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Abstract

Epidemic trajectories and associated social responses vary widely between populations, with severe
reactions sometimes observed. When confronted with fatal or novel pathogens, people exhibit a
variety of behaviors from anxiety to hoarding of medical supplies, overwhelming medical infrastruc-
ture and rioting. We developed a coupled network approach to understanding and predicting social
response to disease spread. We couple the disease spread and panic spread processes and model
them through local interactions between agents. The behavioral contagion process depends on the
prevalence of the disease, its perceived risk and a global media signal. We verify the model by
analyzing the spread of disease and social response during the 2009 HIN1 outbreak in Mexico City,
the 2003 SARS and 2009 HINI outbreaks in Hong Kong and the 2012-2013 Boston influenza season,
accurately predicting population-level behavior. The effect of interventions on the disease spread
and social response is explored, and we implement an optimization study to determine the least cost
intervention, taking into account the costs of the disease itself, the intervention and the social re-
sponse. We show that the optimal strategy is dependent upon the relative costs assigned to infection
with the disease, intervention and social response, as well as the perceived risk of infection. This
kind of empirically validated model is critical to exploring strategies for public health intervention,
increasing our ability to anticipate the response to infectious disease outbreaks.
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Chapter 1

Introduction

In this thesis, we present a network-based model of social response to an infectious disease outbreak.

To help in selecting parameters for the model, we analyze when and why social response occurs using

data from a global biosurveillance database. We validate the model using real data from disease

outbreaks in Hong Kong, Mexico City and Boston. The model replicates the population-level social

response for these outbreaks. The effect of interventions, such as contact reduction and vaccination,

on disease spread and social response is explored.

1.1 Social response

Advances in modeling and data availability have greatly improved our ability to predict and control

epidemics [1]. The next step is to unravel how diseases shape behavioral norms [2, 1]. In most

cases, the social norm during a disease outbreak is to be calm, cooperative and adaptable 13].

There are cases, however, when the outbreak of disease can trigger social disturbances. Mild social

disturbances include increased anxiety or mild behavioral change such as improvements in hygiene

practices. More extreme social disturbances can also occur. These include panic, rioting, hoarding of

medical supplies, fight from the area or violence against members of groups believed to have or carry

the disease [4, 5, 6, 7, 8, 9]. We call social disturbances observed in response to a disease outbreaks

social response. More precisely, we define social responses as behavioral or emotional manifestations

of concern about disease. To further illustrate what is meant by social response, we will discuss

several examples from recent history. Some of these examples are quite dramatic, such as protests

and flight; other social response are more mundane, such as economic effects and increased concern

about the disease.
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Cholera, Haiti: 2010 to present

In 2010, cholera reemerged in Haiti after having been absent from the island for more than a century.

Cholera is a diarrheal disease and can cause death if the patient is not properly rehydrated. Cases of

cholera were first reported in Haiti on October 19, 2010 in the Artibonite province and then spread

throughout the country [10]. As of 2011, the Haitian Ministry of Public Health and Population

reported over 93,000 cases and over 2,100 fatalities. At the beginning of the outbreak, protests and

violence broke out throughout the country over suspicions (now supported by evidence [10]) that a

UN military base was the source of the epidemic. These protests slowed the delivery of treatment

and likely cost lives [5].

Ebola, Uganda: 2000 to 2001

The largest Ebola outbreak on record took place in Uganda between September 2000 and February

2001. Ebola is a rare, but highly fatal disease. Early symptoms include fever, headache, diarrhea

and nausea. The disease rapidly progresses to include rash, organ failure and sometimes internal or

external bleeding. In the Uganda outbreak, 425 people became infected and 53% of those died [6].

The social response was severe [6]. Medical workers fled their posts. Some individuals were reported

to have drank and bathed in bleach in an attempt to rid themselves of the virus, and Ebola survivors

and their families were stigmatized by the community. In one town, hundreds of protesters, angry

over the decision to place a Ebola burial site near the town, converged upon a government office.

Government officials and members of the burial team received death threats over their perceived

involvement in the spread of disease.

SARS, Hong Kong, special administrative region of China: 2003

Hong Kong was one of the areas most severely affected by the 2002-2003 SARS outbreak. In

Hong Kong, 1755 cases were reported during the summer of 2003, with 299 deaths [11]. During

the outbreak, residents of Hong Kong reported increased anxiety [12]. There were also behavioral

effects. Residents stocked up on food and supplies, while opportunistic retailers took advantage of

the situation, selling knock-off Louis Vuitton face masks and snake-oil medicines [7].

SARS had a devastating impact on the Hong Kong economy [13]. Tourists and foreign busi-

nesspeople canceled their travel plans, resulting in a 63 percent drop in the total number of visitors

during March and April of 2003, compared with the same months in 2002. Retail sales plummeted,

as residents stopped non-essential travel outside their homes. Many workers in the most affected

sectors of the economy were laid off or had their hours cut as a result of the reduction in demand.

16



Dengue fever, Singapore: 2013

The 2013 dengue fever season in Singapore was the worst in recorded history. Dengue fever is a

mosquito-borne virus that causes severe joint and muscle pain. Prior to 2013, the worst outbreak

recorded in Singapore was in 2005, when approximately 14,000 people became infected and 25

people died. In 2013, there were 22,318 reported cases and 7 deaths [14]. There were several signs

of increased concern about dengue fever in the population. There was an increase in reporting of

potential mosquito breeding sites. Doctors reported paranoid patients with mosquito bites but no

symptoms arrived at their offices worried that they would become ill [15].

1.2 Motivation for research

As seen with SARS in Hong Kong, social response can have extreme economic costs. In addition,

there are intangible costs associated with social response. Social response can impede the ability of

responders to control outbreaks of infectious disease and can result in strain on infrastructure and

the economy [9]. Moreover, social responses often herald a significant change in the epidemiological

pattern or etiology of an infectious disease event. There is therefore interest in understanding why

social response occurs and what can be done to prevent it. In this thesis, we develop a model for the

joint transmission of disease and social response. Using this model, we explore the effects of control

measures on social response and find least cost strategies for disease control, taking into account the

costs of social response.

1.3 Modeling approaches and objectives

The primary model which will be discussed in this thesis is a network-based model describing the

temporal spread of disease and social response. The following traits were deemed to be desirable in

the model:

1. Be adaptable to different types of disease and different societies.

2. Allow for simulation of high incidence diseases without social response and low incidence

diseases with social response.

3. Incorporate the effects of the media on social response.

4. Incorporate insights from social psychology risk and perception theory.

5. Incorporate modern mathematical and computational methods.

We validated the model by simulating disease outbreaks with and without social response. In Hong

Kong, we compared the SARS outbreak of 2003 with the HlN1 outbreak of 2009. In Mexico City,

17



we compared the spring and fall outbreaks of Hl1NI in 2009. Finally, in Boston, we simulated

the social response resulting from the declaration of a public health emergency during the 2012-

2013 influenza season. These simulations showed that the model can accurately replicate the social

response observed in real infectious disease outbreaks. We also used this model to study how

control measures affect social response. Using an optimization approach, we showed how the least

cost disease control strategy is affected by the perceived risk of infection and the relative costs of

infection, intervention and social response.

1.4 Thesis organization

In Chapter 2, we consider the causes of social response, looking at both risk perception theories

and data. In Chapter 3, we conduct a literature review of models of disease spread and associated

social processes and explain how the agent-based model we introduce expands upon these models.

In Chapter 4, we introduce our agent-based model of disease spread and social response spread. We

describe how disease and social response are spread over time and explain how measures to control

the spread of disease are modeled. In Chapter 5, we formulate an optimization problem to find

the least cost disease control strategy, accounting for the costs of the intervention, the spread of

infection, and the social response. In Chapter 6, we explain how the simulations were implemented

and introduce the studies conducted with the model. In Chapter 7, we describe our results. We

explain the conditions under which the model produces a social response. We explore the effects

of implementing control measures on the disease spread and determine least cost disease control

strategies. Finally, we demonstrate the model's ability to replicate social response observed in real

outbreaks by simulating the disease spread and social response for SARS and H1N1 in Hong Kong,

for the two waves of HIN1 in Mexico City, and for the 2012-2013 influenza season in Boston. In

Chapter 8, we summarize our work and discuss directions for future work.
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Chapter 2

Causes of Social Response

In order to develop a realistic model of how social response emerges and spreads through populations

during a disease outbreak, we needed to understand when social response is most likely to occur. In

this chapter, we will discuss theories of risk perception and explain why the social amplification of risk

framework [16] is appropriate for modeling reactions to epidemic disease. The social amplification

of risk framework predicts that diseases that are novel or unfamiliar to local experts or which have

high clinical severity will be more likely than result in social response. Using a global database of

disease outbreaks, we will explore the validity of these predictions by comparing the rate of social

response for outbreaks with different characteristics.

2.1 Theories of risk perception and health behaviors

There are several social psychology theories that explain how individuals interpret and respond to

health risks. The Health Belief Model (HBM) [17] and Protection Motivation Model (PMM) [18]

are two popular expectancy-value models. They treat the decision to take protective action against

disease as a cost-benefit analysis. The perception of risk is assumed to be proportional to the severity

of disease and the likelihood of contracting it. People then take protective action in proportion to

their perceived risk. While expectancy-value models have proven useful in studying health risks such

as cancer and heart disease and in encouraging use of protective equipment to prevent injury [18],

they are not necessarily appropriate for use in modeling epidemic disease [19]. Value-expectancy

models assume that individuals are making rational health decisions. These models neglect the

emotional component of health decision making and the social context in which individuals make

health-related decisions [19]. Moreover, individuals who are aware of and concerned about the disease

sometimes take actions that are not protective. For example, rioting can speed the spread of disease

rather than slow it.

In light of the shortcomings of other risk perception theories for modeling epidemic diseases, we

19



decided to use the social amplification of risk framework, originally proposed by Kasperson et al

[16]. The framework assumes that perceptions about the risk of disease are formed within a social

context, and factors such as the predictability of the disease risk and the society's familiarity with

the disease will affect how the disease is perceived. The perceived risk of infection is therefore not

necessarily the same as or even proportional to the true likelihood of infection. Biosurveilliance

experts associate social responses with a combination of several conditions, including novelty to the

society in question, clinical severity, availability of countermeasures and extent of spread [8, 9].The

social amplification of risk framework affirms the role of these conditions and suggests a possible

mechanism [16]. The framework asserts that risk-related information is often communicated in such

a way that the perceived risk of an event is amplified. Amplification of risk is particularly likely when

the volume of communication is high, facts are disputed, there is dramatization and the risk is novel

or not well understood. In the context of social response to disease outbreaks, Kasperson's framework

suggests that commonplace diseases are unlikely to produce risk amplification, whereas novel, severe

diseases, such as SARS or MERS, may provoke amplification, since the public feels that the risk

is unpredictable and uncontrollable. We incorporate the social amplification of risk framework into

our network-based model by creating social response amplification when the characteristics of the

disease, including its novelty and clinical severity, led to it being perceived as high risk by the

population.

2.2 Analysis of historical biosurvelliance data

2.2.1 Description of Ascel Bio database

In order to gain insight into the relationship between social response and disease, we analyzed his-

torical biosurveillance data. These data were collected by Ascel Bio [20], a biosurveillance company

that gathers data on infectious disease outbreaks. The data consist of near-real-time, multi-source

reports on 11,926 different disease outbreaks. The reports were assembled by biosurveillance experts

and cover a time frame of one year from May 2008 to May 2009. They include over 200 countries

and 300 diseases. The reports indicate whether or not a social response was observed and describe

other features of the outbreak, such as where the outbreak took place and what steps were taken to

contain it. Many of the reports track the progress of a single outbreak over time. We will look at

whether social response was reported at any time in the outbreak.

In these data, it is rare to see social response. Only 5% of disease outbreaks had reported

social response. Some regions had higher rates of social response than others. Figure 2-1 shows the

geographical distribution of reports with and without social response. Africa and the Caribbean

had high rates of social response (9.8% and 12.3% respectively), whereas Australasia and North

America had relatively low rates (2.9% and 2.6%). It is important to note that a high rate of social
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Figure 2-1: Geographical distribution of disease outbreak reports. The 11,926 disease outbreaks
recorded by Ascel Bio between May 2008 and 2009 are shown. The majority of events were not
associated with social response (blue); there are, however, regional clusters of events with social
response (red). Overall, about 5% of outbreaks had reported social response.

response in one region compared to another does not necessarily imply that the populations of the

regions would respond differently to identical disease outbreaks. The regions are affected by different

types of disease and the size of outbreaks differs between regions. Moreover, our sample is not a

random sample of all disease outbreaks. There could be a selection bias in which outbreaks Ascel

Bio experts chose to report on. Nevertheless, the Ascel Bio data cover a large number of outbreaks,

and, accepting that the data are not comprehensive, we can use them to gain insight why social

response might occur.

Figure 2-2 shows the number of outbreak reports broken down by region for ten different diseases.

We can see that cholera was most reported on in Africa and the Middle East, influenza received at-

tention in North America, Europe and East Asia, West Nile virus was reported on almost exclusively

in North America and plague (yersinia pestis) was not commonly reported in any region. Figure 2-3

shows the proportion of the outbreaks with reported social response. Since the overall rate of social

response is 5%, regions with social response rates over 5% can be considered to have above average

rates of social response for that disease. Very high rates of social response (above 20%) should be

interpreted with caution, since they tend to result from having very few reports for the disease in

the region.

When interpreting Figures 2-2 and 2-3, it is important to keep in mind that diseases have different

meanings and different importance to public health in different regions of the world. We must

interpret the rate of social response in context. For example, almost all regions reported outbreaks

of gastroenteritis. However, only Africa and the Caribbean had high rates of social response to

gastroenteritis outbreaks. These findings do not imply that residents of Africa or the Caribbean are

more prone to social response than other people. Instead, the effects of the disease are fundamentally
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Figure 2-2: Number of outbreak reports by region and disease. The number of Ascel Bio reports
in each region is shown for ten different diseases (scale from 0 to 400 reports). The diseases most
commonly reported on are different for each region. For example, influenza is commonly reported
on in North America, Europe and East Asia, while reports of cholera are more common in Africa
and the Middle East. Importantly, greater reporting of a disease in one region does not necessarily
imply a greater burden of disease in that area. For example, Europe has a relatively small number
of measles cases, but a relatively high number of reports. Since measles has been largely eradicated
in Europe, even small pockets of disease receive attention.

different. According to the World Health Organization (WHO), approximately 527,000 children

under the age of five die from diarrhea associated with rotavirus (one of several viruses that cause

gastroenteritis) every year. Over 85% of these children live in low-income countries in Africa and

Asia. Figure 2-4 shows the disability-adjusted years of life lost to diarrheal diseases per 100,000

inhabitants. Africa has a more disability-adjusted years of life lost to diarrheal diseases than any

other continent. Since, in Africa, gastroenteritis is the cause of death for many young children, it is

reasonable that the rate of social response would be high.

Measles is another example of why the proportion of social response should be interpreted in

context. The North America region has a relatively high rate of social response to measles, 7.7%.

There are hardly any cases of measles reported in the United States each year. In fact, in 2012, only

55 cases were reported [21]. Measles outbreaks in the United States frequently take place among

families and communities that advocate not vaccinating children. Thus, measles outbreaks bring

to the forefront an ongoing conflict between parents and health professionals over the safety and

efficacy of vaccines.
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Figure 2-3: Proportion of outbreak reports with social response by region and disease. The propor-
tion of outbreaks with social response is shown (scale from 0.0 to 0.5). If the database contained no
reports of the disease in the region, the box is grayed out. The proportion of outbreaks with social
response varies by region and disease, because diseases have different meanings in different places.
For example, dengue fever outbreaks are more concerning in Latin America and the Middle East,
where dengue is an emerging disease than in Southeast Asia, where dengue has been endemic for
hundreds of years.

2.2.2 The roles of disease novelty and clinical severity in social response

The social amplification of risk framework predicts that social response is likely when a disease is

novel to a region. To determine whether that prediction is consistent with the available data, we

looked at the relationship between local experts' familiarity with the disease in question and the

social response. Lack of familiarity is usually a mark of novelty. Using text parsing, Ascel Bio coded

the reports that the biosurveillance experts generated based on whether the disease was unknown

or mysterious to local experts and whether the outbreak was unusual or atypical for the region. As

shown in figure 2-5, social response occurred in 16% of outbreaks that involved diseases that were

coded as either unknown or mysterious or as unusual or atypical for the region. Social response

occurred only 4% of the time for outbreaks of diseases without those properties, a statistically

significant difference (Pearson's Chi-square Test: X2 = 148.1, df= 1, p < 0.001). In the database, the

incidence of social response in countries with little prior experience with the disease was consistently

higher than in endemic countries, even if the rate of spread was lower. For example, social response

occurred in over 10% of dengue fever outbreaks in Latin America where dengue fever is relatively

novel, but only in 1% of outbreaks in Southeast Asia where dengue fever is endemic. The observed

23



no data
less than 500

500-1000

1000-1500

1500-2000

2000-2500
2500-3000

3000-3500
3500-4000
4000-4500
4500-5000
5000-6000

mare than 6000

Figure 2-4: Disability-adjusted life years (DALY) lost to diarrheal diseases by country per 100,000
inhabitants. Due to a high number of young children dying from diarrhea, Africa has large number of
disability-adjusted life years lost to diarrheal disease, explaining in part the high rate social response
to gastroenteritis in Africa. Figure reprinted from Wikimedia Commons. The data were obtained
from the WHO.

difference was statistically significant (Pearson's Chi-square Test: X2 = 11.0, df= 1, p < 0.001).

Similar effects were seen with polio. In 1988, the WHO launched the Global Polio Eradication

Initiative, which has had spectacular success, reducing the number of cases by over 99%. Today

only three countries remain endemic for polio: Afghanistan, Pakistan and Nigeria [22]. Notably, of

the 127 polio outbreaks included in the Ascel Bio database, all four outbreaks with reported social

response were in India. India shares a border with Pakistan and is at nearly constant risk of having

a resurgence of locally-transmitted polio. It is likely that India's unique position on the battlefront

against polio helps to explain why its rate of social response is higher than those of other countries.

