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Abstract

In this thesis, I present a cross-cultural study on human's trip length distribution and

how it might be influenced by regional socio-economic factors, such as population

density, income and unemployment rate. Mobile phone records contain very detailed

calling information of the spatiotemporal localization of hundreds of thousands of

users, which can be used as proxies for human trips. The traveling behaviors of 24

autonomous regions in San Francisco (5 regions), Dominican Republic (3 regions)

and a European country (16 regions) are studied through these rich mobile phone

data sets. We found that people in different regions have very heterogeneous aggre-

gate traveling patterns (trip length distribution) which can be generally grouped into

four distinct families. The result of Self-organizing map shows that the trip length

distribution has a certain degree of correlation to population density, which sparks

our interests to conduct a thorough research on factors such as population density

and income that can potentially influence the trip length distribution and human's

traveling behavior.
Using a double exponential function to fit the radius of gyration distribution

(i.e. a proxy to the trip length distribution), we are able to characterize human's

traveling behavior with four parameters. By applying principle component analysis,
the parameter space is transformed orthogonally and two principal components which

contribute most to the variance of sample set are extracted. We tempted to find

the regression relationship between population density and each of the components.

However, the R 2 is not enough high for estimation purposes.

With the extensive information source regarding household income, median age,
unemployment rate, we were able to conduct a multiple regression analysis in San

Francisco Bay area. Using radius of gyration as regressand, population density, in-

come, age, and unemployment rate as regressors, we found the R 2 is over 30%, which

is sufficiently good for cross-sectional data analysis. Additionally, the significant esti-

mated coefficients indicate that people living in wealthier and unpopulated areas tend

to travel more frequently and make long distance trips. Furthermore, descriptive com-

ments are provided for the connection between parameters in the fitting function and



population density and income.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Mobile phones are becoming increasingly ubiquitous throughout large portions of

the world. In industrialized countries mobile phone penetration is almost 100%,

while in non industrialized countries they constitute a large emergent market which

is receiving huge investments from mobile phone carriers [1, 2]. For billing purposes,

each mobile phone provider regularly collects extensive data about the call volume,

calling patterns, and the location of the cellular phones of their subscribers. In

order for a mobile phone to place outgoing calls and receive incoming calls, it must

periodically report its presence to nearby cell towers, thus registering its position

in the geographical cell covered by the closest tower (Fig. 1A). In consequence,

very detailed information on the spatiotemporal localization of billions of users is

contained in the extensive call records of today's mobile phone carriers. These data

constitute a huge opportunity to science; in particular, they provide information on

human motion at a scale not available heretofore. Maps with statistical trajectories

of large-scale human movements from different continents would have unprecedented

applications in urban planning, traffic forecasting and epidemic prevention, as in any

area involving human motion.

However, little research has aimed toward a derivation of human behavioral pat-

terns from this collective data; it is our aim to build algorithms to gain insight into
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Figure 1-1: (A) Location resolution: Each circle represents a mobile-phone tower and the dashed
lines correspond to a Voronoi diagram that roughly delimits the main reception zone of each tower,
partitioning the space into individual cells. The blue and red solid lines show the trajectory of two
mobile-phone users, illustrating how the call activity helps us to track individual motion. (B) Global
analysis: Preliminary results showing the calling pattern between Ruanda and the rest of the world.

the interplay between outcomes of interest and movement patterns. By considering

billions of data points of time and space from tens of millions of mobile phone sub-

scribers in regions ranging from rural Dominican Republic to urban California, we

can better understand the dynamics of these individuals, and the societies inl which

they live

In a recent study [1], Gonzalez showed that when analyzed with the appropri-

ate techniques, mobile phone data offer the possibility of characterizing statistically

human trajectories at a country scale. Those results established the basic elements

for constructing realistic agent-based models in which the distribution of agents is

proportional to the population density of a given region, and each agent has a char-

acteristic trajectory size derived from an observed distribution. Such distributions

must be derived from empirical data. Available studies have gathered data from in-

dustrialized countries [1 - 61 and have shown similarities in the calling patterns [4, 5]

and travel distance distributions among them [1, 6, 9]. However, much less is known

from the analysis of data coming from developing countries.

