery capacity around 4 kWh [182]. The similarity of these distributions are

in agreement with the known fact that the energy consumption of a single PEV is a

direct outcome of the characteristics of the preceding trip such as distance and speed.

More interestingly however, it can be observed that this relationship is conserved for

a population of PEVs rather than at the individual level. In other words, a set of

the trips represented by the OD information of PEVs and the resulting distribution

of energy consumption of the same population of PEVs follow similar distributions.

This finding signifies the potential in combining mobility and energy information to

provide insights at the urban scale.

Next, we further explore the relationship between energy demand and travel de-

mand. For this purpose, we aggregate the session energy readings of the charging

sessions from each zipcode to obtain Es for that zipcode. Similarly, we average the

disa tAen by all ing commuters to that zipcude t I fi . i order

to better assess our findings, we refer to models in the literature that estimate the

electricity consumption of a single PEV trip given speed and distance information of

that trip, generally referred to as drivetrain models. To serve as a benchmark, we

implement the drivetrain model presented in 11431. We denote this estimate as Em,

and we aggregate it for each zipcode to obtain Ej. To select Nissan Leafs in our

charging session, we select the sessions of only the vehicles that have not had any

charging sessions with total energy readings that exceed the nameplate battery ca-

pacity of a Nissan Leaf. We compare how both Es and Efn change with respect to Dz

in Figure 5-4(b). E. exhibits a relatively low slope with a positive energy intercept.

In other words, PEVs appear to have a fixed energy demand even for Dz = 0. In

comparison to Es readings around 9kWh, E' stay within the range of 2.5 kWh to

3.5 kWh. Although the overall trends are in agreement, the scales of Es and E' are

different. These results stem from findings from previous sections. We previously es-
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tablished that within the commuting distance ranges we observe, PEV drivers do not

always start their day at full battery capacity. This notion is strengthened by heavy

subsidies supporting workplace charging. A recent report by Department of Energy

suggests that 80% of partner workplaces in their Workplace Charging Challenge pro-

gram provide free PEV charging, compared to 20% who charge their employees a fee

[124]. In support. of this finding, it is widely known that the energy added to the PEV

battery and the energy for the EVSE meter often differ in measurements around 10-

15%. The commonality for these factors is that they are uniform across vehicles and

stations, hence are constant biases throughout. This explains the constant of pro-

portionality between ES and EJ4, energy values obtained from the sessions and the

model. To account for this proportionality, we analyze the two models by their first

differences. By analyzing the additional session electricity demand for the additional

average commuter trip distance to a zipcode, we are able to more robustly assess the

quality of mobility information as an estimator of energy demand at a zipcode. For

this purpose, we sort the zipcodes by the average incoming commuter travel distance,

and then estimate the change in energy demand, AEz, for each consecutive change

in sorted distances ADz. We fit the following linear models AEz = asADz +/ 3 s + ES

for sessions and AEJj = ayMADz + 3 M + EM for the model using least squares, where

a, # and E denote the slope, the intercept and the error term, respectively. As can

be observed from the inset of Figure 5-4(b), The slope obtained from the model is

in agreement with that obtained from charging sessions. This indicates that OD in-

formation and energy demand resulting from commuting patterns are closely linked,

and commuting patterns into a region can be used in laying the foundation to provide

the electricity demand fingerprint of a region.

5.3.4 Assessment of the Impact of Charging Timeshifts

As mentioned, the spatial and temporal concentration makes electricity demand diffi-

cult to meet in certain regions at certain times of the day. This led to more dynamic

and complex rate structures that not only bill customers for the total energy de-

manded but also incorporate the maximum power demand, time of day, and season
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of year. These pricing policies counteract consumption behavior that pushes the

power load curve towards nonuniformity. However in a future where the number of

PEVs will be magnitudes more than today, achieving a temporally homogeneous load

curve at the urban scale will pose a tougher challenge. In this section, we propose a

methodology that aims to mitigate the peak load imposed by PEVs on the grid by

minimizing peak power at the EVSE level. By adjusting vehicle arrival times or de-

laying charging activity of various sessions, we move the aggregate charging activity

towards hours of the day when there is less demand. This enables the transformation

of the load curve into one that is more uniformly distributed across the day. Finally,

we explore the monetary benefits of the potential savings and the implications of

arrival time adjustment on commuting times to discuss the viability of this class of

power management approaches.