Kasperson's framework suggests that clinical severity will play a role in social response to disease

outbreaks. The Ascel Bio data support this claim. Clinical severity was a significant predictor of

social response. Diseases were grouped based on human disease biosafety levels (BSL) [23]. BSL

describes the level of danger associated with working with a particular microbe, and ranges from 1

(unlikely to infect human adults) to 4 (severe or fatal disease without available treatment). Table

2.1 shows examples of diseases that fall into each BSL category.

BSL-2 BSL-3 BSL-4

cholera Creutzfeldt-Jakob disease Ebola hemorrhagic fever
influenza SARS coronavirus Lassa fever
malaria West Nile virus Marburg virus
measles yellow fever virus Argentine hemorrhagic fever
dengue fever Chikungunya Crimean-Congo hemorrhagic fever

Table 2.1: Examples of diseases in each biosafety level (BSL). BSL describes the level of hazard
involved in working with a particular disease. BSL ranges from 1 (unlikely to infect human adults)
to 4 (severe or fatal disease without available treatment).
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Because BSL-1 diseases do not commonly infect humans and almost no outbreaks of BSL-1

diseases were reported in the Ascel Bio database, we have excluded them from the analysis. Diseases

with BSL-4 were significantly more likely to have an associated social response than diseases with

lower BSL (Pearson's Chi-square Test: X2 = 26.7, df= 3, p < 0.001; figure 2-5). BSL-4 diseases

were associated with social response 17% of the time, whereas social response occurred in only 5%

of outbreaks of diseases with lower BSL. In other words, the data indicate that the most severe

diseases are more likely to be associated with social response than less severe diseases.

0.25-

0.20-

0.15-

0-

a 0.10-
00

0.05-

0.00
not unknown unknown BSL-2 BSL-3 BSL-4

or unusual or unusual

Figure 2-5: Social response most frequently occurs when the disease is novel to the region or clinically
severe. If a disease is unusual or atypical in a region or seen as unknown or mysterious to local
experts, there is an increased likelihood of social response (left). Outbreaks of diseases with the
highest biosafety level (BSL) are more likely to have social responses than diseases with lower BSL
(right). BSL-4 diseases are severe and fatal, with no available treatments.

2.3 Dengue fever: Factors contributing to social response

In the previous section, we saw that data support the roles of novelty and clinical severity in social

response to disease. In this section, we will discuss a more comprehensive investigation of which

factors are associated with social response to dengue fever outbreaks. We were interested in the

roles of the incidence of disease and characteristics of the country, such as the economic and political

environment, in producing social response.

In this analysis, we focused exclusively on dengue fever outbreaks. By considering only one

disease, we did not need to concern ourselves with possible interactions between other predictors

and disease type. Therefore, we could more completely isolate the effects of those predictors. For

example, we were interested in how the number of cases is associated with social response. While

ten cases of SARS might result in more social response than one-hundred cases of dengue fever, it

would be unreasonable to conclude that social response is more likely if there are fewer cases. By
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comparing the response to 10 cases of dengue fever with the response 100 cases of dengue fever, we

were more justified in making inferences about the effect of the number of cases on social response.

While ideally it would be possible to control for the effects of different types of diseases by including

disease type as an attribute, this suggestion proved infeasible for our data since over 300 diseases

were represented.

We selected dengue fever outbreaks to investigate, because dengue is a relatively common disease

in the Ascel Bio database and a relatively high frequency of dengue outbreaks resulted in social

response. Dengue fever is a mosquito-borne disease, which infects between 50 and 100 million

people annually [24]. Symptoms including high-fever, headache, and joint, muscle or bone pain.

Occasionally, dengue fever progresses into dengue hemorrhagic fever, which can be dangerous [24].

Dengue is an emerging disease. In the 1950s, cases were primarily limited to Southeast Asia. Now, in

addition to Southeast Asia, dengue fever cases are reported in Africa, Latin America, the Caribbean

and parts of Australia [24]. Using data from the CDC, WHO, GIDEON, journal articles and news

reports, Brady et al. mapped the global footprint of dengue fever as of 2012 [25]. Their map is

reprinted in Figure 2-6.

Figure 2-6: The global footprint of dengue fever. While dengue cases were once restricted to South-
east Asia, dengue is now reported in tropical and subtropical locations across the globe. Countries
are color-coded based on the evidence of dengue presence (red) or absence (green). Blue dots indicate
reported dengue outbreaks. We thank Brady et al. [25] for the use of this figure.

2.3.1 Description of dengue fever outbreak data

The Ascel Bio data contain information suitable to identifying different types of social responses.

In this thesis, we will focus on public anxiety. Public anxiety is an indicator for fear, panic or

behavioral manifestations of fear or panic being reported in the public. Public anxiety was coded

as a binary response. If any type of anxiety was noted, public anxiety was coded as 1 and otherwise

public anxiety was coded as 0. In total, 100 predictors were used to differentiate between outbreaks
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Event ID Country Date X1 X2 ... X99 X100 Public Anxiety
1 Country 1 6/1/2009 0 0 8000 17 0
1 Country 1 6/2/2009 0 0 8000 17 1
1 Country 1 6/3/2009 1 0 8000 17 0
2 Country 2 8/9/2008 0 1 680 3 0
3 Country 3 1/17/2008 1 1 1300 9 1
3 Country 3 2/3/2008 1 0 1300 9 1

(a) Data prior to collapsing

Event ID Country Date X1 X2 ... X99 X100 Public Anxiety
1 Country 1 6/1/2009 1 0 8000 17 1
2 Country 2 8/9/2008 0 1 680 3 0
3 Country 3 1/17/2008 1 1 1300 9 1

(b) Data following collapsing

Table 2.2: Data collapsing method used for dengue fever prediction. The tables above show how
reports related to a single outbreak were collapsed into a single observation. The sample reports
were created for the purposes of illustration and are not actually part of the data.

with and without social response. Of these, 40 were binary predictors obtained from Ascel Bio.

These predictors were related to the status of the outbreak itself and included information about

the number of cases and whether complications or deaths were observed. Since the Ascel Bio data

are proprietary, we will refrain from discussing particular predictors. The remaining predictors were

country-level economic, geographic and health-related predictors, obtained from the UN, WHO, CIA

World Factbook and other public sources. Table A.1 lists the predictors used in the analysis that

were obtained from public sources. In general, predictors were selected for inclusion because they

were descriptive of the political system, healthcare infrastructure, media infrastructure or culture of

the country, or because there could be an association between the predictor and the likelihood of a

dengue fever outbreak (annual precipitation is an example).

For many dengue fever outbreaks, the Ascel Bio reports tracked the progress of the disease

over time. Since the social response observed later in an outbreak depends upon the disease and

social conditions earlier in the outbreak, reports related to the same outbreak were not independent.

Therefore, we collapsed together all reports related to a single outbreak into one observation. The

40 binary Ascel Bio predictors changed within an outbreak, as the disease conditions changed. We

chose to set these predictors to 1 for the outbreak if they were 1 for any of the reports related to the

outbreak. Similarly, public anxiety was coded as 1 for the outbreak if public anxiety was reported at

any time during the outbreak. The 60 predictors related to the economic, political and healthcare

statuses of the countries did not change during the outbreaks and so were unaffected by collapsing.

Table 2.2 illustrates the collapsing process for a set of sample reports created for the purposed of

this illustration. Following collapsing, there were 842 outbreaks without reported social response

and 64 outbreaks with reported social response.
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2.3.2 Modeling techniques

Boosted classification trees

We selected to use boosted classification trees to predict social response. Classification trees follow a

greedy algorithm to partition the space into rectangular regions. The goal is to find a partition such

that achieves a high level of purity in the regions [26]. Boosting is a ensemble method used to improve

the predictive performance of a weak classifier. We used Discrete AdaBoost, as described by Fruend

and Shapire [27] and implemented in the R package, ada [28]. Discrete AdaBoost iteratively predicts

the response in the training data using a weak classifier, in our case a classification tree. First, the

response is coded such that 1 indicates a positive instance and -1 indicates a negative instance. At

each boosting iteration, m, a prediction is generated for each observation in the training set. Then

the weights of observations that were misclassified are increased for the next iteration, resulting in

greater focus on correctly predicting those observations. The mth iteration classifier, Tm (x), is given

a weight am based on how successful the classifier is at correctly predicting the response. Then, the

final classification is given by T(x) = sign (zM1 amTm(x)) [27].

The decision to use classification trees was based on the data structure. Many of the predictors

of interest contain a a large number of missing values. Thus, removal of observations with missing

values would result in a substantial loss of data. We therefore decided to choose a classifier that

could handle missing data. Additionally, given the large number of predictors, we desired a classifier

that would be insensitive to irrelevant predictors. Classification trees handle missing value and are

robust to irrelevant predictors, but have relatively poor predictive performance. Therefore, we used

boosting to improve the performance.

We took care in selecting the classifier parameters. Having too many branches in the classification

trees or having too many boosting iterations will result in overfitting of the training data [261. Hastie

el al. suggest a maximum tree depth of 6, and we adopted this recommendation. They also suggest

that the number of boosting iterations be chose to minimize error on a validation sample [26]. For

our data, this suggestion proved infeasible. The responses of interest were very rare, so in order

to get meaningful error estimates, we would need a large validation set. We did not have enough

observations to permit creating such a validation set. Instead, we selected a relatively low number

of boosting iterations, 50, with the hope that this choice would not result in overfitting.

Understanding the importance of predictors

In order to determine whether the incidence of disease or economic and political predictors were

helpful in predicting social response, we assembled three different datasets:

1. Full - All predictors were included.
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2. Disease Status Excluded - All predictors were included, except those related to the incidence

of disease and whether or not there were deaths or cases of dengue hemorrhagic fever.

3. Condition of Country Information Excluded - All predictors except those related to the con-

ditions of the country's health, economy or political environment were included.

We predicted social response for each of the datasets and compared the results to determine what

role the types of predictors were playing. If removal of predictors resulted in a reduction in true

positives or true negatives, we could conclude that the classifier was making use of these predictors

to correctly classify outbreaks as having social response or not. If removal of the predictors did not

reduce the number of true positives or true negatives, we could conclude that the predictors were

likely not playing a useful role in differentiating between outbreaks with and without social response.

We also examined the variable importance of each of the predictors. A variable importance measure

for boosted trees is defined in Hastie et al [26]. Intuitively, the variable importance of a predictor is

determined by how frequently the predictor is used by the classifiers and how effective splitting on

that predictor was at partitioning the data into groups with and without social response.

Error estimation

Error was estimated through five-fold cross-validation. The data were randomly split into five

groups, keeping the proportion of observations with social response in each group approximately

equal to the proportion in the dataset as a whole. The boosted trees were trained on four groups at

a time. Predictions were then generated for the fifth group. This process was repeated five times, so

that each of the five groups would serve as the test set once. Due to randomness in the algorithm,

boosting can produce different results when run again on the same data. Therefore, we repeated the

cross-validation 20 times to obtain average counts of true positives, false positives, true negatives

and false negatives as well as standard deviations for each of these counts.

Random oversampling and undersampling

When applied to learning problems such as ours, where there is an imbalance between the number

of minority class observations and the number of majority class observations, classifiers tend to

perform poorly at predicting the minority rules. This poor performance occurs because the data

imbalance leads the classifier to learn rules that describe the majority class, while failing to learn

rules that describe the minority class [29]. Sampling methods to improve the balance of the minority

and majority classes in the training set have been shown to improve classification performance on a

number of problems [29].

While balancing data generally leads to improvements in predictive power, both oversampling

and undersampling can introduce problems. Undersampling of the majority class results in the
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loss of information, which could be helpful in identifying the majority class. Oversampling of the

minority class can lead to overfitting to idiosyncrasies in the training set [29]. We used both random

oversampling and random undersampling to balance between these two risks. Assume that before

balancing there were Nm minority observations in the training set and NM majority observations.

We included all Nm minority observations in the balanced training set once and then added 2 Nm

additional minority observations by taking a bootstrap sample. We undersampled the majority class

by taking a bootstrap sample of size 3Nm from the NM majority class observations. The validation

set was left imbalanced, so that the proportion of events with social response in the validation set

would be reflective of the observed proportion in the data.

2.3.3 Results

The predictions produced show that the classifier was successful at learning some of the rules that

differentiate the minority and majority classes. Tables 2.3a, 2.3b, and 2.3c show the averaged false

positives, false negatives, true positives and true negatives for the full dataset, disease status excluded

dataset and condition of country excluded dataset respectively.

Predicted Class
No Social Response Social Response

Actual No Social Response 704.8 (std. dev. 4.5) 137.2 (4.5)
Class Social Response 25.6 (1.1) 38.4 (1.1)

(a) Boosted classification trees using full data

Actual
Class

(b) Boost

Actual
Class

(c) Boosted

Predicted Class
No Social Response Social Response

No Social Response 708.1 (std. dev. 6.8) 133.9 (6.8)
Social Response 26.7 (1.0) 37.6 (1.0)

ed classification trees using data with disease status predictors excluded

Predicted Class
No Social Response Social Response

No Social Response 663.0 (std. dev. 7.9) 179.0 (7.9)
Social Response 29.1 (2.0) 34.9 (2.0)

classification trees using data with condition of country predictors excluded

Table 2.3: Comparison of performance full data model, disease status excluded model and country
condition excluded model. We ran AdaBoost 20 times to obtain average values and standard de-
viations for the number of true positives, true negatives, false positives and false negatives. The
predictive performance of the models run on the data with disease status predictors removed was
comparable to the performance of the models run on the full data. Removal of country condition
predictors resulted in a reduction in true positives and true negatives compared with baseline.

For imbalanced data, accuracy can be a misleading metric, since high accuracy can be achieved

by always predicting the majority class [29]. Therefore, we will also consider alternative metrics to
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compare the predictions produced using the three datasets. First, we will define accuracy, precision,

recall (sometimes called sensitivity or true positive rate) and specificity (true negative rate). Let

TP, TN, FP, and FN refer to true positives, true negatives, false positives and false negatives

respectively. Then

Accuracy TP + TN
TP+FP+TN+FN

T P
Precision = TP + FP

Recall TP
TP+FN

and

Specificity 
TN

FP+ TN

In context, accuracy is the proportion of the time that we correctly predicted social response or

no social response. Precision is the proportion of the time that social response occurred when we

predicted that it would. Recall is the proportion of the time that we predicted social response when

it occurred. Finally, specificity is the proportion of the time that we predicted that social response

did not occur when it did not occur.

Table 2.4 shows the accuracy, precision, recall and specificity for the models built with each of

the three datasets. We compared the performance with the expected performance of a baseline naive

classifier that randomly predicts the minority class 50% of the time. The models built with all three

of the datasets had substantially higher accuracy, precision, recall an specificity than the baseline

model. The models built with the full dataset and dataset with disease status excluded had similar

performance. The model built on the dataset excluding predictors describing the country condition

had lower precision and recall compared with the model built on the full dataset.

baseline full dataset disease status excluded country condition excluded

accuracy 0.50 0.82 0.82 0.77
precision 0.07 0.21 0.22 0.16
recall 0.50 0.60 0.58 0.55
specificity 0.50 0.84 0.84 0.79

Table 2.4: Comparison of accuracy, precision, recall and specificity with the baseline model. The
baseline model randomly predicts the minority class 50% of the time. All of the models outperformed
the baseline model on all of the metrics. The models built on the full dataset and dataset with disease
status excluded had comparable performance. The model built on the dataset with country condition
excluded performed more poorly than the model built on the full dataset for each of the metrics
examined.
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Table 2.5 lists the publicly available predictors with the highest variable importance measures.

Several of these predictors are related to healthcare spending and health outcomes in the country.

Others describe the relationship between the people and their government.

ranking predictor

1 public health expenditure as a percentage of GDP (2007)
2 newspaper subscribers per 1,000 people (most recent year available, 1996 or later)
3 refugee population from the country (2008)
4 percentage of females with secondary education (2007)
5 adult male mortality per 1000 (2007)
6 human development index (2007)
7 corruption perception index (2009)
8 adult female mortality per 1000 (2009)
9 trust in the national government
10 perception of safety

Table 2.5: Important publicly available predictors. Variable importance is a measure of how useful
each predictor was at differentiating between the majority and minority classes, given the other
predictors in the model. The ten publicly available predictors with the highest variable importance
are listed.

2.4 Conclusions from analysis of historical biosurveillance data

For the dengue fever prediction, well over 50% of events with a social response were correctly

identified using the full dataset. However, since all reports for an outbreak were collapsed into a

single observation, the high predictive accuracy does not mean that future social response could

be predicted with as much accuracy. Instead this analysis is most helpful in identifying features of

outbreaks that tend to be associated with social response.

The comparison of predictions made with different sets of predictors provides insight into which

features are of most interest. Exclusion of country-level health-related and economic predictors

resulted in a small decrease in the recall, as well as a substantial decrease in the precision. In

other words, the classifier became less effective at identifying social response when it occurred and

was much more likely to guess that social response occurred when in fact it did not. This effect is

observed because having country-level predictors in the data allows the classifier to subset countries

into groups that may experience a social response depending upon the outbreak and groups that

are unlikely to respond to dengue fever regardless of the conditions of the outbreak. Examination

of predictors identified as important revealed that, in general, countries with stronger public health

systems are more likely to have reports of social response to dengue fever than countries struggling

with poverty and high mortality and morbidity.