We expect that a thorough study of large data sets from developing countries will

uncover important differences with respect to human mobility patterns, which may

be rooted in particular economic constraints and, in some cases, in different cultural

habits. Our main goal for this work is to make a cross-cultural study human mobility,



coniparing the analysis of mobile phone data coming from industrialized countries and

those coming from developing countries.

Our dataset includes the mobility and communication patterns extracted from

cell phone logs of over 3,729,134 people around the world, spanning 24 autonomous

regions in San Francisco bay area, a European country and Dominican Republic. In

addition to characterize the human mobility patterns by a mathematical formula, we

expect to observe how these patterns display differently across autonomous regions.

The variations of human mobility patterns further imply the existence of essential

underlying socio-economic factors that are of various levels and thereby contribute

to dissimilar movement patterns. Finally, we concentrate on understanding the rela-

tionship between population density (plus income distribution for the available areas)

and mobility patterns and expect to discover original results.

1.2 Thesis Outline

Chapter 2 introduces the general methods applied in processing raw data, charac-

terizing calling activities and the calculation procedures of radius of gyration. The

methodology in this chapter is identical to those in [1], but is applied to analyze an-

other data set collected from San Francisco Bay area. Essentially distinctive mobility

patterns are observed which cannot be fitted by a truncated power-law distribution.

The differences in mobility patterns between San Francisco Bay area and the country

analyzed in [1] motivate us to concentrate on searching for the underlying determi-

nants.

To refine the comparative research on human movements across various regions,

we divide the country into several autonomous areas. An autonomous area is an area

of a country that has a degree of autonomy, or freedom from an external authority.

Typically it is either geographically distinct from the country or is populated by a

national minority or is an administrative region defined by the state or country. In

general, it is arbitrary how to place the borders in the land to characterize trips, in

this study we take the regions defined by each country for administrative purposes.



In Appendix A, several figures are presented, each of them represents the radius of

gyration distribution of one autonomous region. By applying the same methods to

the aggregated data sets recording subscribers' calling activities during one month in

24 autonomous regions, we observed that the quantified distribution are very different

but can be essentially grouped into four distinct families. These curves are further

analyzed in Chapter 5.

Additionally, we explored the role of some factors (such as population density, in-

come, etc.) and how they potentially influence or even determine human movements.

We start with investigating the inter-relationship between radius of gyration and pop-

ulation density, which is readily available from LandScan datasets [10]. The usage

of Kohogen self organizing maps (SOM) certifies our conjecture - strong relationship

exists between trip length distribution and population density distribution. The clas-

sification result from SOM is almost identical to the the classification according to

geographical locations. The coincidence strongly implies that radius of gyration and

population density are correlated with each other. Chaper 3 introduces the Kohogen

map and the results we obtained for our data sets.

In Chapter 4, we present the method that are used to find the relationship between

radius of gyration and population density. The distribution of radius of gyration can

be approximated by a double exponential functions in log scale. Therefore, the trip

length distributions are able to be characterized with four parameters. The extracted

parameters provide us the opportunity to understand their relationship to population

density. Principal Component Analysis (PCA) is used to disentangle correlations

among the four factors, and further reduce the dimensionality into two geometrically

orthogonal components that contribute most to the variance of our data sets.

In Chapter 5, regression analysis is presented with the goal to discover the rela-

tionship between these two parameters and population density. However, the result

gives a very low R2 if we use a simple regression model with population density and

unit vector as regressors. To improve the performance of the model, we incorporate

other factors including the normalized standard deviation of population density and

another two explanatory variables derived from a trip length distribution model [11].



The enriched model gives a better R 2, but caution is needed when interpreting the

relationship by using this model, because the number of parameters are not small

enough compared to the number of sample points. Finally, a regression model with

income data and population information as well as a sample collected at the resolution

of tower level from San Francisco Bay area is analyzed. We find that people in rich

and less populated areas tend to travel more frequently and make long distance trips.

Finally, we grouped residents into nine category according to local population den-

sity and income level and calculated respectively their radius of gyration distribution.

This enables us to analyze how parameters in the double exponential distribution are

related to socio-economic factors, such as income and population density.