To investigate the impact of arrival time scheduling and charging activity delay

on the overall peak of the PEV charging demand, we cast problem as a mixed-integer

linear program with discrete shifts in arrival times and charging end times as inputs.

The program modifies the total power Pt measured through the day resulting from the

overlapping charging activities of a population of PEVs in a way that minimizes the

peak power while keeping the total energy consumed constant. That is, all PEVs are

charged by the same amount of energy as they used to, the only difference being the

temporal distribution of how that energy was transmitted. Moreover, the charging

activity is never allowed to be interrupted, and the departure times are not modified

(see Methods).

In this context, we test three different approaches. The first fixes the arrival times

for PEVs and delays the charging by d', an amount specific to session i within the

interval [0, d]. The drivers are free to arrive as they wish, however the PEV charging

can be delayed to minimize Ppak. We refer to this model as start bound. The second

model, referred to as end bound, offers modifications to the arrival times by proposing

drivers to arrive earlier by d' minutes in the interval [-d, 0]. In this approach, PEV

charging begins immediately upon arrival. The start bound and end bound models

represent a tradeoff: the latter generates savings at the expense of having at most
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one hour worth of charging less capacity when in a need to leave earlier, whereas

the former is at the expense of possibly more inconvenient arrival times. The third

and the last model combines the first two models and enables the adjustment of both

arrivals and charging activity, referred from here on as the flexible model. In this

model, the charging activity is shifted in the interval [-d, d]. We implement these

three models for a typical day at a zipcode that contains 493 sessions (see Methods).

Figure 5-5(a) illustrates an instance of the flexible model for d = 2 (30 minutes)

and how a sample of charging sessions would have been modified. To minimize the

peak power, morning sessions have their charging shifted to earlier, whereas the charg-

ing of afternoon sessions are deferred. To test our models, we selected a zipcode and

all 439 sessions recorded in a specific weekday. Figure 5-5(b) demonstrates how ag-

gregate power curves are modified under these models. The flexible model is able to

push Peak down 38% from 973 kW to approximately 600 kW for d = 4, or namely 1

hour. Start-bound and end-bound models, as expected, require higher values of d to

achieve comparable savings. The wider domain achieved by the combination of arrival

adjustment and delay of charging provides strong flexibility for the flexible model, in

agreement with its name, enabling the attainment of more substantial savings.

One key reason why an PEV driver might not want to comply with an earlier

arrival schedule would be its negative influence on the travel time. To assess how

realizable the benefits of these models are, we investigate the consequences of the

flexible model in terms of how it affects commuting travel times. In Figure 5-5(c),

we look at how the proposed changes for varying values of d for the flexible model

would affect the commuting travel times of all trips into the subject zipcode using the

OD flows. The results show that the peak power reductions can be achieved without

causing major discomfort to commuters in terms of travel times. The most negatively

influenced drivers end up losing a maximum of 20 minutes in the case of d = 4 (1

hour), and are far less than those who are unaffected by the proposed changes. In

fact, there is a substantial number of drivers that achieve travel time savings in efforts

to minimize peak power.

Next, we evaluate the monetary outcomes of these models. As mentioned previ-
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ously, rate structures have charges associated with peak power, referred to as demand

charge. For our models, we use the E-19 rate structure for the region to calculate the

change in demand charge as a proxy of the cost in terms of dollars [66, 89]. More

specifically, we use the max part-peak demand summer rates. The peaks we observe

fall in the shoulder period of 8:30am-12:00pm, for which the demand charge rate is

4.07$/kW. This enables us to gauge the magnitude of power shaving in monetary

terms. When implemented, the possible benefits of the schemes we proposed are dis-

played in Figure 5-5(d): monthly potential savings in the demand charge can reach

up to 1500$, which considering the 439 sessions in the subject weekday, correspond

to roughly 3$ per month per session. Without managing charging, these savings re-

main unrealized, and are paid by PEV drivers or the companies that subsidize the

charging activity. As a sum the savings are substantial, yet for the number sessions

on a typical weekday considered here, the amount per individual is relatively small,

making uniform distribution of savings a relatively unexciting reward for cooperation.

However, recent studies have suggested that gamified systems are successful in pro-

moting behavior that help achieve social good [112]. More specifically, these systems

encourage engagement by building raffles in which each participant has a chance to

win a bigger reward with a probability proportional to their cooperation level. This

type of mechanisms will make incentivization highly viable in the context of PEVs

and managing their electricity demand.