The finding that countries with strong public health systems have heightened social response to

dengue spread is interesting and unexpected. We believe that this finding is likely observed because
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dengue fever is an emerging disease in these countries. Dengue fever has long been endemic to im-

poverished, tropical areas of the world. As a result of rising global temperatures and greater amounts

of travel to and from dengue-affected areas, it is beginning to spread into wealthier countries that

have not experienced dengue outbreaks ever or in many years. In these more developed countries,

dengue is a relatively novel disease and is also a serious public health concern. As a result, there is

an increase in public awareness, and if the disease is not contained quickly, public anxiety. Health

officials must move quickly to contain outbreaks, even small ones.

The Transparency International corruption perception index (CPI), the level of trust in the

national government and perception of safety were listed among the most important predictors.

This finding suggests that the citizens' relationship with their government has an association with

the likelihood of social response. Alternatively, the variable importance of these predictors could be

an artifact of multicollinearity among the predictors. Many of the health and economic predictors are

highly correlated. For example, countries with high health expenditure tend to have low mortality.

The trust and perception of safety predictors are strongly correlated with each other but not with the

other predictors in the model. Therefore, they may have appeared as important predictors, because

they measure something different than the other predictors included in the model. Additional

exploration would be necessary to determine the role of multicollinearity in the importance of these

predictors.

Predictions made without including information about the number of infected people or whether

deaths or complications were observed were not significantly different than predictions made with

this disease severity information, indicating that knowledge of the absolute number of cases and

whether there were deaths or complications does not provide additional information beyond that

provided by the predictors that remained in the model. That said, other Ascel Bio predictors

implicitly include information about the extent of disease, so we did not fully isolate the extent of

disease spread by removing the number of infections. The relationship between the number of cases

of disease and the social response is interesting and should be explored further.

When formulating the network-based model, we attempted to incorporate our findings from data.

In the analysis of the entire AscelBio database, we found that novelty of the disease and its clinical

severity are associated with social response. The finding with dengue fever that information about

whether there were deaths or complications does not help in predicting social response seems to

contradict the role of clinical severity. These findings merit further consideration. However, we

believe that the findings about BSL and social response are more reliable and therefore constructed

our model assuming that disease severity is related to social response. In the model, we estimate

the disease's novelty and perceived severity and include these factors in our model through a key

parameter, r, which reflects the perceived risk of the disease.

With dengue fever, we saw that information about the number of cases was not useful in pre-
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dicting social response, and, indeed, there are many examples in the AscelBio database in which a

high-incidence disease did not result in social response, while a low-incidence disease did. Therefore,

we designed the social response model to be relatively robust against changes in the number of cases.

Eventually, we plan to develop a model, similar to the one presented here for dengue fever, that

will estimate the risk of social response for every disease and every country. We could then use the

output of this predictive model to inform the choice of parameters in the social response model.

Such a model would be able to take into account factors such as GDP and health expenditure that

we were unable to consider in our manual selection of parameters.
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Chapter 3

Literature Review

3.1 Models of disease

Although there are many types of disease models in use today, almost all of them are variations on

the susceptible-infected-recovered model introduced by Kermack and McKendrick [30] in 1927. We

will first describe this model and then move to discussing metapopulation and agent-based models

of disease transmission.

3.1.1 The deterministic SIR model

The Kermack-McKendrick model assumes that there is a population of size N, such that all of the

individuals in the population are either susceptible to disease, infected or recovered from disease and

immune. This population is fully-mixed, meaning that individuals are in contact with everyone else

in the network and interactions take place at random. Let S(t), I(t), and R(t) denote the number

of susceptible, infected and recovered people respectively at time t. Let 13 be the infection rate and

let -y be the recovery rate. Then the system is defined by three differential equations:

dS
dt=-_-/3SI

dtdI
-= '3SI - - I

dt
dR

dt -

In summary, transitions take place from the susceptible state to the infected state at a rate proportion

to the numbers of infected and susceptible individuals. Similarly, transitions take place from the

infected state to the recovered state at a rate proportional to the number of infected individuals.

One topic of interest is whether disease outbreaks will grow to epidemic proportions or whether
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they will die out before infecting many people. The basic reproductive number, RO, is the average

number of additional cases generated by one infected person. For Kermack and McKendrick's SIR

model [30], RO is defined as follows:

RO = )3

When RO > 1, the average infected person infects more than one other person, resulting in the

disease growing to epidemic proportions. When RO < 1, the disease dies out and does not develop

into an epidemic. The reproductive number continues to be used to compare the epidemic potential

of various types of diseases.

While Kermack and McKendrick's model has provided many interesting insights into the spread

of infectious disease, it has several unrealistic assumptions. For example, it is obviously not true that

an infected person will spread disease to anyone else with equal probability. The infected person is

most likely to spread the disease to her family members, friends and colleagues. Additionally, the

probability of transmission will depend upon the infected person's stage of illness and the health of

the immune system of the exposed person. These observations have lead to the development of new

types of models of infectious disease, including metapopulation models and agent-based models.

3.1.2 Metapopulation models

While it is unrealistic to assume random mixing in an entire population, it can be a reasonable

assumption for smaller sub-populations. Some types of models assume random mixing within sub-

populations and restricted mixing between these sub-populations. The sub-populations are formed

based on geographical distance (e.g. modeling each town as a sub-population), behavior (e.g. model-

ing high-risk groups and low-risk groups as sub-populations) or demographic factors (e.g. modeling

children, adults and the elderly as sub-populations) [31].

Metapopulation models are epidemic models in which sub-populations are defined by geographic

distance. These models allow researchers to spatially track the spread of disease and have proven

useful in studying the dynamics of pandemic diseases. For example, the Global Epidemic and

Mobility Model (GLEAM) partitions the world into sub-populations, each with a local airport [32].

Then, by integrating commuting and air travel data into the model, the disease transmission between

the sub-populations is simulated. GLEAM has been used to predict the peak timing of 2009 H1N1

on a global scale and to evaluate the effects on interventions, such as travel restrictions, on the

spread of HINI [32]. Metcalf et al. [33] used a metapopulation approach to explain how measles,

mumps rubella and whooping cough, which have nearly been eradicated in developed countries,

periodically reemerge. By way of travel and migration, regions can become reseeded with cases of

disease, resulting in a resurgence of infection.
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3.1.3 Agent-based models

Agent-based models explicitly model every individual in the population. The individuals (agents)

are assumed to have a pattern of disease-spreading interaction defined by a social network. Agent-

based models allow for incredibly detailed modeling of transmission dynamics and can incorporate

data on age, co-location in households and the number and locations of schools and workplaces [34].

Agent-based models are particularly useful when the disease transmission network is complex

or dynamic, such as the sexually transmitted infection network [35] or when precision in modeling

the disease transmission is necessary for evaluating the effects of interventions or estimating the

transmission parameters of the disease. The Framework for Reconstructing Epidemic Dynamics

(FRED) [36] is a highly detailed agent-based model that has been used to explore disease dynamics

in the United States. FRED constructs a synthetic population using census data. Agents spread

disease as they travel to and from work and school and interact within their neighborhoods. FRED

has been used to explore the effects of various types of local interventions including school closures

[37] and vaccination [38]. There are several similar efforts aimed at developing large-scale, realistic

agent-based simulations, including FluTE [39], EpiSims [40] and GSAM [41].

Detailed agent-based simulations are useful, because they are highly realistic models of disease

transmission. They are computationally expensive [34], however, and frequently do not allow for

simulation of areas other than the United States, since many areas of the world lack the census and

transportation network data needed for detailed agent-based simulations. Given these shortcomings,

we decided to conduct our simulations using an agent-based model on a random network. We were

primarily interested in studying social response, and the choice of a relatively simple disease spread

model allowed us to limit the overall complexity of the model. Additionally, several of the cities

we were were most interested in modeling, Hong Kong and Mexico City, are located outside of the

United States. That said, our decision to use a random social network likely results in a loss in

realism. Eubank et al. [42] compared the realistic network generated for EpiSims with various

types of randomly generated networks. They found that the Erd6s-R6nyi random graph and the

Baribasi-Albert preferential attachment [43] models were poor approximations of realistic social

network degree distributions. The configuration and Chung-Lu [44] models could be parametrized

to produce networks similar to the EpiSims network. These models are both methods of generating

random networks with prescribed degree distributions.

3.2 Models of social processes

In this section, we will introduce the DeGroot model of opinion diffusion. We use this model, with

some modifications, for the diffusion of social response. We will discuss criticisms of the DeGroot

model and explain why, despite these criticisms, the DeGroot model is applicable for social response
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modeling.

3.2.1 The DeGroot model

The diffusion of ideas, opinions and innovations has long been of interest to researchers. One of the

first models of opinion diffusion was proposed by Morris DeGroot in 1974 [45]. We use a variation

of this model for the diffusion of social response. DeGroot assumes that each individual, i, in the

population has an opinion distribution at time t of Fi. Additionally, i assigns a weight (pij) to

herself and each of the other individuals in the population, reflecting the degree of influence each

person's opinion has on i's future opinion. If i greatly respects the opinions of j, then pij would be

large, and if i does not place much credence in j's opinions, pij would be small. The weights are

normalized such that, assuming a population of size N, N1 pij = 1. Then as time progresses from

t to t + 1, i updates her opinion to F(tel) = j= pijFjt. That is, i's opinion after the update is a

weighted sum of her own prior opinion and those of the other people in the population. This process

is Markov with transition matrix P, which is constructed such that weight pij occupies the row i

and column j of P for all i and j. It can be shown that the opinions will converge to a consensus

assuming that all recurrent states of the Markov chain communicate and are aperiodic.

3.2.2 Criticisms and enhancements of the DeGroot model

The DeGroot model is simple to implement and has received extensive research attention. It has

been criticized, however, for being unrealistic [461. First, in the DeGroot model the individuals do

not update the weights they assign to other people's opinions. If there is an individual who never

updates his opinion, others will continue to change their opinions to be closer to his. Realistically,

individuals who interact repeatedly will disregard an opinion that has already been expressed and

does not change. Secondly, the DeGroot model will result in arrival at a consensus under almost all

realistic situations, since most societies have strongly connected social networks. In the real-world,

the arrival at a consensus is the exception, not the norm.

Acemoglu et al. introduced several models to address these concerns. In one model, they assume

that there exist two types of individuals in a society: regular agents, who have average levels of

influence over their neighbors and forceful agents, who have disproportionate influence [47]. They

show that, if all agents receive at least some information from their neighbors, the agents will

eventually arrive at a consensus. However, unlike in the DeGroot model where the consensus opinion

is uniquely determined by the weights and original opinions, the consensus opinion in the forceful

agent model is a random variable. In a second model, they introduce the idea of stubborn agents,

who will not update their beliefs [48]. In this case, opinions do not converge to a consensus and

persistent disagreement can take place. The ideas presented by Acemoglu et al. have been used to

38



study the optimal allocation of non-lethal influence in warzones [49, 50, 51] and, as we will discuss

later, to develop an initial model of the joint spread of disease and social response [52].

3.2.3 The use of the DeGroot model for social response communication

While we accept that the DeGroot model has shortcomings, we believe that its use is appropriate

in our circumstance. We have modified the DeGroot model, so that the weights assigned by each

agent are updated dynamically. This change reduces the likelihood that an agent will continually

update its opinion to match that of a neighbor whose opinion never changes. Additionally, the fact

that a consensus will almost always occur is not a concern for us. Social response is a transient

phenomenon. If a social response occurs, we expect social response levels to rise with the rise of

cases of the disease and then decline as the disease stops to spread. Once the disease stops spreading,

it is reasonable for the agents in our network to move toward a consensus of no social response.

3.3 Models of disease spread and related social processes

Although there are many there are many models of disease transmission [53] and many models for the

spread of information over networks [46], there are relatively few models that address the interaction

between disease transmission and social processes [54, 2]. The need to develop complex models that

incorporate coupled disease contagion and social contagion processes has been emphasized, since

the joint dynamics of such systems often differ from what would be expected from either process

operating in isolation [2]. Our model uses the social psychology of risk behavior as well as disease

and information spread modeling techniques to explain how disease transmission can give rise to

social disruptions.

Other researchers have focused on small-scale actions in response to disease spread, such as self-

protective behavior. Epstein et al. [55] explored the effects of fear-induced behavioral changes on

the spread of epidemics. They assumed that fear of the disease spreads much like the disease itself.

Agents can become "infected" with fear and, assuming that they are fearful, these agents either

isolate themselves or flee the area. Epstein et al. found that self-isolation behaviors substantially

decreased the scale of the epidemic. If, on the other hand, frightened individuals fled the area, the

scale of the epidemic could dramatically increase, since these individuals would seed infections in

new susceptible populations. Funk et al. [56] also considered the effects of the spread of concern

about disease. They modeled the spread of awareness over a network with individuals taking greater

self-protection measures in proportion to their disease awareness. They found that awareness can

reduce the size of the outbreak, and, under certain assumptions, stop it altogether.

We conducted a simulation study exploring the effects of using complete quarantine, as in the

Epstein model, or partial reduction in transmission, as in the Funk model. Given comparable
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Sinfected (1)
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Funk awareness model

Funk awar-ness states
o bighly aware
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o unaware,

Figure 3-1: Comparison of Funk and Epstein spread of awareness models. We implemented two

models of the spread of awareness. Compared with the standard SIR model with no spread of

awareness, both models of the spread of awareness resulted in substantial reductions in the number

of infections. The Epstein model [55], in which aware nodes isolated themselves, was more effective

at halting the spread of disease than the Funk model [56], in which awareness conferred partial

protection, even though isolated agents in the Epstein model stopped communicating awareness to

their neighbors.

parameters for the spread of awareness, the two models had comparable performance at the early

stages of the outbreak. However, overall, the Epstein model isolation formulation resulted in a greater

reduction in the spread of disease than the partial protection assumed by the Funk model, even

though isolated nodes in the Epstein model stopped communicating awareness to their neighbors.

For both models, the individuals in the vicinity of infected persons become aware of the disease, but

in the Epstein model this awareness resulted in an absolute stop to the spread of disease, whereas

in the Funk model the disease spread was merely slowed. Figure 3-1 shows a standard SIR model

on a network with no spread of awareness, an SIR model with the Funk model for awareness and an

SIR model with the Epstein model for awareness.

Meloni et al. [57] developed a metapopulation disease model in which the probability of traveling

to a different sub-populations and the route taken between sub-populations is determined by the

incidence of disease. They assumed that people will be likely to cancel travel to affected areas, and,

when they do travel, people will want to route their travel to avoid the disease. In simulations, these

measures taken to avoid the spread of disease actually had the opposite effect, since individuals

routing their travel to avoid the disease unintentionally spread it to new locations. Meloni et

al. concluded that real-time information on a disease spread could reduce the efficacy of disease
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containment and mitigation measures.

One recent model explicitly considered the psychology of health behaviors [58]. Working within

the framework of the health-belief model, Durham and Casman modeled the likelihood of wearing

a face mask during the Hong Kong SARS outbreak as a function of perceived susceptibility to

disease, perceived severity of disease, perceived benefits and perceived barriers. They were able

to parametrize the model so as to achieve a good fit to the observed prevalence of face mask use

during the outbreak. As we noted in Chapter 2, however, the health-belief model model may not be

appropriate for epidemic disease modeling, since it disregards the emotional aspects of health-related

decision making [19].

3.4 An initial attempt at modeling disease spread and social

response

3.4.1 Initial model formulation

The model that we present here builds upon a previous model of disease and social response proposed

by Evans [52]. We will briefly describe this model, then explain how the model we introduce modifies

and expands upon it. Evans couples an SIR disease model with the information spread models

proposed by Acemoglu et al. [48, 47]. Individuals in the population are represented by agents in a

network, who spread disease and social response through pairwise interactions. Infected agents act

as sources of social response. When an agent becomes infected, its social response is maximized.

Then social response is diffused through the network via social interactions. Assume agent i interacts

socially with agent j. Then one of four interaction types takes place:

1. Forceful - Agent j adopts agent i's social response.

2. Averaging - Agent j and agent i average their social responses.

3. Decay - Agent j's social response is reduced.

4. Identity - Neither agents social response is changed.

The forceful interaction type is more likely to occur if agent i's social response is elevated. Thus,

forceful interactions represent how social response, like disease itself, can be contagious. The aver-

aging interaction type represents the two agents discussing and coming to an agreement about social

response. The decay interaction type represents the eventual decline of social response as the disease

spread slows. This model was successfully used to model social response to dengue fever outbreaks

in Argentina and India [59].
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3.4.2 Improvements and expansions

We expand upon Evans' model in several ways. One key change is the introduction of media

influence. Some very severe diseases, such as Ebola, require very few cases for a social response to

take place. Thus, we wanted to develop a model in which one case of a very severe disease could

result in social response in a population of millions of people. Clearly, word-of-mouth communication

is insufficient to spread this social response. The signal emanating from a single person is simply

too small. Therefore, we needed to introduce media to transmit social response to large numbers of

people.

This leads us to the second key change in the model. We needed rules governing which outbreaks

would attract attention and which would not. We wanted this decision to be consistent with theories

of risk perception and with the available data on when social response takes place. We therefore ex-

plicitly introduced the social amplification of risk framework [16] into the model. Amplification takes

place when disease are novel, not well understood or have high clinical severity. When amplification

occurs, the media sends a large excitatory signal to the population. Additionally, amplification takes

place in interpersonal communication in that agents assign greater weight to the opinions of their

neighbors with higher social response. This social response update rule is similar in principle to the

forceful interaction type in Evans' model. However, it is a more realistic model of opinion formation

because the agents are taking into account multiple perspectives, including their own prior views.

Finally, we designed the model to track the progression of disease and social response through

time, rather than through interaction number. As a result of the choice to use Acemoglu's opin-

ion spread model, Evans needed to sequentially implement a series of disease-spreading and social

response-spreading interactions. For large populations, the tracking of these interactions proves

computationally inefficient, and the lack of exact knowledge of the time course of the simulated

outbreak complicates the fitting of the model to real-world outbreaks. Through the use of the De-

Groot model for social response communication, instead of the Acemoglu model, we were able to

construct a model in which all individuals in the population update their disease and social response

states simultaneously at each time period. This change greatly improved computational efficiency

and allowed us to employ a disease model that more closely resembles other disease-spread models

used in the field.
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Chapter 4

Methods: Modeling the Spread of

Disease and Social Response

We present a model of the joint spread of disease and social response that is flexible and scalable.