Chapter 6 concludes the thesis.
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Chapter 2

Mobility Measures

The mobile phone records we analyzed include the one-month calling activities re-

ceived by nearby communication towers in San Francisco Bay area, Dominican Re-

public and a European country (denoted as EU in what follows). These rich mobile

data sets provide us unprecedented power to conduct a cross cultural analysis of hu-

man traveling behavior. We'combine this information with the population density

distribution at the resolution of 0.008333 decimal degrees. In particular, for San

Francisco Bay area, the income distribution data is available at an equivalent spatial

resolution, which enables us to analyze trip lengths with respect to population density

and income distribution in Section 5.3. Section 2.1 presents the data formats and the

methods we applied to obtain the refined data sets.

Understanding communication patterns from mobile phone records is important

to characterize the humans movements. Communication patterns are known to be

highly heterogeneous because some users rarely use the mobile phones while others

make hundreds or even thousands of calls each month. Empirical and statistical

methods are applied to investigate these data sets. Section 2.2 introduces how these

methods are used in interpreting mobile phone records from San Francisco Bay area.

At the end of this section, the measure of human mobility in small areas is presented.

By extending the analysis to a micro-scale, namely, at the resolution level of commu-

nication towers, we expect to fully characterize the heterogeneity patterns existing

among human's traveling behavior and expect to explore how such traveling behavior



Figure 2-1: A snapshot of human movements at San Francisco Bay area

relates to regional socio-economic factors, such as income, population density and

unemployment rate.

2.1 Data

This section introduces data sets in detail. The data sets we are analyzing include

mobile phone records and population density information at 1km 2 resolution from

San Francisco Bay area, Dominican Republic, and EU. Moreover, rich information

about household income, unemployment rate, median age are provided by Caliper

company, which enable us to do finer analysis of San Francisco Bay area.

2.1.1 Mobile Phone Data

The data sets we analyzed are monthly calling activities received by phone ser-

vice providers and the tower locations in San Francisco Bay area, Dominican Re-

public and EU. The one-month mobile phone data set includes 429,597 users and

374,221,753 phone calls which are recorded by 954 towers for San Francisco Bay area.

229,660 users, 37,636,984 calls are recorded by 184 towers in Dominican Republic and

3,069,877 users, 269,934,702 calls are recorded by 13,061 towers in EU.

Provided with rich mobile phone records, we can easily identify the time and



Figure 2-2: Location of towers in San Francisco Bay area

location of each calling activity and one step further, extract the characteristics or.

patterns of human movement. As an example, Fig. 2-1 and Fig. 2-2 displays a snap-

shot of calling activities and tower locations in San Francisco Bay area, respectively.

The format of tower location data is as shown in Table 2.1.The data sets of calling

information has the format as in Table. 2.2. In Table 2.2, the item "caller" denotes

the user who makes the call or sends the text message, "callee" stands for the one

who receives it. To make sure that these private information are protected, all the

Tower ID Latitude Longitude
69 37.552 -122.049
70 37.554 -121.982
71 37.824 -122.233

Table 2.1: Raw data format of tower location



Table 2.2: Raw data format of calling information

users are translated into hash formats. The items "day" and "time" record the exact

time of the phone activity, while "tower" is the ID of wireless tower that is serving

the call or text message, usually it, is also the nearest tower to the caller. The item

"Mode" is simply used to distinguish the calls and text messages.

These raw data sets contain sufficient information about human activities if ana-

lyzed with appropriate techniques. The raw data should be transformed first because

these calling information only gives for each call the caller and callee and the time

it happens, but to understand human activities and extract movement trajectories

we need to know the different coordinates visited at different calls. To analyze these

data appropriately, caution is needed as:

1. The purpose of our research is to analyze human mobility patterns, therefore

we need information about calling activities of each user for at least one month., as

we stated before. The transformed data sets should contain a list of users and the

associated calling activities with the corresponding locations sorted in time.

2. To facilitate our analysis, day and time should be in conjunction converted into

a single number in seconds.

3. We are interested in the trip length distributions of people which are recorded

by the mobile phone records. These records are serving as proxies for our analysis of

traveling behavior, therefore we don't need to distinguish the type of activities and

the item "imode" is not taken into account.