5.4 Discussion

Rising C02 emission levels are increasingly threatening the moderate nature of earth's

climate. In efforts to solely sustain the quality of urban life in today's cities, decreasing

fossil fuel dependency is a must. In this context, technological innovations led to

PEVs becoming economically and socially more viable everyday and being adopted

by citizens at increasing rates. This paradigm shift in the interplay of electricity

demand, mobility and environmental concerns creates an urgency to rethink PEV

mobility. In order to devise schemes that optimize or control electricity demand, we
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need to focus on the methods that estimate PEV demand.

This work presents, to the best of our knowledge, the first exploratory analysis

that couples two unique large datasets on urban mobility and electric vehicle energy

consumption. We first present methods to estimate PEV mobility patterns using mo-

bile phone records and appropriate sampling methods. In tandem, we dissect PEV

charging sessions in the same area to look at the spatiotemporal properties of elec-

tricity demand. We observe that drivers visit few charging stations and charge their

vehicles in diurnal periodic fashion, thus there is spatiotemporal regularity in PEV

charging. Moreover, PEV charging typically begins immediately, and as expected,

more often on peak hours. However, charging sessions demonstrate high temporal

flexibility, in other words, the vehicles are parked for longer amounts of time than

what is required to fully charge them. Therefore there is significant room for im-

provement in the scheduling of PEV charging. Upon combining our insights from the

two datasets, we also observe that mobility is a precursor to electricity demand, and

the two are closely interrelated.

Building on this, we provide a method to shave the daily peak power to alleviate

the load on the power grid. We find that even with simple charging delay and arrival

hour adjustments that do not impose any constraints on departure times and do not

violate the charging continuity, peak power values can be shed by up to 40%. This

class of solutions typically perform better with higher levels of participation from

drivers. To incentivize cooperation, every driver needs to be presented with a balanced

composition of benefits and costs, a key determinant of the success of these types of

schemes. In an effort to further strengthen our analysis regarding the applicability of

the proposed and similar solutions, we estimate the possible monetary benefits and

the travel time losses resulting from the proposed schemes. Although the resulting

savings are not large at the daily individual level, they are certainly substantial enough

for implementation of gamification and similar reward based incentivization schemes

to induce cooperation and raise awareness. On the other hand, the travel time losses

are almost imperceptible to the majority of the drivers, and a substantial number of

drivers in fact benefit from the adjustment of their arrival times as it aids them to
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escape morning traffic. These findings demonstrate that in the current setting and

medium-term future, energy management in the context of electric vehicles is highly

viable.

There are various avenues in which this work can be extended. A meticulous

methodology to more accurately estimate electric vehicle mobility, especially with

higher temporal resolution, is of prime importance. In energy management, the dy-

namics of power demand plays a very important role, therefore obtaining dynamic

ODs for electric vehicles is a necessary next step. For this purpose, collecting and

utilizing the data generated by PEVs are crucial. As drivetrain models are continu-

ally being improved, a stronger comprehension of the tie between mobility and energy

demand at varying levels of spatial resolution is necessary to create bottom-up solu-

tions. Finally, the efficient implementation of these energy management solutions in

real time remains an open front.



Chapter 6

Conclusion

In this final chapter, we summarize the work and elaborate on possible avenues of

future work in this line of research.

6.1 Summary

In overall, this dissertation presented methods to process large spatiotemporal datasets

and extract aggregate mobility information, which in turn is used to generate knowl-

edge regarding congestion from both topological and supply and demand point of

view and power consumption along with analyses of potential benefits and their dis-

tribution under varying levels agent cooperation.

More specifically, in Chapter 1 we presented an overview of the literature regard-

ing this dissertation. Human mobility research is new and novel, and is currently

used to update older transportation models as well as forming the basis for building

newer ones. Transportation modeling has achieved strong simulators built in leading

research labs, and is updating itself to introduce newer data sources into traditional

methodologies. Traffic flow is a relatively older line of research, revamped with im-

proved GPS data and increasingly efficient map-matching algorithms. At the same

time, the abundance of data has also pushed forward a newer science of cities to

better understand their evolution and growth. The four chapters that followed lies in

the intersection of these four distinct lines of research.
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Chapter 2 delved into understanding the influence of network topology and space

in the emergence of congestion. In uniting the knowledge generated in both physics

and transportation literatures, we implemented a point queue model and analyze

how cities get congested from a phase transition perspective. We showed that net-

work topology and spatial constraints are determining factors in the nature of this

transition. That is, the transition became a first order when there is lack of space,

as spillbacks dominated the spread of congestion. The next step was to tackle the

missing component that is the influence of realistic travel demand. We aimed to

incorporate various routing schemes, and see how these results could be applied to

other cities.