This model can be used to simulate social response to a number of diseases that spread through

contact between humans. The model runs quickly and can be used to simulate populations of

hundreds of thousands of people.

4.1 Model overview

The progression of disease and social response through the social network is simulated using two

separate network-based models [60], linked by a coupling mechanism. We consider individuals in

a population as agents in a network. These individuals are connected to each other through social

ties, which are represented by the edges of the network. The agents repeatedly interact according

to behavioral rules, which govern the spread of disease and social response. The disease and so-

cial response are assumed to spread independently, coupled by an interaction rule; when an agent

becomes infected, her social response level is increased to reflect the perceived risk of the disease

to the society in question. Specifically, the social response of the agent is set to the disease risk

index, h E (0.5, 1), which represents the society's familiarity with the disease, the degree to which

the disease is unexpected, the clinical presentation of the disease and the method and rate of spread.

Higher values of n indicate greater perceived risk, and, consequently, greater amounts of amplifi-

cation. For example, the common cold in North America, a familiar and mild disease, would have

s = 0.5, whereas SARS, a novel and highly fatal disease, would have a high value, such as , = 0.95.

Agents' likelihood of experiencing heightened social response increases when they interact with the

sick, with agents who already have heightened social response or when they receive a signal from
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1. disease transmission 2. feedback on social response 3. social response transmission

Figure 4-1: Illustration of model dynamics. At every time period: (1) the disease transmission
process spreads infection through the network, (2) newly-infected agents increase their social response
to r and (3) social response is communicated between neighbors and via a signal from the media.

the media that the disease is a threat. The dynamics of the model are shown in Figure 4-1 and will

be described in more detail in the sections that follow.

4.2 Network structure

The disease spread and social response are modeled on two separate but related networks. Figure

4-2 shows the connection between the disease spread and social response networks. Each agent is

represented by one node in each network. The spread of disease fuels the social response through

interpersonal communication about the disease and a media signal. Thus, the disease states in the

disease spread network affect the social response states in the social response network. The model is

formulated such that arbitrary social networks can be used for the disease spread and social response

networks and, although each agent must be represented as a node in each network, the networks

need not have the same edges. In the studies shown in this thesis, we used random graphs for the

disease spread and social response networks. Random graphs are networks generated through a

random process [611. Typically, these networks are designed to have properties similar to those of

social networks in the real world.

4.3 Disease spread dynamics

We implement an susceptible-infected-recovered (SIR) model [30], adapted for agent-based modeling

[61]. The infection spreads through pair-wise interactions between infected agents and their neigh-

bors on the disease network. Each agent's disease state at time t is represented by Xi (t) E {S, I, R},

where S = susceptible, I = infected and R = recovered. The model is initialized with almost all

agents in a susceptible state. Agents become infected through contact with infected neighbors on
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disease layer

disease transmission generates
social response

social response layer

Figure 4-2: Coupling of disease and social processes. Social response and disease are transmitted on
two different graphs. The spread of disease fuels increased social response.

the disease network. At time t, an infected agent infects each of her susceptible neighbors, indepen-

dently, with probability $, that is if Xi (t) = I, X, (t) = S and i and j are neighbors on the disease

network, then:

X{(t +1) I with probability 
(4.1)

S with probability 1 -,3

Following infection, agents recover after TR time periods, where the parameter TR is set to reflect

the time that infected persons continue to circulate in the network. Specifically, if Xi(t - 1) = S

and Xi(t) = I, then:

Xi(t) = ... = Xi(-+ TR - 1) = I, Xi (t + TR) = R (4.2)

4.4 Social response spread dynamics

In addition to the disease state, Xi(t), each agent i has a value, Y(t), associated with his social

response at time t. The social response, Y(t), is treated as a continuous random variable in the

range 0 to 1. A social response of 0 indicates no anxiety and no behavioral symptoms. A social

response of 1 indicates severe anxiety or behavioral manifestations of concern about disease, such as

panic buying or participating in a protest. In this model, we do not differentiate between behavioral

and non-behavioral responses, but consider both types of social response to be part of the same

continuum.

An agent's social response can be changed in one of three ways. First, agents are influenced by

their neighbors on the social network and will probabilistically update their social responses to be

more similar to their neighbors'. Secondly, if the disease is actively spreading, agents can receive an
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excitatory signal from the media, resulting in increased social response. Finally, immediately upon

infection, the social responses of infected agents are increased to K. Thereafter, the social responses

of infected agents are allowed to change according to the social response update rules. Heightened

social response spreads through the population via two mechanisms: (1) when the disease is novel to

the region or is perceived as being particularly threatening, media influence spreads concern through

the population and (2) when communicating with their neighbors, agents are biased toward adopting

the opinions of their more concerned neighbors, rather than the most calm ones.

4.4.1 Social response update

At time t, agent i's social response updates according to the following two steps, applied sequentially:

Step 1: Social response exchange. We use a modified version of the DeGroot model [45] to describe

how social responses are communicated between neighbors. For each neighbor j of node i, with

probability q, j communicates with i at time t. If j communicates with i, Iij = 1, otherwise Iij = 0.

For all nodes, i, Iii = 1. Let wj(t) be the weight assigned to the social response of node j at time

t. Agents are given a bias toward listening to neighbors that are more concerned about the disease.

Therefore,

w (t) 10 if Y (t) > 0.5 (4.3)
1 otherwise

Then the social response of node i following step 1 is given by:

Y (to) = tanh Mg (t) + I1 1:Iij Wj Y (M (4.4)

where Mi(t) is the media signal received by agent i at time t, which will be defined in Section 4.3.2.

Each agent's social response after Step 1 is a weighted sum of its neighbors' social responses plus

the media signal received by that agent. Note that the hyperbolic tangent is used to restrict the

social responses to be within the range [0, 1].

Step 2: Social response decay. Decay reflects the eventual cease of panic as the disease spread tapers

off. Following Step 2, agent i's social response level is given by:

Yi(t + 1) = a x Y (to) (4.5)

for some constant a E [0, 1]. Following the social response update, the next time period begins and

the disease and social response updates are repeated.
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4.4.2 Media signal

The media plays an important role in communicating risk messages to the public. Young et al.

paired high media exposure and low media exposure diseases on the basis of mode of transmission,

symptoms, mortality and prevalence [62]. They found that infectious diseases that receive extensive

media attention are considered to be more severe than diseases that do not receive such attention.

Thus, we postulate that media attention will increase concern about disease and that diseases that

are more novel and severe will have larger media signals.

Let N(t) be the number of infected agents at time t. Then, the global media signal at time t,

M(t), is defined as follows:

2 K - 1 if N, (t) > x max {N1 (0), ..., N, (t - 1)}
M(t) = 2(4.6)

0 otherwise

Let Mi(t) be the media signal received by agent i. Each agent receives the media signal with

probability p. Thus,

MI(t) = M(t) with probability p
0 with probability 1 - p

Media amplifies concern over the disease when many people are infected in the present compared

with the past. In general, a non-zero media signal is sent when the disease is actively spreading in

the population. At the end of the outbreak, when there are only a few cases remaining, a media

signal will not be sent.

4.4.3 The joint diffusion of disease and social response

Agents who are infected generate social response and communicate this response to their neighbors.

During the time period in which agent i is infected, i's social response is set to K. More precisely,

Yi(t) = r if Xi(t - 1) = S and Xi(t) = I (4.8)

The model is implemented by simulating the disease state transitions followed by social response

state transitions. Thus, at each time t, Xi(t) is updated for each agent i. Then, Y(t) is updated,

first by setting the social response of newly-infected agents to K and then by communication among

agents and reception of signal from the media.
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4.5 Disease spread control measures

Frequently, disease spread leads to government or self-initiated actions intended to slow the spread

of disease. We consider two such actions: vaccination of susceptible agents and reduction of disease-

spreading contacts.

4.5.1 Vaccination

Vaccination changes the state of an agent from susceptible to recovered. Prior to the beginning of

the outbreak, each agent is vaccinated with probability vp. Thus, vp is the expected proportion of

the population that is vaccinated. For each agent i, such that Xi (0) = S,

Xi (1) R with probability v,

S (or I if infected) with probability 1 - vp

Vaccination during the outbreak begins after the cumulative number of cases has surpassed

the intervention threshold, T. Vaccination continues for T, days following the beginning of the

intervention. At each day that vaccination takes place, each susceptible agent is vaccinated with

probability Vd. When an agent is vaccinated, its disease state immediately changes to recovered.

Thus, if the intervention is taking place at time t and Xi(t) = S, then

Xi (t + 1) R with probability Vd

S (or I if infected) with probability 1 - Vd

Vaccination during the outbreak has diminishing returns over time, since on the first day of vaccina-

tion each susceptible agent has probability Vd of becoming vaccinated and on subsequent days only

susceptible agents who have not yet been vaccinated can become vaccinated.

4.5.2 Contact reduction

Contact reduction begins after the cumulative number of cases has surpassed the intervention thresh-

old, T, and continues for T, days following the beginning of the intervention. While the intervention

is in place, the agents reduce their disease-spreading contact with one another. Specifically, at each

time each edge in the disease graph has probability 7 of being removed and probability 1 - r; of

remaining in the graph for that time, independent of all other edges. Since we are concerned only

with edges along which the disease could be spread, that is, edges adjacent to infected nodes, this

form of contact reduction can be modeled by reducing the per contact infection rate to #3 x (1 - 7)

for the duration of the intervention.
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4.5.3 Social response surge resulting from the application of control mea-

sures

Several researchers have pointed to the phenomenon of "iatrogenic" social response [3, 63, 64]. Iatro-

genic social response is social response caused by the actions or communications of officials, rather

than by the characteristics of the disease itself. If the officials overreact to the situation or commu-

nicate poorly, a social response may occur when it otherwise would not have. We were interested in

modeling the situation in which the application of measures to control the spread of disease results

in a surge in social response. We assumed that the announcement on an intervention on the disease

would lead to a temporary increase in press attention and a temporary increase in the perceived risk

of the disease.

Let A be an indicator for whether iatrogenic social response will be modeled:

A if iatrogenic social response is modeled

0 otherwise

Assuming that A = 1, during the time period when the control measures are initiated (that is, the

time period when the cumulative number of cases surpasses T), we increase the proportion of the

population that receives a signal from the media and also increase the size of that signal. Specifically,

for this time period we send a media signal equal to 5M(t) to each agent with probability tanh (10p).

Following the time period in which the intervention was initiated, the transmission of the media signal

returns to normal. The media signal is M(t) and the probability of receiving the signal is p.
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Chapter 5

Methods: Finding the Least Cost

Disease Control Strategy

There has been great interest in learning how to best control the spread of disease [37, 38, 65].

We were interested in understanding how the optimal strategies for disease control changes if we

account for social response. We assumed that there were costs associated with (1) the disease, (2)

use of control measures and (3) social response. We then used simulation to find the control strategy

that minimizes the expected cost. The control strategies we examined were vaccination prior to the

beginning of the outbreak and contact reduction during the outbreak. For contact reduction, we

also explored how the least cost strategy changes if we assume that the the initiation of contact

reduction leads to a temporary surge in social response.

Let CD be the cost of one person acquiring the disease. Define the cost of the intervention as

cj. For contact reduction, let c, be the cost is the cost per person vaccinated prior to the outbreak.

For contact reduction, let c, be the cost of a 100% reduction in contact for T, days. Let csR be

the cost of the total social response. For simplicity, our simulations always use cD = 1. Thus, we

are concerned with relative, rather than absolute costs. With cD = 1, for vaccination, c, may be

interpreted as the cost of being vaccinated relative to the cost of getting the disease. If c, = 0.5,

being vaccinated is half as expensive as getting the disease. The interpretations of cj for contact

reduction and csR for total social response are less straightforward, since both of these are measured

in different units than disease.

Now let us define OD as the total number of people infected by the disease, that is,

oc N

OD ZD (X 2 (t) = S and Xi (t + 1) = I) (5.1)
t=O i=1

where ID is an indicator variable for the event that i becomes infected at time t + 1 and N is the
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size of the population. Define #SR as the total social response, that is,

00 N

OR = ZYi (t) (5.2)
t=O i=1

Let the total cost of the disease, intervention and social response be C. We can now express C and

formulate optimization problems to minimize E (C). Since the formulations are slightly different for

vaccination and contact reduction, we will address the two separately. We will use the notation of

linear and nonlinear programming to formulate the problems, though we do not solve the problems

using linear or nonlinear programming methods but rather through simulation.

5.1 Vaccination formulation

The cost of disease is given by CDqD, the cost of vaccination is cINv, where Nv, is the number of

people vaccinated prior to the outbreak, and the cost of social response is csRqsR. The total cost

of the disease, vaccination, and social response is the sum of the costs of each of these. Thus,

C =CDOD + cINu + CSR 5 SR (5.3)

Then, the expected cost, given the disease spread and social response parameters is given by:

E (C13, TR, 6, p, q, a, T, T1, VP, Vd, 7, A)= E (DOD +cINv-+ CSROSR|

#,TR, K, p, q , a, r, TI, vp, Vd, 1 , A) (5.4)

This expression simplifies to the following:

E (C#, TR, N, p, q, a, T, TI, VP, Vd, 7, A)=

cDE(OD 1/, TR, K, p, q, a, r, Ti, Vp, Vd, A)+

cIvPN +csRE (#sRP, TR, t, p, q, a, r, T1 , vp, vd, 7, A) (5.5)

Observe that the expected cost of disease and the expected cost of social response are dependent

upon the model parameters, including vp. The expected cost of vaccination depends only on ci, vP

and N. To find the vaccination strategy that minimizes the expected cost, we solve:
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In other words, we find the value of vp that minimizes the expected cost, while fixing the disease

and social response parameters and implementing no vaccination during the outbreak or contact

reduction.

5.2 Contact reduction formulation

As before, the cost of disease is CDJD and the cost of social response is CSR$SR. The cost of contact

reduction is c,71. Thus, the expected cost is given by:

E (C E, TR, IP, qI a, , TI, V, T T, , A ) =

CD E (OD 1 3 R, K, p, q, a, I, I I V d, 7, 1

ci7 +csRE (SR 10, TR, , p, q, a, T, T1 , Vp, Vd, 7, A) (5.7)

To find the contact reduction strategy that minimizes the expected cost, we solve:
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argmin O,l E (CIO#, TR, K, p, q, alr I, p, P1V, 71,A)

subject to:

13 = # (5.6)
TR= TR

T = N

T, = 0

i~0

Vd 0

A 0
K = O

P = PO

q = qo

a = ao



Here, we find the value of 71 that minimizes the expected cost, while fixing the disease and social

response parameters, fixing the threshold for intervention (T) and the duration of intervention (T1)

and implementing no vaccination prior to or during the outbreak.

5.3 Summary

We have formulated two optimization problems, one to find the the least cost strategy for vaccination

prior to the beginning of the outbreak and the other to find the the least cost strategy for contact

reduction. These problems minimize the expected total cost of the disease, given fixed disease spread

parameters. We assume that the total cost is the sum of the cost of the disease itself, the cost of the

intervention and the cost of total social response. Our formulations differ from previous attempts

at finding optimal control measures, because we assume that the spread of disease can have a cost

beyond the people infected, namely, the social response. The formulations we have presented are

general, but we will show in subsequent chapters how this optimization approach can be used to

provide specific insights into how to best control disease spread while accounting for social response.
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arg minnelo,1] E (C 10, TR, n, p, q, a, T, TI, Vp, Vd, , A )

subject to:

3 = /3o (5.8)

TR = TR0

T = To

TI = TI"

VP = 0

Vd = 0

A = A0

P = P0

q = q0
a = a0



Chapter 6

Study Design and Implementation

In this chapter, we will discuss the design and implementation of the studies presented in this

thesis. In summary, we have three types of studies: (1) numerical experiments, (2) optimization

studies of disease control measures and (3) applications of the model to predict social response to

actual disease outbreaks. The numerical experiments explore the effects of the model parameters.

In particular, we focus on two mechanisms that, through extensive simulation, were found to be

important, media and the extent of disease spread. We show how social response spreads through

media influence when K is high or through word-of-mouth when the disease spreads quickly through

a large proportion of the population. We also examine the effects of control measures of the spread of

disease and social response. The optimization study uncovers how optimal disease control strategies

are affected by considering the costs of social response. We find least cost strategies for vaccination

and contact reduction for , equal to 0.5, 0.7 and 0.9. Finally, the applications of the model to real-

world outbreaks are designed to show how the model can be used in practice. We demonstrate that

we can replicate the social responses observed in the Hong Kong SARS and H1N1 outbreaks and

the spring and fall waves of HINI in Mexico City. We can also replicate the surge in social response

observed in response to the declaration of a public health emergency during the 2012-2013 influenza

season in Boston, Massachusetts.

6.1 Implementation

First, we will describe the network structure, the use of the Monte Carlo method and other aspects

of simulation implementation that are common to all of the simulations conducted.
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6.1.1 Network structure

We used random graphs for the disease spread and social response spread networks. The disease

spread network and social response spread network differed in structure, with the later having more

connections and more non-local connections. The disease spread network was a Watts-Strogatz

random graph [66]. The Watts-Strogatz random graph is constructed by arranging the nodes in a

circle, then adding edges between nodes and their k closest neighbors and finally randomly rewiring

some of these edges to connect to random nodes. The Watts-Strogatz random graph is commonly

referred to as a small-world network, because it has strong local clustering but short average path

lengths, resulting from the small number of random contacts. These random contacts increase the

likelihood that a disease outbreak with grow into an epidemic [53]. For our purposes, the local

structure of the graph represents frequent contacts, such as those with classmates, colleagues, and

family members. The random contacts represent transmission of disease between strangers.

Like the disease, social response travels through connections between friends and colleagues.