4. Latitude and Longitude are not the best coordinates for our analysis, because

the sphere shaped coordinates may make the results inaccurate in Euclidian Distance

calculation between towers. In the modified tower files. unprojected Greenwich data

Caller Callee Day Time Tower Mode
4082000002 4082000012 1 15:30:12 3041 1
4082000002 4082000015 1 8:22:00 3121 2
4082000003 4082000002 2 11:54:08 167 1



Tower ID X-coordinate Y-coordinate
69 6.160676 4.921061
70 12.059370 5.158100
71 -10.071578 35.125419

Table 2.3: Modified data format of tower location

User1 Number of calls
4082000002 18
Time of call Tower ID

398224 3041
398318 3119
489017 3272

User2 Number of calls
4082000003 63

327344 165

Table 2.4: Modified data format of calling information

are transformed to a projected Cartesian coordinate system.

The processed formats of raw data sets are shown in Table. 2.3 and 2.4.

2.1.2 Population Data

In this section we described LandScan, our density of population data sources. Most

of the descriptions presented here can also be found in the LandScan manual book

[10]. Using an innovative approach with Geographic Information System and Re-

mote Sensing, ORNL's(Oak Ridge National Laboratory) LandScanTM is the com-

munity standard for global population distribution [10]. At approximately 1km

resolution(30" x 30"), LandScan is the finest resolution global population distribution

data available and represents an ambient population (average over 24 hours). Land-

Scan population distribution models are tailored to match the data conditions and

geographical nature of each individual country and region.



Format and extent:

The data is distributed in both an ESRI grid format and an ESRI binary raster

format. The dataset has 20,880 rows and 43,200 columns covering North 84 degrees

to South 90 degrees and West 180 degrees to East 180 degrees.

Data values:

The values of the cells are integer population counts representing an average, or am-

bient, population distribution. An ambient population integrates diurnal movements

and collective travel habits into a single measure. Since natural or man made emer-

gencies may occur at any time of the day, the goal of the LandScan model is to develop

a population distribution surface in totality, not just the locations of where people

sleep. Because of this ambient nature, care should be taken with direct comparisons

of LandScan data with other population distribution surfaces.

Resolution and Coordinate System:

The dataset has a spatial resolution of 30 arc-seconds and is output in a geographical

coordinate system - World Geodetic System (WGS) 84 datum. The 30 arc-second cell,

or 0.008333333 decimal degrees, represents approximately 1km 2 near the equator.

Since the data is in a spherical coordinate system, cell width decreases in a re-

lationship that varies with the cosine of the latitude of the cell. Thus a cell at 60

degrees latitude would have a width that is half that of a cell at the equator (cos60

= 0.5). The height of the cells does not vary.

The values of the cells are integer population counts, not population density, since

the cells vary in size. Population counts are normalized to sum to each sub-national

administrative unit estimate. Also prior to all spatial analysis, we should ensure that

extents are set to an exact multiple of the cell size (for example 35.50, 35.0) to avoid

"shifting" of the dataset.
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Figure 2-3: Population density data from LandScan, figures from left to right refer to San Francisco
Bay area, Dominican Republic, and EU country, respectively.

2.1.3 Social-economic Data

The median family income data, unemployment rate and median age are provided

by TransCAD software package [41] for San Francisco Bay area. In TransCAD, San

Francisco Bay area is divided into several polygons, for each polygon, the associated

income distribution of 2007 is available hence the median family income can be com-

puted. Moreover, the rich data source for San Francisco Bay area also contains other

useful information, such as traveling mode quantile distribution, male/female ratio,

education level, etc.

2.2 Calculation of Population density

With the permission of ORNL for educational research, 2009 population counts file

and global GRID-formatted file are downloaded from the LandScan [10].

Using ESRI ArcGIS with the Spatial Analyst extension, the database file con-

taining population density distribution can be read, displayed and analyzed. The

data are referenced by latitude/longitude (WGS84) coordinates, so the selected area

should firstly be projected into WGS84 plain in order to be analyzed.

It is worth emphasizing that since the data is in a spherical coordinate system,

cell width decreases in a relationship that varies with the cosine of the latitude of the

cell. Therefore, projecting the data in a raster format to a different coordinate system

will result in a re-sampling of the data and the integrity of normalized population



counts will be compromised.

The computation of population density for each cell is very simple, using Eq.