Chapter 3 was a step in this direction. We used large mobile phone datasets

and provided a framework to extract origin-destination data from it. We demon-

strated that by using the right methodology and algorithms on these mobile phone

traces, it is possible to generate results similar to those obtained from models used

by practitioners. Moreover, the procedures proved to be specifically more valuable

for developing countries where mobile phone data is available, but travel surveys are

low in quality, old, or sometimes even non-existent. To that end, our results were in

good agreement with models used in industry, and were also well received in practice

ready form. To build on this work, we aimed to use the generated realistic and vali-

dated origin-destination information to better understand the complexities of cities,

specifically in the context of understanding travel times and congestion. We aspired

to carry the same portability of the presented system to understand congested urban

travel, with the longer term goal of comparing different cities and analyzing routing

solutions.

In Chapter 4, we used the demand information in a generalized routing model

that takes into account socially aware routing behavior. We showed that a city's

congestion fingerprint is related to measurable characteristics, namely a ratio of total

travel demand to total supply. We demonstrated that under a centralized and so-

cially optimal routing scheme, there were significant potential travel time savings for

all cities. Moreover, low levels of social awareness in routing were enough to achieve
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a substantial portion of these savings, as well as moderating benefits and losses or

drivers, making proposed adjustments fairer and easier to implement. As for future

work, our goal was to understand better the interplay of travel, benefits and optimiza-

tion, but this time from a rather new perspective: electrification of transportation,

or namely, electric vehicles.

In Chapter 5, we began by estimating the travel demand information for electric

vehicle drivers in the Bay Area. By combining this information with that obtained

from charging session data from 2013 in the same region, we showed that commuting

distances to a location are good indicators of energy demand at that location, hence

can be helpful in providing solutions to ease the load on the power grid. We showed

the potential benefits that can be achieved by a generalized schema that can optionally

implement smart charging and arrival hour adjustment, given proper incentivization.

6.2 Future Work

6.2.1 Analytics Engines for Mobility

An overarching theme in this dissertation has been data. With technological inno-

vation and the significant decrease in hardware and computational costs, we find

ourselves immersed deeper in the age of internet of things. Smart phones, smart

cars, smart thermostats and similar devices will soon be able to not only generate

the wealth of data they currently do in higher precision and volume, but will also be

able to communicate with each other.

Ideally, we expect to use data to understand phenomena in ways we previously

did not. However data in its raw form is far from being useful. There is substantial

know-how associated with building efficient pipelines for data processing. Extraction

of relevant information from the data extracted from such pipelines requires a different

set of skills. After pipelines are built and data is processed, it is still has not realized

its potential to the fullest: A platform has to exist for people who have the expertise

of knowing which questions to ask the data.
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Chapter 3 demonstrates one such platform that takes in raw mobile phone data,

parses, cleans, processes it and presents it on a browser. It is portable and scal-

able, therefore it is possible to include various data sources and generate the same

information for a new city very quickly. The resulting browser interaction is able to

answer questions like "Which roads do people departing from Boston Common use?",

or conversely, "Where are the origins of the trips that use Memorial Drive?", among

others. Future work in this avenue is building better and more efficient engines that

can convert raw data to relevant information. The challenge here lies in bringing

together the various skills necessary to create this framework.

6.2.2 Data-Driven Policies

Transportation policies typically have very complex consequences often difficult to

foresee. There are many parties involved, including state, city and local departments

of transportation, metropolitan planning organizations, transit agencies, investors,

construction companies, worker syndicates, and citizens. Let's consider the case when

the local department of transportation shuts down an avenue for, say, renovation.

First, the project has to be approved. Environmental factors need to be considered,

reports on impact assessment need to be prepared, read, negotiated and agreed on.

Budgeting has to be prepared to forecast costs as accurately as possible while spending

as little taxpayer money as possible. In doing so, the rights of the workers and

demands from syndicates have to be taken into account. Solutions regarding traffic

redirection have to be proposed so that citizens are minimally affected. Stores on

that road are affected and their owners might need to be compensated. All these

dimensions that need attention make policy making a difficult task.