However, unlike disease, social response communication is not restricted to interactions in which

both parties are physically present. Non-physical interactions through social media, email or tele-

phone are represented in the model by a random scale-free graph. This type of graph has a degree

distribution that follows a power law [61]. A few very high degree nodes are connected to much of

the population, while most nodes have only a few connections. It is believed that the world wide

web and collaboration networks resemble scale-free graphs [61]. Preferential attachment [43] has

been proposed as a method to construct random scale-free graphs. We instead used a static random

graph with scale-free degree distribution (igraph [67], static.power.law.game), since using this type

of graph allowed us to specify the exponent of the degree distribution. Figure 6-1 shows sample

small-world and scale-free networks, each with 50 nodes and average degree of 6. These networks

differ in their degree distributions and amounts of clustering.

In summary, the social graph was a scale-free graph overlaid on top of the small-world disease

graph and included all edges from the disease spread graph as well as additional edges representing

remote interactions. All agents in the social graph were given a self-loop, that is for each agent i,

(i, i) is an edge in the social graph. The self-loop ensured that agents always included their own

opinions in the social response update.

6.1.2 Monte Carlo method

Due to the complexity of the joint dynamics of the disease spread and social response, exact compu-

tation of the time course of the disease and social response is intractable. Therefore, we used Monte

Carlo simulation to estimate values of interest. In our case, Monte Carlo simulation consisted of

repeated modeling the disease spread and social response spread to approximate the distributions of
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(a) Small-world network (b) Scale-free network

Figure 6-1: Network structure. A small-world network and a scale-free network are shown. Each
network has 50 nodes and average degree of 6. However, the degree distributions are different (nodes
are scaled in proportion to degree), and the small-world network has more clustering.

the number of new infections at each time t and the mean social response of the agents at t. As the

number of realizations of the model increased, the distributions more closely approximated the true

probability distributions. We used the approximate distributions to estimate the expected value and

standard deviation of the number of cases and the mean social response. We also obtained estimates

of the distributions of total infections (OD) and total social response (#SR), as well as the peak

number of new infections and the peak mean social response. The peak mean social response is the

maximum mean social response observed at any time during the outbreak. The mean social response

at time t is the average of the social responses of all agents in the network at time t, Y ).

Similarly, the peak number of new infections is the maximum number of new infections simulated

during a single time period.

6.1.3 Simulation implementation

Simulations were programmed in python. The igraph package [67] was used for generating the disease

spread and social response spread networks. The initial infected agent was selected uniformly at

random from among all agents. Then we began the disease transmission and social response spread

processes. We allowed simulations to continue running until the disease spread had stopped and

the mean social response in the network was less than 0.02. For most simulations that we ran, if

the initial infected agent infected no other agents before recovering, we repeated the realization.

Since the numerical experiment examining the effect of media influence was intended to have only

one infected agent, we did not repeat the realization for simulations in that experiment. Figure 6-2

describes the simulation process.

Table 6.1 shows the number of realizations and number of agents used for each of the simulations

conducted. In general, we used more realizations when it was necessary to obtain a more accurate
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Each realization:
Disease transmission and social
response transmission are simulated

Each time t:
Disease status and social
response status are updated

Update disease
statuses

Set social
response of

newly infected
agents to ic

Update disease
statuses

t= 0
Randomly

select initial
infected agent

t= I

t= 2

Simulations
continue until

disease and
social response
have died out

For every set of
parameters, we

simulate multiple
realizations of
the model to
estimate the

distribution of
the number of
new cases and

mean social
response at each

time period

Figure 6-2: Simulation implementation. We used Monte Carlo simulation to estimate the distribu-
tions of the number of new cases and the mean social response for each time period. For every set
of parameters, we simulated a number of realizations of the model. Each realization consisted of
a series of time periods, during which the disease and social response statuses of the agents were
updated.
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Table 6.1: Number of agents and realizations per set of parameters used in simulations

simulation number of realizations number of agents

numerical experiments

role of media influence 300 15,000
role of disease spread 800 15,000
effects of control measures 500 15,000

finding the least cost disease control strategy

vaccination prior to outbreak 500 15,000
contact reduction during outbreak 500 15,000

predicting social response to real-world infectious disease outbreaks

Hong Kong case study 100 400,000
Mexico City case study 100 400,000
Boston case study 100 600,000

estimate of the probability distributions of the number of new cases and the mean social response.

We selected the number of agents by weighing the advantages of more realistic population sizes

against the computational costs of conducting simulations with large numbers of agents. We chose

to use 15,000 agents for the numerical experiments and optimization of control measures. For the

Hong Kong and Mexico City cases studies, 400,000 agents were used, and, for the Boston case study,

600,000 agents were used, the approximate population of Boston.

6.2 Numerical experiments

6.2.1 Understanding model behavior

The objective of these simulations was to understand the behavior of the model, absent disease

control measures. In particular, we wanted to verify that the model produced a social response

when the disease had any of the characteristics predicted by the social amplification risk framework:

" Novelty to the region

* Clinical severity

" Unusual presentation

" Unusual extent of spread

In the model, the novelty, clinical severity and presentation of the disease are represented by the

perceived risk index (K). The extent of spread is controlled by the disease spread parameters, 3

and TR. We designed two numerical experiments to parse out the role of these parameters in social

response. The first was intended to isolate the effects of the extent of the disease spread. Since the

social amplification of risk framework predicts that social response will occur when the disease has
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Table 6.2: Disease spread study - disease transmission and social response parameters

disease transmission dynamics

# per-contact infection probability
TR duration of infective period
-r intervention threshold
Ti intervention duration
rq edge removal probability
vp vaccination prior to outbreak probability

vd vaccination during outbreak probability
A indicator for whether control measures trigger social response

surge

social response dynamics

K disease risk index
p media penetration
q social interaction probability
a response decay

0.030, 0.031, ... , 0.080
6 days
15000 cases
0 days
0.0
0.0
0.0
0

0.5, 0.6, 0.7, 0.8, 0.9, 1.0
0.0
0.5
0.95

an unusually severe extent of spread, we wanted to confirm that our model could reproduce this

result.

The second experiment was intended to determine whether diseases with high perceived risk (r)

could produce social response, even without high incidence. In our model, media sends a social

response signal to the population when the number of new cases per day is greater than one half

the maximum number of new cases observed previously. Media is therefore not dependent on the

absolute number of cases and a media signal can be sent even when the incidence of disease is low.

This experiment was intended to explore whether media influence is sufficient to produce a social

response when disease incidence is low and the perceived risk of disease is high.

6.2.1.1 The role of disease spread

The goal of this experiment was determine the effects of the extent of disease spread on the social

response. In particular, we wished to verify that social response is relatively robust to changes in

the incidence of disease, but that social response can occur as a result of disease incidence if the

incidence is extremely high. In this experiment, we isolated the effects of the disease spread on

spreading social response. So that media influence would have no effect on social response, we set

media penetration (p) to 0.0. We then increased the infection probability (3) from 0.030 to 0.080,

while holding the duration of the infective period (TR) constant. We found the peak mean social

response for each combination of parameters. The parameters used in these simulations are given

in Table 6.2.
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Table 6.3: Media influence study - disease transmission and social response parameters

disease transmission dynamics

3 per-contact infection probability 0.0
TR duration of infective period 6 days
T intervention threshold 15000 cases
Ti intervention duration 0 days
q edge removal probability 0.0
vp vaccination prior to outbreak probability 0.0
Vd vaccination during outbreak probability 0.0
A indicator for whether control measures trigger social response 0

surge

social response dynamics

K disease risk index 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
p media penetration 0.00, 0.01, ... 0.19, 0.20,

0.25, ... 0.95, 1.00
q social interaction probability 0.5
a response decay 0.95

6.2.1.2 The role of media influence

This experiment was intended to illustrate how a disease that infects very few people can still lead to a

social response through media influence. Since we were interested in the effects of media, we wanted

to limit variability as a result of the disease spread. Therefore, we set the per-contact infection

probability (Q) to 0.0. As a result, the agent infected to seed the outbreak was the only agent to

become infected. This agent remained infected for 6 days before recovering (TR = 6). Observe that

the number of infected people at times 1 to 7 are as follows: N1 (1) 1, NI(2) = 1, ... , N1 (6) = 1

and N[ (7) = 0. Since a media signal is sent at time t if NI (t) > x max {NI (0), ... , NI (t - 1)

a media signal was sent in this experiment at times 1 through 6. No media signal was sent from

time 7 onward. Given the disease spread described above, we were interested finding the peak mean

social response for different values of K and p. The parameters used in these simulations are given

in Table 6.3.

6.2.2 Understanding the effects of control measures

The objective of this experiment was to gain insight into how the application of control measures

affects the spread of disease and social response. Control measures are used to stop or slow the spread

of disease. We considered two control measures: vaccination, applied either before or during the

outbreak and contact reduction. Vaccination moves susceptible agents immediately to the recovered

state, without becoming infected. Contact reduction temporarily removes edges from the disease

transmission network. It can be thought of as a reduction in the per-contact transmission probability

of the disease. Contact reduction measures could be as extreme as closing schools and businesses

or as mild as promoting improved hygiene practices and encouraging infected persons to remain at
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Table 6.4: Control measure study - disease transmission and social response parameters

control measures

baseline, vaccination vaccination contact reduc-
no control prior to during out- tion
measures outbreak break

disease transmission dynamics

3 per-contact infection probability 0.045 0.045 0.045 0.045
TR duration of infective period 6 days 6 days 6 days 6 days
-r intervention threshold 15000 cases 15000 cases 100 cases 100 cases
T, intervention duration 0 days 0 days 14 days 14 days
rq edge removal probability 0.0 0.0 0.0 0.25, 0.5, 0.75
vp vaccination prior to outbreak 0.0 0.1, 0.2, 0.3 0.0 0.0

probability
vd vaccination during outbreak 0.0 0.0 0.01, 0.03, 0.0

probability 0.05
A indicator for whether control 0 0 0 0

measures trigger social response
surge

social response dynamics

r disease risk index 0.5, 0.7, 0.9 0.5, 0.7, 0.9 0.5, 0.7, 0.9 0.5, 0.7, 0.9
p media penetration 0.1 0.1 0.1 0.1
q social interaction probability 0.5 0.5 0.5 0.5
oz response decay 0.95 0.95 0.95 0.95

home.

As a baseline, we set the disease parameters such that the disease would spread through a large

proportion of the population. Then we compared the baseline disease spread and social response

with the disease spread and social response resulting from various levels of vaccination prior to the

outbreak (vp), vaccination during the outbreak (vd) and contact reduction (q). Comparisons were

made with respect to total new cases and total social response, peak new cases and peak mean social

response and the number of days until the peak number of new cases and peak mean social response

were obtained. The parameters used in these simulations are presented in Table 6.4.

6.3 Finding the least cost disease control strategy

In this study, we solved the optimization described in Chapter 5. The objective was to learn how the

least cost control strategy changes when the cost of social response are considered in addition to the

costs of infection and implementing the control measures. The cost of social response, taking into

account losses to local business and tourism, can be billions of dollars [13, 68]. By accounting for

this cost, public health officials can make better decisions about how to respond infectious disease

outbreaks.

Since analytic computation of the joint dynamics of the disease spread and social response spread

is complex, we used simulation to estimate the expected cost, given the parameters, for values of v,
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and y ranging from 0.0 to 1.0. Then we determined at which value of vp or q the minimum expected

cost was achieved. In the sections that follow, we will describe in more detail the process for finding

the value of vp or q that minimized the cost.

6.3.1 Simulation approach to finding the least cost strategy

We will begin by explaining how we used simulation to solve the optimization problem formulated in

Chapter 5. We set all of the parameters that we were not optimizing over to fixed values. Therefore,

all parameters except vp were fixed for the vaccination optimization and all parameters expect 'q

for the contact reduction optimization. In the optimization formulation in Chapter 5, these fixed

parameters are given as 13o, TR0 , etc. Then for values of vp (alternatively q) ranging from 0 to 1,

we found the expected total cost. Recall from Chapter 5, that the expected total cost, given the

disease spread and social response parameters is the sum of the cost of the disease spread, the cost

of the implementation of the control measures and the cost of the total social response. Thus, the

expected cost for vaccination is

E(C113, TR, K, p, q, a, T, T1 , Vp, Vd, ?,A)=

CDE (OD P, TR, v,, p, q, a, 7, TI, vp, Vd, 7, A)

+ cIvPN + csE (#sR !3, TR, r,, p, q, a, T, T1 , Vp, Vd, ?, A) (6.1)

and the expected cost for contact reduction is

E (C 13, TR, K, p, q, a, 7, TI, Vp, Vd, 7, A)

CDE (OD /3, TR, , p, q, a, w, TI, VP, Vd, , A)

+cIq +csRE (SR /3, T, K, p, q, a, 7, T, vP, Vd, 7,A) (6.2)

It is trivial to find cjvpN and c1r7, since both terms are products of constants. It is more difficult,

however, to find cDE(OD 13, TR, K, p, q, a, T, TI, vp, Vd, I, A) and

cSRE (qsR 13, TR, K, p, q, a, T, TI, vp, Vd, 77, A), since the total number of infections (OD) and

the total social response (OsR) depend in a complex manner upon all of the disease spread and social

response parameters. We used Monte Carlo simulation to estimate

E (s 13 , TR, K, p, q, a, T, T 1 , vp, Vd, T, A) and E (OD 13, TR, K, p, q, a, T, Ti, vp, 77d, 7, A)

for each value of vp (,q). With these estimates for every value of vp (7q), we could easily calculate

the expected total cost for any values of cD, c, and csR and hence find the value of vp (,q) that
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minimized the total cost. In summary, the steps to find the value of vp (TI) that minimized the total

cost were:

1. Assign fixed values to all the disease spread and social response parameters other than the one

being optimized over (vP or 7).

2. For vp (7) from 0.0 to 1.0, obtain estimates of E (#SR 1, TR, K, p, q, a, T, TI, vP, Vd, 71, A)

and E (#D /3, TR, K, p, q, a, T, Ti, vp, Vd, 7, A) .

3. Using formulas 6.1 and 6.2, calculate the expected total cost for each combination of CD, CI,

CSR and vp 00 -

4. For each combination of CD, CI and CSR, find the value of vp (,q) that minimizes the expected

total cost.

6.3.2 Vaccination

For the vaccination optimization, we were interested in the effects of vp on the social response and

disease spread. We ran the optimization for each of three values of K, 0.5, 0.7, and 0.9, and for costs

CD = 1, CI C [0, 1 and CSR E [0, 0.5]. The parameters used for the optimization simulations are

shown in Table 6.5.

Table 6.5: Least cost vaccination study - disease transmission and social response parameters

disease transmission dynamics

#3
TR

T,
77
VP
Vd

A

per-contact infection probability
duration of infective period
intervention threshold
intervention duration
edge removal probability
vaccination prior to outbreak probability
vaccination during outbreak probability
indicator for whether control measures trigger social response
surge

0.045
6 days
15000 cases
0 days
0.0
0.0, 0.01, ... , 1.00
0.0
0

social response dynamics

K

p
q
a

disease risk index
media penetration
social interaction probability
response decay

0.5, 0.7, 0.9
0.1
0.5
0.95

6.3.3 Contact reduction

For the contact reduction optimization, we observed how changes in 77 affected the expected total

cost. The parameters used in these simulations are given in Table 6.6. The contact reduction

problem was solved for n equal to 0.5, 0.7 and 0.9, for costs CD = 1, CI E [0, 1] and CSR C [0, 0.5],
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and for social response surge indicator A equal to 0 and 1. We ran the optimization for both values of

A, because we were interested in whether assuming that implementation of control measures causes

a surge in social response would lead to a change in the least cost level of contact reduction.

Table 6.6: Least cost contact reduction study - disease transmission and social response parameters

disease transmission dynamics

/3 per-contact infection probability
TR duration of infective period
r intervention threshold
T1 intervention duration
,q edge removal probability
vp vaccination prior to outbreak probability

Vd vaccination during outbreak probability
A indicator for whether control measures trigger social response

surge

social response dynamics

r. disease risk index
p media penetration
q social interaction probability
a response decay

0.045
6 days
100 cases
14 days
0.0, 0.01, ... , 1.00
0.0
0.0
0, 1

0.5, 0.7, 0.9
0.1
0.5
0.95

6.4 Real-world infectious disease outbreaks: Modeling the spread

of disease and social response

The objective of these simulations was to demonstrate the ability of the model to predict social

response during actual disease outbreaks. We chose to focus on the HINI and SARS outbreaks in

Hong Kong, the two waves of H1N1 infection in Mexico City and the 2012-2013 influenza season in

Boston, Massachussets. In this section, we will describe the disease outbreaks and corresponding

social responses, as well as how we fit the disease spread to the observed cases and estimated the

perceived risk, r.

6.4.1 Approach to parameter selection

We accept that there are many parameters in the model, and if all parameters were allowed to freely

vary, it would be very easy to fit the social response for nearly any disease. We therefore decided

to set many of the model parameters to fixed values for the simulations of real-world outbreaks. In

particular, we decided to fix the social response decay rate (a), media penetration (p) and interaction

probability (q). These parameters were fixed, because there is little evidence to suggest that they

would change substantially with time. Conceivably, p could be different in different locations, as

a result in different levels of attention to media or different amounts of media infrastructure. We

decided that, since we do not have data on how media penetration might differ between Mexico
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City, Boston and Hong Kong, it was most reasonable to set this parameter to a fixed value. Thus,

the only social response parameter that was allowed to vary in these simulations was r,.

The parameter, r,, represents the perceived risk of the disease. We decided that in order for r,

to change between simulations, we would need evidence that there were changes in the perceived

novelty or severity of the disease to the society in question. News reports and scientific studies

informed our choice of K for each outbreak that we simulated. While ultimately the selection of K

was done manually and was therefore subject to bias, we made every effort to limit that bias.