(2.1):

Di = C/(2.1)

Where Di denotes the population density of cell i, Ci represents the population

counts of cell i while si is its area. Once we have the population density of all the

cells, we are able to calculate the distribution of the population for a particular area,

the average population density as well as other quantities of interest.

2.3 Pattern measures

2.3.1 Characterizing Individual Calling Activity

Communication patterns are known to be highly heterogeneous: some users rarely

use mobile phone while others make hundreds or even thousands of calls each month.

To characterize the dynamics of individual communication activity, we grouped users

based on their total number of calls. For each user we measured the Drobability

that the time interval between consecutive calls is AT. Fig. 2-4.A shows that users

with less activities tend to have longer waiting times between consecutive calls. By

rescaling the axis with the average inter event time AT= 8.2 hours as ATaP(AT)

and AT/AT , we get Fig. 2-4.B. Hence the measured inter-event time distribution

can be approximated by the expression P(AT) = 1/ATaF(AT/AT), where F(x) is

independent of the average activity level of the population. In addition, By aggregat-

ing individual calling activities in five groups with different total number of calls, we

obtain the aggregated P(AT) curve, and this curve can be fitted by Eq. (2.2) with a

R 2 0.9936.

P(AT) = (AT)--cxp(-AT/rc) (2.2)

Where the power-law exponent a = 1.405 ± 0.008 (with 95% confidence bounds)
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Figure 2-4: Inter event time distribution P(AT) of calling activity. AT is the time elapsed between
consecutive communication records for the same user. Different symbols indicate the measurements
done over groups of users with different activity levels(num. of calls). Figure 2-4.A shows the unscaled
version of Figure 2-4.B.

is followed by an exponential cutoff of Tc 113 hours . Eq. (2.2) is shown as a solid

line in Fig. 2-4.

In Fig. 2-4.A. we observe that although Eq. (2.2) best fits the aggregated P(AT)

curve, it performs poorly when applied to groups of users with different total numbef

of calls. In contrast to the result from [3], where all the curves associated witi

different groups converge into a single curve denoted by Eq. (2.2). The divergent

patterns of P(AT) for different groups of users imply the heterogeneity in users'

calling frequencies.

2.3.2 Observations at A Fixed Inter-event Time

To explore the statistical properties of the population's displacement distributions,

we measured the distance between user's positions at consecutive calls, capturing

373,792,156 displacements for the mobile phone records (See Fig. 2-5). We found that

the distribution of displacements over all users is well approximated by a truncated
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Figure 2-5: Probability density function P(Ar) of travel distances obtained for the mobile phone
records. The solid line indicates a truncated power law for which the parameters are provided in the
text (see Eq. (2.3)).

power-law Eq. (2.3):

P(Ar) = (Ar + Aro)-exp(-Ar/') (2.3)

with exponent # 2.618 ± 0.027 (with 95% confidence bounds), Aro = 3.536 km and

cutoff values , 44.11 km . The associated R 2 value is 0.9947.

Given the widely varying distribution of the inter event times between two calls (an

therefore the localization data), we need to investigate if the observed displacement

statistics are affected by this sampling heterogeneity. Using the mobile phone records,

we calculated the displacement distribution P(Ar) for consecutive calls separated by a

time ATt0.05ATO, where ATO ranged from 20 minutes to one day. For ATo < 2 hours

, the observed displacements are bounded by the maximum distance that users can

travel in the ATO time interval. For ATO > 4 hours we already observe Arm=ax 300

km, which corresponds to the largest displacement we could possible observe given the

area under study. We observe that the resulting P(Ar) distributions for different ATO

cannot be approximated by a truncated power-law with the same value of exponent

# = 2.618 (See Fig. 2-6), suggesting that the sampling heterogeneity does influence
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Figure 2-6: Displacement distribution P(Ar) for fixed inter event times ATo based on the mobile phone
records. The cutoff of the distribution is set by the maximum distance users can travel for shorter
interevent times, whereas for longer times the cutoff is given by the finite size of the studied area.

the observed displacement statistics. The resulted divergent displacement patterns

due to varying distribution of the inter event times between two calls reflect the

heterogeneous mobility patterns in San Francisco Bay area.