When it comes to making a policy decision in a complex setting, and in the case

of transportation this can be a multi billion dollar infrastructure project, all plans,

estimates, projections, or shortly the information that feeds the decision, needs to

make use of all data available. This is where the ideas proposed in the previous

section can come into play: with analytics engines that can provide answers with a

few clicks, new bus lines can be introduced after a more thorough analysis of tap-in
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tap-out data. Road closures and traffic management under extreme events can be

carried out by revisiting the data from similar cases in the past. Even for relatively

minor decisions such as when a planning agency is considering providing covered bus

stops so riders can avoid getting soaked, the information of how many person-minutes

have been spent under the rain at each bus stop will be obtained within seconds.

Scientists and engineers are getting increasingly more adept at building the tools

to answer such questions. In the context of transportation, various companies and

research groups are working on building analytics engines for mobility and transporta-

tion that can help policy makers make more informed and better targeted decisions.

The next step is the permeation of these tools into the political process.

6.2.3 Mobility and Sociodemographics

Briefly before the 2013 Confederations Cup and the 2014 World Cup, bus, train and

metro prices were increased in various cities in Brazil, mostly around 10%. This

was a tipping point for most Brazilians already upset about the spending for mega

projects for sport organizations soon to be carried in the country. Over the course of

two months, more than three hundred thousand residents of Rio de Janeiro and two

million Brazilians in various cities flocked to the streets to protest. The protesters

not only requested the reversal of the price hikes for public transportation, but also

reforms regarding education funding, fiscal responsibility, and corruption. The results

were astounding, as in a few months the government complied with most of these

demands.

It is no coincidence that the last straw was increasing the bus fares: millions of

people depend on transportation systems on a daily basis. This points to a need

to understand better how sociodemographic characteristics such as income or edu-

cation are intertwined with ease of mobility. It can be argued that lower income

segments of the population are pushed further outside city centers, yet are cornered

into commuting into the city since that is where most job opportunities are. Com-

mutes plagued with congestion into an increasingly far downtown not only decrease

the overall quality of life for citizens, but also has long lasting detrimental effects on
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social mobility.

In this context, the tools that we presented in Chapter 3 form a basis for further-

ing the understanding of the relationship between income, education and mobility.

When combined with points highlighted in the previous two sections, namely building

analytics engines for mobility and using them to generate data-driven policies, a big-

ger picture emerges: we can build tools that use data to inform decision makers and

lead them to build appropriate policies that will correct for unjust sociodemographic

biases such as income inequality 6 r residential segregation.

6.2.4 Incentivization for Overall Benefit

Sections 4 and 5 of this work made analogous arguments: if controlled, there is a

substantial amount of savings to be made from our infrastructure systems, namely

the road networks and the power grid. More specifically, Section 4 argued that an

overall decrease in congestion and thus travel times can be achieved, if few individuals

sacrifice their own travel time. Similarly, Section 5 demonstrated that in case some

users are willing to leave their home early to arrive to work early, the peak power

can be more efficiently shaved to ease the load on the power grid. However, to reach

optimality or even only to generate more efficiency, we need people to adjust their

behavior, and this is not an easy problem.

This problem is by no means a new one, economists studied the concepts of in-

dividual utility, social welfare, behavioral economics for decades, often through game

theory and mechanisms. Various implementations of gamification and lotteries were

proposed in efforts to generate tools that modify behavior. The theories developed

look more plausible every passing day. With smartphones and easier communication,

these programs will require less effort from the user. In addition, automation will in

fact will create another paradigm shift: people will have more time and will not be

required to put in extra effort to accept sacrifices. For example, a traveler will board

his/her self-driving electric car to go from A to B. The routing engine will calculate

a route as well as the burden imposed on the society for that route and estimate the

energy demand at the destination charging station and how it will influence the power
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load at B at the time of arrival. From the traveler's perspective, the perception is a

screen in a machine that takes you places. The traveler will be asked the question if

they would be willing to accept a rebate for a cup of coffee in exchange for 5 minutes

of extra travel time a slightly longer route takes. The lack of effort on the traveler's

part makes incentivization not only significantly easier to implement, but also makes

it highly profitable as many avenues for advertising can be made use of.

This example is not that far from reality: Google's self-driving electric cars are

expected to be on the roads by 2020 and many other similar companies like Apple,

Tesla or Uber are reportedly not that far behind. Real time routing engines are

readily available and have improved to a point where they can dynamically provide

you a faster alternative route along a trip. Considering this setting, such complex

incentivization programs will form the basis of increasing the operational efficiency

of our already burdened infrastructures and overall quality of life for citizens.
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