With the disease spread, we took more liberties in selecting parameters to achieve a good fit to

the observed cases. While there have been many studies aimed at accurately estimating important

factors in the spread of disease [69, 70], such as the reproductive number, that was not an objective

of this study. Our intention was to show that we can accurately model social response to disease

outbreaks. Therefore, we selected disease spread and control measure parameters that fit the ob-

served epidemic curve and did not place great concern on the realism of those parameters. We set

the time until recovery (TR) at 6 days, since the infectious period for influenza is approximately

6 days [71]. Then, we selected values of the per-contact infection probability (#3) and the control

measure parameters, such that the resulting expected new cases per day (or per week in the case

of Boston) were a good fit to the observed new cases. Since no vaccine was available for SARS and

none was available for HIN1 during the time when it was spreading in Hong Kong or Mexico City,

only contact reduction was used for those simulations. For the Boston simulations, vaccination and

contact reduction control measures were used.

6.4.2 H1N1 and SARS outbreaks in Hong Kong

6.4.2.1 Background and description

Hong Kong is a special administrative district of China and home to 7 million people. In 2003, Hong

Kong became the epicenter of the severe acute respiratory syndrome (SARS) outbreak in South

Asia. In total, 1755 cases were reported, with 299 deaths [11]. While SARS was spreading in Hong

Kong, Leung et al. conducted a series of surveys of the population 1121. The surveys measured

anxiety using the State-Trait Anxiety Inventory (STAI) and asked about self-protective behaviors.

It was found that at the height of the outbreak in early April, the residents of Hong Kong were

experiencing heightened anxiety in response to the spread of SARS. Over time, as the case count

fell, the anxiety scores returned to lower levels. Specifically, at the peak of the outbreak the mean

STAI score was 24.8 (on a scale from 10 to 40). By the time the outbreak had ended, the mean score

had fallen to 14.5. In addition, anxiety during the SARS outbreak had behavioral manifestations.

Many residents wore face masks, stayed home from work or school, and there were reports of panic

buying [7]. The economy of Hong Kong was hit hard by the reductions in retail sales and tourism
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Figure 6-3: Comparison of the severity of the HLN1 and SARS outbreaks in Hong Kong. H1N1 was
a prevalent but mild disease, whereas SARS infected few people but had a high fatality rate. During
the 2009 HIN1 outbreak in Hong Kong, 27,498 confirmed cases were reported and the total number
of cases of H1N1 (confirmed and unconfirmed) is believed to be much higher. However, only 80
deaths were reported. In contrast, 1755 confirmed cases and 299 deaths from SARS were reported
in 2003.

[13].

In the summer and fall of 2009, Hong Kong was affected by the global HIN1 pandemic. Compared

with SARS, H1N1 affected a very large proportion of the population. Using blood tests taken before

and after the outbreak, as well as survey data and reports of confirmed cases, Lee et al. estimated

that about 11% of the population of Hong Kong was infected with H1N1 [72]. Another study found

that between 11% and 19% of the population was likely infected [73]. Nevertheless, public anxiety

was relatively low during the outbreak. One survey found that a majority of residents, 64%, felt that

the HINI outbreak had had no effect on their daily lives [74]. Another survey found that anxiety

was low at all points in the outbreak, with a mean score of about 18 on the STAI [75]. This low level

of concern about H1N1 was due to the low perceived severity of HIN1. In late April, when HIN1

was spreading in Mexico but had not yet reached Hong Kong, surveyed residents of Hong Kong

estimated H1N1 to be about 60% as severe as SARS. As they learned more, the severity estimates

were revised downward. When H1N1 finally hit Hong Kong in June, residents believed HINI to be

only about 15% as severe as SARS [75]. Figure 6-3 compares the severity of the H1N1 outbreak

with that of the SARS outbreak.

The volume of Google searches for "HiN1" in Hong Kong during 2009 supports the findings about

perceived disease severity [76]. The most searches were conducted in late April, before HIN1 had

begun to spread locally in Hong Kong. Although there was a spike in search interest in mid June

when local transmission began, search interest in H1N1 declined in Hong Kong over July and August

even as the number of cases rose. The residents of Hong Kong appear to have been interested in the

threat of a dangerous disease, but when it actually arrived and was not as severe as feared, interest

dissipated. It is also important to note that the arrival of HIN1 in Hong Kong was not a surprise.

67

300-



Table 6.7: Comparison of SARS and HIN outbreaks in Hong Kong

SARS (2003)

disease characteristics

1755 cases and 299 deaths; a 17% mortality
rate [11].
Medical personnel had no prior experience
with SARS.

The disease's arrival in Hong Kong was unex-
pected, since there was not widespread knowl-
edge of the SARS outbreak in China [7].

social response characteristics

High anxiety at the peak of the outbreak,
about 25 on the State-Trait Anxiety Inventory
[12].
Behavioural evidence of social response, in-
cluding panic buying [7].

H1N1 (2009)

Approximately 11% of the population infected
[72, 73].
Medical personnel were familiar with the
treatment of influenza and anti-viral drugs
were effective.
Public health officials had time to prepare a
response to H1N1, since it began spreading
in Mexico months before it arrived in Hong
Kong.

Low anxiety during the outbreak, about 18 on
the State-Trait Anxiety Inventory [75].

64% of residents reported that the outbreak
had no effect on their daily lives [74].

It was quite clear that HINI would have a global footprint, and health officials in Hong Kong had

time to prepare their response before HIN arrived. In Table 6.7, the SARS and HINI outbreaks

are compared.

6.4.2.2 Estimating the disease spread and social response parameters

We accounted for the observations about disease severity and incidence in the choice of model

parameters. The perceived novelty and severity of HIN when it began to spread in Hong Kong

were low. Therefore, we set K equal to 0.6. In contrast, SARS was novel and severe, so we set K equal

to 0.95. For fitting the SARS disease spread, we selected disease parameters and contact reduction

parameters (/3, T, r, -r and TI) such that the simulated expected number of new infections would

approximately match the number of confirmed new cases, rescaled to a population of 400,000. For

HINI, we selected disease parameters and contact reduction parameters such that the simulated

expected number of new infections would approximately match the number of confirmed new cases,

rescaled assuming a population of 400,000 with 11% of the population eventually infected. We

assumed that the proportion of total cases that were confirmed remained constant over time. After

setting the disease spread parameters, we modeled the projected social response. The parameters

used to simulate the disease transmission and social response for Hong Kong are shown in Table 6.8.
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Table 6.8: Hong Kong - disease transmission and social response parameters

Hong Kong

SARS, 2003 HiNi, 2009

disease transmission dynamics

#3 per-contact infection probability 0.05 0.049
TR duration of infective period 6 days 6 days
-r intervention threshold 50 cases 2500 cases
Ti intervention duration 300 days 300 days
,q edge removal probability 0.50 0.12
vp vaccination prior to outbreak probability 0.0 0.0
vd vaccination during outbreak probability 0.0 0.0
A indicator for whether control measures trigger social 0 0

response surge

social response dynamics

, disease risk index 0.95 0.60
p media penetration 0.1 0.1
q social interaction probability 0.5 0.5
a response decay 0.95 0.95

6.4.3 Spring and fall H1N1 outbreaks in Mexico City

6.4.3.1 Background and description

In March of 2009, cases of respiratory illness began to surface in La Gloria, Mexico. By April 10, it

was reported that 616 people, or 28.5% of La Gloria's population, had been infected [77]. While it

has since been confirmed that multiple respiratory infections were circulating, at the time it appeared

that a novel H1N1 influenza virus was responsible for the outbreak. Shortly afterword, influenza

cases began to be reported throughout Mexico. The outbreak was particularly intense in Mexico City

where, according to data from the Mexican Social Security Institute (Instituto Mexicano del Seguro

Social), 203 confirmed cases were reported by June 1 [70]. The Mexican government responded to the

outbreak in Mexico City with extreme social distancing measures that have been estimated to have

reduced disease transmission by between 29% and 37% [70]. Schools, restaurants and entertainment

venues were closed and all public gatherings canceled [77]. Many businesses voluntarily shut down.

There were media reports of widespread panic [78, 79]. The economy of Mexico also felt the effects

of HINI. Across Mexico, it is estimated that the spring epidemic cost over 2.3 billion dollars (about

0.3% of Mexico's gross domestic product) [68].

In late August of 2009, there was a second outbreak of HINI in Mexico City corresponding

with the return of children from the summer school vacation. By that time, fears that the 2009

influenza pandemic could reach the scale of the 1918-1919 pandemic had largely been alleviated. As

a consequence, though many more people were infected in the fall wave of infection, the outbreak

was met with relative calm. Although the Mexican government continued to encourage hygiene and

social distancing of infected individuals, closures were not widespread and the disease was allowed
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to run its course [80]. In Mexico City, approximately ten times as many cases were infected in the

fall HINI outbreak, which lasted from late August to early December, than in the spring outbreak,

which lasted from April to May [70]; however, the social response to the fall outbreak was much

smaller. The spring and fall waves of infection are compared in Table 6.9.

Table 6.9: Comparison of spring and fall outbreaks of H1N1 in Mexico City in 2009

spring outbreak fall outbreak

disease characteristics

203 confirmed cases reported by June 1 [70]. 2138 confirmed cases reported between
September 1 and December 31 [70].

Marked the emergence of a a strain of in- H1N1 was not as severe as originally feared
fluenza that in the past had caused extreme and there was increased familiarity with the
morbidity and mortality. virus.

social response characteristics

Schools, restaurants and entertainment venues No widespread closures or activity restrictions
were closed [77]. [80].
Media reports of widespread panic [78, 79]. Media reports give little indication of panic or

anxiety.

Figure 6-4 illustrates how the two outbreaks were treated in the Mexican press. The number

of news articles in the Factiva database that were published in Mexico and included references to

both Mexico City and influenza was recorded for every day between April and December. During

the spring outbreak, there was a spike in interest in HIN1 followed by a slow decline. When HINI

returned in the fall, it received almost no attention from the press.

6.4.3.2 Estimating the disease spread and social response parameters

We modeled the distinct dynamics of the spring and fall outbreaks by selecting the disease spread

parameters (3, TR, rI, T, and TI) and the disease risk index (r,). Since no vaccine was available for

HiN1 at the time of the outbreaks, contact reduction was the only intervention used. The disease

spread parameters and were set such that the expected new infections matched the confirmed new

cases per day. The size of disease was scaled, so that the 400,000 agent network could stand in

for Mexico City, which has a population of about 9 million. Additionally, since confirmed cases

represented approximately 3.5% of total cases in Hong Kong, we assumed that 3.5% of total cases

were confirmed in Mexico City. We also assumed that the proportion of total cases that were

confirmed remained constant through time.

For the spring wave of H1N1 infection, we set , equal to 0.75 to reflect the novelty of HIN1, its

appearance outside of the normal flu season, its perceived severity in light of the La Gloria outbreak,

and the fact that severe cases had been seen in young people, which is indicative of a more virulent

form of influenza. For the fall wave of H1N1 infection, the disease risk index was reduced to 0.60,

since the population had become more familiar with H1N1 and because it had been shown that
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Figure 6-4: Heightened media interest in H1N1 during spring outbreak but not fall outbreak in
Mexico City. We posit that media attention to a disease outbreak increases social response. During
the spring outbreak of H1N1 in Mexico City, there were over 100 articles published per day on
influenza, a large amount of media coverage. During the fall outbreak, although there were more
confirmed cases of influenza, there was little press atention.

HINI was not as severe as originally feared. The parameters used to simulate the outbreaks in

Mexico City are shown in Table 6.10.

6.4.4 2012-2013 influenza season in Boston

6.4.4.1 Background and description

The objective of of this simulation was to model a real-world outbreak in which the application of

control measures resulted in a surge in social response. We selected to model the 2012-2013 influenza

season in Boston, Massachusetts, because there is a clear association between the declaration of a

public health emergency in Boston and attention to the outbreak from the press and from individuals

searching the Internet.

The 2012-2013 influenza season arrived in the northeast United States unusually early. The

uppermost plot in Figure 6-5 shows the number of new confirmed cases in the US Health and Human

Services Region 1 (the northeast) per week for the 2004 through 2012 influenza seasons. The 2012

season is shown in red. The 2012 season in Region 1 had a large number of infections but was not

exceptional. The 2004, 2007 and 2010 seasons all had similar numbers of confirmed cases in Region 1

and presumably in the Boston area as well. The 2012 influenza season was unusual, however, in that

the peak in cases took place over a month earlier than normal. Boston-area hospitals, Massachusetts

General and Beth Israel Deaconess, reported strained capacity due to the increase in influenza cases
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Table 6.10: Mexico City - disease transmission and social response parameters

Mexico City

H1N1, spring 2009 H1N1, fall 2009

disease transmission dynamics

# per-contact infection probability 0.053 0.047
TR duration of infective period 6 days 6 days
r intervention threshold 600 cases 2500 cases
Ti intervention duration 300 days 300 days
r1 edge removal probability 0.50 0.25
vp vaccination prior to outbreak probability 0.0 0.0
vd vaccination during outbreak probability 0.0 0.0
A indicator for whether control measures trigger social 0 0

response surge

social response dynamics

, disease risk index 0.75 0.60
p media penetration 0.1 0.1
q social interaction probability 0.5 0.5
a response decay 0.95 0.95

[81]. On January, 9 2013, Boston mayor, Tom Menino, declared a public health emergency in Boston.

In the week that followed, over 7500 free influenza vaccinations were delivered in 24 clinics around

the city [82], and the number of flu cases began to decline.

The declaration of a public health emergency corresponded with a spike in the number of Google

searches for "influenza" among residents of the Boston metro area (middle plot, Figure 6-5). The

Google search interest was the higher in the week that the emergency was declared than it had been

in any other year between 2004 and 2013, with the exception of 2009. A spike in the number of

news articles published including the words "Boston" and "influenza' was also observed in the week

that the emergency was declared (lower plot, Figure 6-5). It is clear that the emergency declaration

was effective at drawing attention to the spread of influenza.

6.4.4.2 Estimating the disease spread and social response parameters

We set the disease spread and control measure parameters such that the simulated weekly cases

approximately matched the observed weekly cases, rescaled to account for the difference between

total and confirmed cases. We assumed that 3.5% of total cases were confirmed, as in Hong Kong.

The confirmed cases per week were obtained from the Boston Public Health Commission [82]. Since

the 2012 outbreak was seasonal influenza, we selected a low value of r,, 0.55. We were attempting

to simulate the surge in social response resulting from the mayor's declaration of a public health

emergency. Therefore, we wanted the intervention to always take place on the same day, January

9th. For the Boston simulation, we ignored the control measure initiation threshold (T) and instead

always initiated the intervention on the 9th if the disease was still spreading at that time. We set
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Table 6.11: Boston - disease transmission and social response parameters

Boston

influenza, 2012-2013 season

disease transmission dynamics

per-contact infection probability
duration of infective period
intervention threshold

intervention duration
edge removal probability
vaccination prior to outbreak probability
vaccination during outbreak probability
indicator for whether control measures trigger
social response surge

0.075
6 days
NA, intervention initiated on January, 9 2013
if the disease was still spreading at that time
14 days
0.2
0.1
0.03
1

social response dynamics

disease risk index
media penetration
social interaction probability
response decay

0.5
0.1
0.5
0.95

the indicator for whether control measures trigger social response surge (A) to 1. The parameters

used for the Boston simulations are shown in Table 6.11.
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Figure 6-5: Declaration of public health emergency in Boston resulted in spike in Google search
interest and media attention. Mayor Menino declared a public health emergency on January 9, 2013
(red dotted lines) following the unusually early onset of the influenza season (solid red line, upper
plot). The week that the emergency was declared, there was a spike in Google search interest in
"influenza" among residents of the Boston metro area (solid blue line, middle plot) and a spike in
the number of English language articles including the words "Boston" and "influenza" (solid green
line, lower plot).
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Chapter 7

Results

7.1 Numerical Experiments

We analyzed the model behavior under different sets of parameters. Consistent with our observations

from data, social response was observed when the disease had high novelty or clinical severity (high

K). Additionally, if the disease spread was exceptionally large, a social response resulted. However,

the model was far more sensitive to increases in r than to increases in /3.

7.1.1 Understanding model behavior

7.1.1.1 The role of disease spread

We isolated the effects of disease spread by setting the media penetration parameter p to 0.0.

Thus, the observed social response resulted only from word-of-month communication emanating

from infected agents, who served as sources of social response since newly infected agents have their

social response levels set to ri. Figure 7-1 shows the effect on the expected peak mean social response

of increasing the per-contact infection rate (/3), while holding the other parameters constant. The

expected peak mean social response is the largest mean social response observed at any point in the

outbreak, averaged over 300 realizations of the model.

In these simulations, r had little effect on the expected peak mean social response. For all values

of K, as the infection rate increased, the expected peak mean social response remained level at about

0 for 3 < 0.04, gradually increased for 0.04 < /3 < 0.07 and then plateaued as 3 increased above 0.07.

While RO cannot be formulated in quite the same way for our model as for the Kermack-McKendrick

SIR model, the sudden transition from no social response to increasing social response at / ~~ 0.04

suggests that, given TR = 6, the point at which the disease spread begins to build to epidemic

proportions in our model is when /3 increases past 0.04. For lower values of /, we expect the disease

spread to die out before taking hold in the population. Given the formulation of the model, absent
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Figure 7-1: Effect of disease spread on social response. The media penetration parameter (p) was set
to 0 and the time until recovery (TR) was fixed at 6 days. Thus, these simulations isolate the effect
of changing the per-contact infection probability (/3) on the expected peak mean social response. As
/3 increases, the expected peak mean social response gradually rises and then plateaus. Changes in
the perceived risk index K have relatively little effect on the resulting social response, absent media
influence.

media influence, the largest social response value that can possibly be achieved is r'. In practice, the

expected peak mean social response appears to approach a maximum of approximately j.

These simulations reflect the case in which the unexpectedly large spread of disease drives the

social response. The 2013 dengue fever outbreak in Singapore is an example of such behavior [151.

It is important to note, however, that the model is relatively robust against changes in the infection

probability. One of the objectives in developing this model was to limit the effect of disease spread

on the resulting social response. It is clear that most diseases, even most diseases with high incidence

do not have social response. The model reproduces this behavior. Changes in t, resulting in changes

in the media signal, have a much larger effect on the resulting social response than do changes in the

infection rate of the disease. It is difficult to produce a large social response with the model when

media has no involvement.

7.1.1.2 The role of media influence

This experiment was intended to isolate the effect of media influence by setting the disease spread

parameters such that the spread of disease would result in no social response absent media influence.

We then examined the effects of changing n and p on the expected peak mean social response. The

results of this experiment are shown in Figure 7-2.

The effect of increasing media penetration (p) is non-linear. For high novelty or severity of disease
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Figure 7-2: Effect of media influence on social response. The disease spread parameters were chosen
such that, absent media influence, no social response occurred. When novelty and severity were low
(small r,), little social response was observed, regardless of media penetration (p). When the novelty
and severity of a disease were high (large r,), media influence resulted in a social response, even at
very low levels of media penetration. In other words, if the disease did not not have characteristics
that result in a high perceived risk of infection, such as novelty, severity, or lack of knowledge about
treatment or transmission, media did not excite a social response.

(K > 0.7), we observed that even at very low levels of media penetration a large social response was

observed (Figure 7-2). As p increased past 0.1, the growth in expected peak mean social response

slowed. Since the social response of each individual is required to be less than 1, the system became

saturated when both p and K were large. When n was small (r, < 0.7), media had little effect on the

social response of the agents. For , equal to 0.6, the expected peak mean social response increased

almost linearly as p increased. For K equal to 0.5, the expected peak mean social response remained

approximately 0 as p increased. This result follows from the formulation of the media signal. When

M(t) $ 0, M(t) = 2K - 1. Thus, when r = 0.5, M(t) = 0, so no media signal was sent.

Since K represents the perceived novelty and severity of disease, these simulations demonstrate

that when the disease is perceived as highly threatening, a social response can occur, even though

incidence may be relatively low. Examples of diseases with high r, include Ebola, avian influenza,

SARS and MERS. Outbreaks of these diseases have historically been quite small, but have attracted

widespread attention. These simulations also show that, in the model, small outbreaks of diseases
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that are commonplace and not severe will not result in social responses. This model behavior is

consistent with the research on when social response is most likely to occur.

7.1.2 Understanding the effects of control measures

Since the spread of disease fuels the spread of social response, one of the most effective ways to stop

the spread of social response is to stop the spread of disease. We therefore investigated the effect of

disease control measures on disease transmission and social response. Two types of control measures

were used: vaccination and contact reduction. Vaccination conferred perfect immunity against the

disease. The vaccination of a susceptible agent shifted that agent's disease status immediately

from susceptible to recovered, without passing through the infected stage. We examined both

vaccination prior to the disease and vaccination during the disease after a threshold for intervention

had been surpassed. Contact reduction was implemented by randomly removing edges from the

disease transmission network. It can be thought of as a reduction in the per-contact infection rate.

Figure 7-3 shows the peak number of new cases per day and peak mean social response. Figure

7-4 shows the total number of cases and the total social response. The control measures we examined

had varying levels of effectiveness. Even a low level of vaccination prior to the outbreak (vP = 0.1)

resulted in a substantial reduction in the peak new infections and the total new infections. Compared

with the baseline simulations the mean number of infections fell by 3869. Vaccination during the

outbreak was also highly effective. For 1% vaccination per day (vp = 0.01), the mean number of

infections was reduced by 3741 compared with baseline. Contact reduction was much less effective

at stopping the spread of disease. A very high level of contact reduction (q = 0.75) was required

to produce reductions in the mean total infections that were comparable to those achieved by 10%

vaccination prior to the outbreak.

For contact reduction, the mean number of cases is not the whole story, however. In our simu-

lations, the contact reduction intervention lasted for two weeks after the intervention threshold was

reached. If the disease spread was not nearly entirely stopped during that period, a second wave

of infection could emerge. In that case, there was little reduction in the total number of infections;

the disease spread was merely delayed. Figure 7-5 shows the distributions of the number of days

until the peak number of new cases was reached. The baseline distribution, the distribution for

10% vaccination prior to the outbreak and the distribution for contact reduction with q equal to

0.25 are pictured. Vaccination prior to the outbreak consistently reduced the time until the peak in

cases was observed. The baseline and contact reduction had a similar number of outbreaks reach

their peak in the first one hundred days. Among outbreaks that peaked after one hundred days,

those with contact reduction had a longer amount of time pass before the peak compared with the

baseline outbreaks. Delaying can sometimes be an effective tactic for disease control, because it

allows hospitals to prepare and researchers to learn more about the disease or possibly prepare a
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0.00
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Figure 7-5: Effect of control measures on the number of days until the peak new infections and peak
mean social response were reached. Compared with the baseline simulations (green) implementing
vaccination prior to the outbreak (vP = 0.10, red) consistently resulted in a reduction in the number
of days until the peak number of new infections was reached. In contrast, implementing contact
reduction (1 = 0.25, blue) sometimes increased the number of days until the peak number of new
infections.

disease. Therefore, although they result in little reduction in the total number of cases, low levels

of contact reduction should not be entirely disregarded as tools for disease control.

The H1N1 outbreaks in Mexico City are a real-world example of how contact reduction delayed

the peak in cases [701. The summer school vacation reduced disease spreading contact, leading to

a temporary reduction in the number of cases. When students returned to school from summer

vacation the outbreak was reseeded and H1N1 resumed spreading. We have found that contact

reduction is frequently less effective than vaccination at stopping the spread of disease. However,

contact reduction is often the only line of defense against infectious diseases. Vaccines have yet to be

developed for many diseases and, as with the H1N1 vaccine, they sometimes do not become available

until the disease is already spreading actively. It is therefore important to understand how to best

use contact reduction to stop the spread of disease and social response.

We will now consider the effect of control measures on the social response. The effect of control

measures on peak social response depended on the value of K. For K equal to 0.5, the social response

was determined entirely by word-of-mouth communication resulting from the spread of disease. No

media signal was sent. Therefore, reducing the spread of disease by implementing control measures

resulted in a decrease in peak mean social response. For r equal to 0.9, reducing the spread of

disease had almost no effect on the peak social response. For example, the average baseline peak

mean social response was 0.53 when K was equal to 0.9. Vaccinating 30% of the population before
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the outbreak was the most effective control measure that we examined. The average peak mean

social response after vaccinating 30% of agents was 0.52, barely different from the baseline level.

We found that controlling the spread of disease was somewhat effective at reducing the peak mean

social response for r, equal to 0.7.

All control measures that were effective at reducing the spread of disease were effective at reducing

the total social response, regardless of the value of r,. This result is one of the reasons why the

optimization study focused on the cost of total social response, instead of peak mean social response.

The total social response is sensitive to changes in the disease spread for all values of K, whereas

the peak mean social response is robust to changes in the disease spread for high values of r. The

peak mean social response was unaffected by changes in the disease spread for high r,, because, when

r, was large, media played a large role in producing social response. Even one or two cases were

sufficient to produce a large peak mean social response.

7.2 Finding the least cost disease control strategy

We implemented an optimization study to find the level of disease control that minimized the

expected total cost of disease. The expected total cost of disease was assumed to be the sum of

the cost of infection with the disease, the cost of the intervention and the cost of the total social

response. We found that considering the cost of social response considerably changed the optimal

control strategy. In some cases, it became optimal to implement control measures in situations

where, absent a cost for social response, the least cost strategy was to do nothing. In all cases,

considering the costs of social response resulted in implementing more extreme control measures

than when the costs were not considered.

7.2.1 Vaccination

These simulations determined the level of vaccination prior to the outbreak that minimized the

expected total cost of the disease. Figures 7-6a, 7-6b and 7-6c show the least cost proportion of

the population vaccinated for , equal to 0.5, 0.7 and 0.9 respectively. For all values of K, when the

cost of vaccinating one individual (c1 ) was near 0.0, the least cost strategy was to vaccinate nearly

everyone. The least cost amount of vaccination for c, greater than 0.0 depended on the value of r,.

For r, equal to 0.5, the least cost strategy was to vaccinate only a small proportion of the population.

The proportion vaccinated increased slighted as the cost of total social response increased and the

cost per vaccine decreased. Nevertheless, the least cost proportion vaccinated was always less than

35% of the population when the cost of the vaccine was greater than or equal to 0.02. When the

cost per vaccination was exactly equal to the cost of infection, the expected cost was minimized

by vaccinating 15% of the population. The simulations exploring the effect of control measures on
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disease spread and social response revealed that even such low levels of vaccination prior to the

outbreak can be effective at reducing the number of cases of disease. Since the social response was

not a substantial factor in the total cost, low levels of vaccination proved sufficient to minimize the

cost.

The limited effect of CSR on the least cost amount of vaccination was a result of how diseases

with low perceived risk are treated by the media. In our model, the media does not send a social

response signal when r, equals 0.5. Therefore, the social response produced by the model was small

even when the disease spread was large. As a result, changing the cost of total social response did

not result in major changes in the least cost strategy.

For , equal to 0.7 or 0.9, the least cost proportion vaccinated was highly dependent upon the

cost of total social response. When the cost of total social response was near zero the least cost

proportion vaccinated was quite low. The proportion vaccinated rose quickly with increases in the

cost of total social response. When the cost of total social response exceeded 0.3, the least cost

solution was to vaccinate all agents for all values of the cost of vaccination.

7.2.2 Contact reduction

The optimal strategy for contact reduction was sensitive to changes in the cost of social response.

Figures 7-7a, 7-7b and 7-7c show the optimal level of contact reduction for K equal to 0.5, 0.7 and 0.9

respectively. We found that for most combinations of costs, the optimal contact reduction interven-

tion involved a either a very high percentage of contact reduction (i > 0.6) or no contact reduction

at all. In this way, our results mirror those of Maharaj and Kleczkowski [65], who found that the

cost of ineffective attempts at social distancing can be higher than the cost of doing nothing. In

their words, "if social distancing is being considered, do it well, or not at all."

For K equal to 0.5, when the cost of contact reduction was 0.0, the least cost contact reduction

(r) was over 0.9 for all costs of social response. As the cost of contact reduction increased or the

cost of total social response increased, the least cost amount of contact reduction declined. The line

cSR = 0.00001cJ - 0.05 defined the frontier where the optimal solution shifted from implementing

some contact reduction to implementing none at all. For points (cI, cSR) such that 0.05 < 0.00001ci-

CSR, the least cost solution was not to implement contact reduction. We discussed previously that

implementing low levels of contact reduction frequently does not result in a substantial reduction in

the total number of cases but instead merely delays the outbreak. In our optimization formulation,

we assigned no value to delaying the onset of an outbreak, so the optimal solutions for contact

reduction either involved no contact reduction at all or a high enough level of contact reduction to

stop the spread of disease entirely.

For r, equal to 0.7 or 0.9, the optimal solution for most values of cJ and csR was to implement

a very high level of contact reduction. As when N was equal to 0.5, there was a line past which the
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(a) Least cost proportion vaccinated when tn = 0.5.
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(c) Least cost proportion vaccinated when , = 0.5.

1.0

0.6
0.4
0.2\0800.0 0.5

0.2 0.4
0.4 0.3

0. 0.2 /

rV1.0 
0.0

(b) Least cost proportion vaccinated when r,= 0.7.

Figure 7-6: Least cost proportion of the population vaccinated prior to the outbreak. The least cost
proportion vaccinated is pictured as a function of the cost of total social response (csR), the cost
per vaccine (cI) and the perceived risk of infection (,n).
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optimal solution was to implement no contact reduction at all. This line was shifted toward lower

values of cI and higher values of csR, leaving a smaller region in which no contact reduction was the

least cost solution.

In this optimization study, we looked at least cost solutions as the cost of contact reduction

ranged from 0 to 50,000. This wide range affects the wide range of costs for real socal distancing

measures. Low levels of contact reduction could result from people who are infected staying home

from work or school. This sort of contact reduction has relatively low cost. Widespread contact

reduction involving people who are not infected could be much more costly, since there would be

a reduction in retail sales and productive work hours. Despite its high costs, it can sometimes be

necessary to initiate widespread contact reduction. Some diseases, including influenza [711, can be

transmitted before the infected person becomes symptomatic. Quarantining infected individuals is

therefore not sufficient to stop transmission.

We will now discuss the results of assuming that the initiation of the intervention leads to a

temporary surge in social response (A = 1). The temporary surge in social response resulting from

the intervention introduced an interaction between the cost of intervention (c1 ) and the cost of

social response (csR). Effectively, the surge resulted in an increase in c1 , and the size of the increase

depended upon CSR. If the cost of social response was low and the intervention led to a surge in

social response, there was little increased cost to implementing the intervention. If the cost of social

response was high, however, the cost of implementing an intervention that would cause more social

response was high.

Figures 7-8a, 7-8b and 7-8c show the least cost level of contact reduction for K equal to 0.5, 0.7

and 0.9 respectively. When r was equal to 0.5, there was little change in the least cost amount of

contact reduction resulting from the change in A. As when A was equal to 0, the optimal solution

for A equal to 1 was to implement no contact reduction for most values of c, and csR examined.

When K was equal to 0.7 or 0.9, it became even more important to completely stop the spread of

disease when contact reduction was attempted. Compared with the optimal strategy when initiating

contact reduction had no effect on the social response, the optimal strategy shifted toward more

extreme contact reduction measures where measures were implemented at all (compare Figures 7-

7b and 7-7c with Figures 7-8b and 7-8c). The region in which the least cost solution was to not

implement any contact reduction did not shift as a result of having the implementation of control

measures lead to a temporary increase in social response. This result is likely because the region

in which the optimal strategy was to not intervene was also the region in which the cost of total

social response was low. Since a low cost was assigned to the social response, the increase in social

response resulting from the intervention had little effect on the cost of intervention.
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(a) Least cost contact reduction when n = 0.5
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(b) Least cost contact reduction when K = 0.7
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(c) Least cost contact reduction when , = 0.9

Figure 7-7: Least cost levels of contact reduction when initiation of the intervention had no effect
on social response (A = 0). The least cost value of contact reduction is pictured as a function of
the cost of total social response (csR), the cost of contact reduction (cI) and the perceived risk of
infection (r).
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(a) Least cost contact reduction when r, = 0.5
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(c) Least cost contact reduction when r, = 0.9

Figure 7-8: Least cost levels of contact reduction when initiation of the intervention led to a tem-
porary surge in social response (A = 1). The least cost value of contact reduction is pictured as
a function of the cost of total social response (csR), the cost of contact reduction (ci) and the
perceived risk of infection (K).
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7.2.3 Conclusions from least cost control measure study

In all of our simulations, assigning a cost to the total social response resulted in increased disease

control measures in the least cost solution. For both vaccination and contact reduction the least cost

disease control strategy was highly dependent upon the perceived risk of infection (r,). For r, equal

to 0.5, the least cost solution was to implement minimal control measures, especially for high values

of ci and low values of csR. For K equal to 0.7 or 0.9, extreme disease control measures were put

in place for most values of cI and cSR. These findings suggest that considering the costs of social

response makes in it even more important to quickly stop the spread of diseases with high perceived

severity.

When discussing our conclusions, we should note that the costs of disease spread and social

response are not independent. We consider the cost of disease spread to include all costs directly

associated with the illness. These costs include medicines and hospital beds. The cost of social

response includes costs peripheral to the spread of disease, such as people taking time off from work

to avoid becoming infected or reduction in tourism revenue from vacationers canceling or delaying

their trips. Clearly, both the cost of disease and the cost of social response will be higher for high

severity diseases. The cost of intervention may be less dependent on the severity of the disease. The

effect of disease severity on the relative costs of disease, intervention and social response should be

taken into account when determining the costs for a particular disease outbreak.

7.3 Real-world infectious disease outbreaks: Modeling the spread

of disease and social response

Through simulation of the disease spread and social response during the Hong Kong SARS and

HIN1 outbreaks, the two waves of H1N1 in Mexico City in 2009 and the Boston 2012-2013 influenza

season, we demonstrate that the model's predictions approximate the observed social response for

these outbreaks.

7.3.1 H1N1 and SARS outbreaks in Hong Kong

In Hong Kong, there was a consistently low level of social response through the 2009 HiN1 outbreak,

while during the the SARS outbreak the social response rose rapidly when cases were first appeared

and declined as the number of cases declined. This behavior is replicated by the social response

model. The simulated disease spread and social response for the SARS and HINi outbreaks are

shown in Figure 7-9. The disease spread for SARS was small. Compared with the disease spread

for HINI, the number of new cases per day for SARS was almost imperceptible when viewed on the

same scale. Nevertheless, a sizable social response was produced for SARS, but not for HINI.
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Figure 7-9: The spread of social response to SARS and HINI in Hong Kong. Social response and
disease spreads are shown for the 2003 SARS outbreak and the 2009 HLN1 outbreak. Disease spread
was modeled such that the expected number of new infections per day reflected the observed number
of new infections per day. The disease risk index (rK) was set to 0.95 for SARS, reflecting the novelty
of the virus, its unexpected appearance in Hong Kong, and the high clinical severity of the disease.
Residents of Hong Kong considered HIN1 to be a much less severe disease than SARS. Therefore,
we set the disease risk index to be lower, 0.60. Simulations were conducted with 400,000 agents
and 100 replications of the model. In these simulations, the widespread media attention directed
as SARS helped to fuel a large social response in the population, whereas H1N1 did not produce
a social response. In our model, the properties of the disease and how the society perceives the
threat determine whether disease will attract media attention and the population will exhibit a
social response, and it is possible for diseases that are not highly prevalent to result in large social
responses.
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During the SARS outbreak in Hong Kong, 1775 people became infected [11]. Since the population

of Hong Kong is approximately 7 million, we can assume that the vast majority of residents of Hong

Kong had no personal connections to the infected people. In our model, no social response would have

been observed for the SARS outbreak if media had not played a role. Word-of-mouth communication

is not sufficient in the model to produce a social response when the infected population makes up

such a small proportion of the overall population. Since SARS had high perceived risk (, = 0.95), a

large media signal was sent when cases of SARS began to spread and continued to be sent until the

disease spread was close to an end. The media attention to SARS produced a large social response

in March and April. Once the last cases were detected in May, the media stopped sending a social

response signal to the population, allowing the social response to die out through the decay process.

In a study of anxiety during the H1N1 outbreak, Cowling et al. [75] observed that anxiety

remained low throughout the outbreak. Our social response model shows similar effects. The

simulated social response is consistently low through the HINI outbreak and does not rise with the

rise in cases. The case study of the SARS and HINI outbreaks in Hong Kong illustrates that our

model does not depend strongly on disease incidence. A high incidence disease, such as H1N1, can

have a small social response, while a low incidence disease, such as SARS, can have a large social

response. The key parameter is the perceived risk of disease. If the perceived risk of disease is high,

it is possible for a social response to occur regardless of the incidence of disease.

7.3.2 Spring and fall H1N1 outbreaks in Mexico City

In 2009, the first major urban outbreak of H1N1 took place in Mexico City in April and May.

There was widespread concern about the disease and the federal and city governments implemented

extreme social distancing measures to prevent the spread of disease. When HINI returned to the

city in the fall, there was little indication of social response. The spring and fall outbreaks of HIN1 in

Mexico City were separated from one another by only three months, but during those three months

scientists were able to analyze the data gathered during the spring. It was concluded that H1N1

was less virulent than originally feared. We modeled the disease transmission for the spring and

fall outbreaks by fitting the simulated number of new cases per day to the observed number of new

cases, appropriately scaled. We then modeled the social response dynamics by setting the perceived

risk of disease for both outbreaks.

Figure 7-10 shows that in our simulations, a large social response, driven largely by media

influence, was observed for the spring wave of infection. The fall wave of infection was characterized

by large disease spread and low social response. In Mexico City, it is clear that media interest in

the disease corresponded with the rise in social response during the spring. The number of media

articles published on H1N1 during the spring outbreak far exceeded the number published in the

fall (see Figure 6-4). In our model, a relatively high perceived risk of infection (K = 0.75) led to
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Figure 7-10: The spread of social response to HIN1 during the fall and spring 2009 outbreaks in
Mexico City. Social response and disease spreads are shown for the spring H1N1 outbreak and the
fall outbreak. Disease spread was modeled such that the expected number of new infections per
day reflected the number of new infections per day. For the spring outbreak, the disease risk index
(r,) was set to 0.75 to reflect the H1N1's novelty and its perceived severity. For the fall outbreak,
we lowed the disease risk index to 0.60, since Mexico City already had experience with HiN1 and
H1N1 was shown to not be as severe as originally feared. Simulations were conducted with 400,000
agents and 100 replications of the model. While the number of cases produced in the spring wave
of infection was relatively low, a large social response resulted. The fall wave of infection, though
larger, was met with relative calm. In our model, the social response in the spring wave was triggered
by heightened media attention brought on by the novelty and perceived severity of the disease. In
the fall, H1N1 did not attract as much media attention and the resulting social response was much
smaller.

increased media attention and consequently social response, in the spring outbreak. By the fall, it

had been determined that H1N1 was not as severe as originally feared. Therefore, we set a lower

perceived risk of infection (r, = 0.6), which led to less media attention in the disease and lower social

response. These simulations illustrate how changes in the perceived risk of infection, resulting from

experience with the disease and increased information, can result in changes in the social response.

As with the Hong Kong case study, the Mexico City case study illustrates that higher incidence of

disease does not necessarily imply that the social response will be larger. While the incidence plays

a role in the social response, the perceived risk of infection and media influence have a much greater

impact. It is important to note that had the Mexican government not implemented extreme contact

reduction measures at the beginning of the spring wave of infection, there likely would have been
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many more cases in the first wave. Nevertheless, given that these measures were in place, it seems

that the social response observed was connected to the potential of a large and deadly outbreak,

rather than the presence of such an outbreak.

7.3.3 2012-2013 influenza season in Boston

The 2012-2013 influenza season struck Boston unusually early. As the number of cases rose, major

area hospitals reported that they were running out of capacity [81]. Mayor Tom Menino declared a

public health emergency on January, 9, 2013. Free vaccination clinics were offered around the city

and an influenza awareness campaign was launched [82]. The mayor's announcement corresponded

with a surge in Google search interest in "influenza?' in the Boston metro area and a surge in media

reports about influenza in Boston (see Figure 6-5).

We fit the simulated new cases per week to the observed new cases per week, scaled to reflect the

fact that only a small proportion of total cases are confirmed. We then modeled the social response.

The perceived risk of infection was low (r = 0.55), since seasonal influenza is a commonplace and

relatively mild disease in Massachusetts. Control measures (vaccination and contact reduction) were

initiated on January 9, 2013. On January 9, we modeled a temporary increase in the proportion

of the population receiving a signal from the media as well as an increase in the size of the media

signal. This increased attention from the media brought about an increase in social response in the

week that followed. Then as the number of cases declined, the social response declined.

The Boston public health emergency was selected for simulation because it was an intervention

for a mild disease that had received almost no attention from the press prior to the intervention.

Therefore, we could tell that the social response was as a result of the intervention and not caused

by some other factor. This simulation demonstrates that our model can account for temporary

social response resulting from a public official drawing attention to the disease. We do not wish to

imply that the declaration of the public health emergency was misguided. Indeed, it is clear that

in the weeks following the declaration many people became vaccinated for influenza who may not

have otherwise done so. The social response was mild, and there were no indications of panic or

detrimental economic consequences.

7.3.4 Conclusions from modeling of real-world disease outbreaks and as-

sociated social responses

We have shown through the simulation of disease and social response in Hong Kong, Mexico City

and Boston that we can accurately replicate social responses seen in actual disease outbreaks. The

model can produce social response when diseases are perceived as high risk, even if they do not

have many cases, such as SARS. Adjustments can be made for changes in the perceived severity of
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Figure 7-11: The surge of social response resulting from the declaration of a public health emergency
during the 2012-2013 influenza season in Boston. Social response and disease spreads are shown for
the spring H1Ni outbreak and the fall outbreak. Disease spread was modeled such that the expected
number of new infections per week reflected the observed number of new infections per week. The
disease risk index (r,) was set to 0.55, since seasonal influenza has a low level of perceived risk.
On January 9, when control measures were initiated, we modeled a surge in media attention and
an increased media signal. As a result, the social response temporarily rose, before declining with
the decline in cases. This simulation was conducted with 600,000 agents and 100 replications of
the model. The difference in the variability of the number of new infections in these simulations
compared with the Hong Kong and Mexico City simulations is the result of the presentation of cases
for Boston on a weekly scale rather than a daily scale.
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disease with time, as with HINI in Mexico City. Finally, surges in social response resulting from

the announcement of disease control measures can be modeled, as with Boston.

Nevertheless, there are some limitations to our results. A primary limitation is the availability

of data. We principally relied on news sources to determine whether or not social response had

taken place. Scholarly studies into psychological responses to disease outbreaks are rare. The lack

of objective data on observed social response has limited our ability to confirm that our model's

results are consistent with the observed social response. There is also a lack of data about the

spread of disease. We obtained daily or weekly numbers of confirmed cases for each of the diseases

examined. However, the total number of cases (both confirmed and unconfirmed) is unknown. In

Hong Kong, there was sufficient evidence from serological studies following the HINI epidemic to

conclude that approximately 3.5% of cases were confirmed. Given that we had no data on the

percentage of confirmed cases of influenza in either Mexico City or Boston, we assumed that in these

cities 3.5% of cases were confirmed as in Hong Kong. This assumption is likely not accurate. It

gives the impression that the HINI outbreaks in Mexico City were quite small compared with the

Hong Kong outbreak, which is likely not true. Moreover, the scaling of the outbreaks affected our

ability to fit the infection curve to the scaled cases, since outbreaks that affect a very large portion

of the population are easier to fit than those that infect fewer people. Once the disease has taken

hold in the population, it will generally infect a large number of people before dying out. Despite

these limitations, our simulations have demonstrated that the model can replicate population-level

disease spread and social response with a reasonably high degree of accuracy and have served as an

illustration of the variety of disease outbreaks that can be simulated using the model.
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Chapter 8

Discussion

8.1 Summary and conclusions

We have formulated a model that can accurately simulate infectious disease outbreaks and their

associated social responses. We have demonstrated the flexibility of this model, as well as its ability

to provide insight into how disease and social response spread and how they can be prevented.

We will now briefly summarize our major findings and discuss how our model contributes to the

literature on social processes accompanying the spread of disease.

In Chapter 2, we delved into the theory of health risk perception and analyzed historical bio-

surveillance data to understand when and why social response occurs. We found that social response

is most likely when the disease is novel to the region, not well understood or has high clinical severity.

In Chapter 3, we reviewed the literature on models of disease spread and social processes. In Chap-

ter 4, we introduced a model of the joint diffusion of disease and social response. We incorporated

our findings from Chapter 2 into the model by introducing a key parameter, r', which reflects the

perceived risk of the disease to the society. The perceived risk determines the degree to which media

becomes involved in the spread of social response. In Chapter 5, we formulated an optimization

problem intended to minimize the expected total cost of the outbreak, assuming that the cost is

the sum of the costs of the disease itself, the intervention to prevent the spread of disease and the

social response. In Chapter 6, we described the implementation of the model and introduced a

number of studies intended to determine the behavior of the model and to gain insight into how

to control the spread of social response. In Chapter 7, we discussed our results. In particular, the

numerical experiments to understand model behavior showed that the model will produce a social

response either when the disease has characteristics, such as high novelty or severity, that give it

high perceived risk or when the disease spread is very large. The numerical experiments in which

we compared the social response and disease spread with different types of control measures showed
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that reducing the number of cases of disease will reduce the total social response but not the peak

mean social response. We also found that, in general, vaccination was more effective at stopping

the spread of disease and social response than was contact reduction. The optimization approach to

finding the least cost disease control strategy revealed that considering the costs of social response

when determining how to intervene in disease outbreaks results in implementing greater control mea-

sures, especially for diseases with high novelty or severity. Finally, the simulations of real disease

outbreaks demonstrated that the model can accurately model real-world infectious disease and the

corresponding social response.

This model is among the first to take into account social processes accompanying the spread

of disease. It can help public health officials determine how best to respond to disease outbreaks,

by helping them to consider the effects of the spread of disease and government action on the

social response. This model contributes to the body of knowledge in several ways. Perhaps most

importantly, the present model accounts for discrepancies between perceived and actual risk of

infection. One might assume that social response to disease spread is proportional to the overall

burden of the disease. Under this hypothesis, we would expect that low probability, high severity

diseases and high probability, low severity diseases would elicit little social response, yet this is not the

pattern observed. Instead, while high probability, low severity diseases, such as seasonal influenza,

do not typically elicit social response, high severity, low probability diseases, such as Ebola and

SARS, frequently do. Moreover, the same disease can result in different social responses in different

locations or even in the same location at different times, as with HINI in Mexico City. Through

incorporation of a mechanism for risk amplification, the present model is able to realistically model

these scenarios.

The model introduces a mechanism for media influence. Media undoubtedly plays a large role

in disseminating information about the threat of disease and, according to the social amplification

of risk framework, can be responsible for increasing concern about infection. Bomlitz and Brezis

collected data on the number of newspaper articles about different types of diseases [83]. Among

the risks that they examined, newspaper coverage of a health risk was negatively correlated with

the number of deaths from the risk. This finding is seemingly counter-intuitive, but it is consistent

with the research showing that perceived risk and actual risk can differ. Bomlitz and Brezis found

that novel, low incidence risks, such as SARS and bioterrorism, garner the bulk of attention, while

more commonplace risks are comparatively ignored. Our model captures this behavior. Media

actively influences the population when novelty and severity are high, regardless of incidence. We

have shown that even when a disease has low incidence and social response does not spread through

word-of-mouth, media influence can produce a social response.
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8.2 Directions for future research

We have demonstrated that the model can accurately model infectious disease outbreaks with and

without social response. We have also shown how the model can be applied to provide insight into

how to control the spread of disease and social response. We will now discuss ways in which the

model can be improved and expanded upon, as well as suggest future studies that could be completed

using the model.

In this thesis, we have explored what happens when disease control measures produce social

response. The converse could also occur. That is, social response could compel authorities to take

action about the disease. This situation could occur when the government has a vested interest

in keeping news of the spread of the disease quiet or when the groups of people most affected by

the disease are not a high priority for the government. The key change to the model required to

simulate this scenario would be to base the initiation of an intervention off of a threshold for the

social response, as opposed to a threshold for the disease spread.

There are several directions for future research related to the structure of the network and

the overall formulation of the model. As currently formulated, the model is most applicable to

studying diseases that have airborne transmission or are spread via contact. It is less appropriate

for vector-borne, water-borne or food-borne illness, since these types of diseases do not spread along

human social networks. Changes would need to be made to the disease transmission process and the

coupling mechanism between disease spread and social response to make the model more suitable

for use with these types of diseases. These changes could consist of changing the structure of the

network along which the disease is transmitted. For example, cholera transmission has been modeled

as a diffusion process on a hydrological network [84]. Or the changes could be more fundamental. For

example, dengue fever, a vector-borne disease, is frequently modeled using compartmental models,

which describe the interaction between the mosquito and human populations [85]. An additional

direction to explore regarding the model formulation would be to experiment with how the model

results are affected by the choice of network. In the literature review, we discussed several agent-

based models employing more sophisticated, realistic network structures. While we believe that our

decision to use a random network was appropriate since our goal was to formulate a general model,

a more realistic network structure might produce more reliable results and could reveal interesting

implications about how the structure of social networks affects the transmission of social response.

Another direction for future research is an expansion of the control measures study presented

here. We have looked at least cost strategies for vaccination prior to the outbreak and contact

reduction during the outbreak. This study could be expanded to include vaccination during the

outbreak. Additionally, for the contact reduction study, we fixed the duration of the intervention

(TI) at two weeks and the threshold number of cases (T) at 100. Optimizing over TI, in addition

to the amount of contact reduction (77), could produce additional insights into how to use disease
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control measures to reduce social response.

In the current research, we have considered all types of social response to lie along the same

continuum. We know, however, that different types of social response can have different effects.

Flight has been shown to further the spread of disease [57, 55]. Reduction in travel might have the

opposite effect. One reason why we did not differentiate between different types of social responses

is because we do not know why we observe one type of response to one disease and a different type of

response to another. Some researchers hypothesize that the public response depends on the way that

public officials respond to and communicate about the disease [3]. Additional research is required to

differentiate between the different types of social response and determine when each type of response

is expected to occur. With that knowledge, it would be possible to consider the feedback effects of

the social response on the spread of disease.

Finally, we are interested in developing a more data-driven approach to estimating ri. The current

method for estimating K is to use local doctors' familiarity with the disease and the perception of the

likely threat of the disease to arrive at an intuitive estimate of K. This process could be automated

by developing a predictive model that estimates the likely severity of the social response, given the

country's characteristics and experience with the disease. The creation of a such a model would

reduce the potential for bias in the estimation of K. Additionally, such a model could better account

for the economic and political situation in the country in which the disease outbreak takes place. For

example, we found that per capita gross domestic product and health expenditure as a percentage

of GDP are useful for predicting social response to dengue fever. These predictors did not play a

role in our manual estimation of K, but could easily be incorporated into a predictive model.
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Table A.1: Publicly available predictors used in dengue fever prediction

predictor

1 North America
2 South Asia
3 Southeast Asia
4 East Asia
5 Middle East
6 Australasia
7 Carribbean
8 Latin America
9 Europe
10 Africa
11 latitude
12 longitude
13 human development index (2007)
14 human development index growth from 1990 to 2000
15 percentage of females with secondary education (2007)
16 percentage of males with secondary education (2007)
17 public health expenditure as a percentage of GDP (2007)
18 public spending on education as a percentage of GDP (2007)
19 public spending on the military as a percentage of GDP (2007)
20 health expenditure per capita (2008)
21 gross domestic product per capita (2009)
22 infant mortality per 1000 (2010)
23 under 5 mortality per 1000 (2010)
24 adult female mortality per 1000 (2009)
25 adult male mortality per 1000 (2009)
26 deaths per 1000 due to malaria
27 deaths per 1000 due to cholera
28 deaths per 100,000 due to cardiovascular disease and diabetes
29 number of reported malaria cases (2008)
30 malaria incidence per 100,000 (2008)
31 average annual precipitation from 1960 to 1990
32 DPT immunization rate (2008)
33 endemic for dengue fever (2009, assembled from WHO, CDC, and NIH reports as well

as academic sources)
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predictor

34 physicians per 1000
35 hospital beds per 10,000 (2009)
36 percentage satisfied with healthcare
37 percentage that trust in people
38 percentage satisfied with their community
39 percentage that trust in the national government
40 percentage that have a perception of safety
41 homicide rate per 100,000
42 percentage of population with electricity
43 percentage of population with improved sanitation (2008)
44 internet users per 100
45 fixed and mobile phone subscribers per 100
46 newspaper subscribers per 1000 (most recent year available; 1996 to 2013)
47 Bertelsman transformation index (BTI) status index
48 BTI democracy status
49 BTI market economy status
50 BTI management index
51 BTI management performance

52 Transparency International corruption perception index (2009)
53 refugee population from country (2008)
54 refugee population in country (2008)
55 Spanish is the most commonly spoken language
56 English is the most commonly spoken language
57 Arabic is the most commonly spoken language
58 Chinese is the most commonly spoken language
59 Christianity is the most commonly practiced religion
60 Islam is the most commonly practiced religion
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