2.3.3 The Radius of Gyration Distribution

To compare different users' trajectories we need to study them in a common reference

frame. Inspired by the mechanics of rigid bodies, we assign each user to an intrinsic

reference frame calculated a posteriori from a user's trajectory. We can think of

the number times a user visited a given location as the mass associated with that

particular position.

The intrinsic reference frame for individual trajectories can be calculated as below:

Denoting a user's trajectory with a set of locations

(Xi, I1), (X2, Y2), --- , (Xnc, Ync)

where nc is the number of positions available for the user. An object's moment of

inertia is given by the average spread of an object's mass from a given axis. A two



dimensional object can be characterized by a 2 x 2 matrix known as the tensor of

inertia,

I IXX IXY4zi
We can calculate the inertia tensor for user's trajectory by using the standard

physical formulas

71

i=1

Ixy y 4 =-E r
i= 1

Since the tensor I is symmetric, it is possible to find a set of coordinates in which

I will be diagonal. These coordinates are known as the tensor's principal axes (21, 2)

In this set of coordinates I takes the forni

ID ( I,

Where 11 and 12 are the principal moments of inertia. They also correspond to the

eigenvalues of I and can be calculated from the original set of points as

1 1
I2 = -(Iz + IY) + -

2 2
12 = I (12X + 4,J ) + 1p

with

p = 41 1 +]2 -21X 1Y + 12
l l / X X r XI Yyy

The corresponding eigenvectors determine the principal axes (d and 22). representing

the symmetry axes of a given trajectory.

Since different users' principal axes a1 and 82 are different, to make a better

evaluation, we transform each user's principal axes (61, 82) to a common intrinsic



reference frame (a, &y) calculating the angle between the axes 22 and 1, as

cos(O) =

Where U1 , is the eigenvector associated with eigenvalue I1

Ixy1/2122-1/21yy+1/2p

1

resulting in

cos(O) -I1,y(1/2I22 - 1/2Iyy + 1/2p) 1  1S1 + (1/2L2-1/;I0 y+1/2p) 2

After rotation by 0, we impose'a conditional rotation of 180' such that the most

frequent position lays always in x > 0. Using these transformed data, the radius of

gyration is defined as

ra(t) =(r- - r1)2
9 na c (2.4)

C (t)i-

to characterize the linear size occupied by each user's trajectory up to time t. Where

ri represents the i = 1, ..., n(t) positions recorded for user a and r-*m = 1/n (t) Z=i i

is the center of mass of the trajectory.

To show that the observed distribution in Fig. 2-5 can be explained as a population-

based heterogeneity, corresponding to the inherent differences between individuals,

according to Eq. (2.4) we calculated the radius of gyration rg (t) for each user, in-

terpreted as the characteristic distance traveled by user a when observed up to time

t(Fig. 2-7.A). We measured the time dependence of the radius of gyration for users

whose radius of gyration would be considered small (rg(T) 3 km), or large (10

km< rg(T) < 20 km) at the end of our observation period T =1 month. The re-

sult indicates that the time 'dependence of the average radius of gyration of mobile

phone users display periodical fluctuation with a cycle of about 24 hours, which can

be interpreted as the human's daily schedule pattern. The curvature also indicates
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Figure 2-7: A. Radius of gyration rg(t) versus time for mobile phone users separated into two groups
according to their final rg(T), where T - 1 month. B. The distribution P(r.) of the radius of gyration
measured for the users, where rg(T) was measured after T = I month of observation. The solid line
represents a similar truncated power-law fit (see Eq. (2.5)).

that the radius of gyration rg(t) versus time for mobile phone users is a saturation

process. In addition, it is worth noticing that the prominent fluctuation at t = 550

hours is due to the absence of mobile phone data.

Moreover, we determined the radius of gyration distribution P(r 0 ) by calculating

rg for all users in the record. Using the truncated power-law to fit the dlistribution.

we obtained (Fig. 2-8.B):

P(rg) = (rg + r)-exp(-rg /s) (2.5)

with rg = 67.43 kin, or = 1.112 ±0.218(with 95% confidence bounds), K = 9.452 km.

In Fig. 2-7.B, we observe that P(rg) exhibits a peak around r = 9km, which

cannot be fitted by truncated power-law. This pattern coincides with the fact that

people living in the bay area often work in urban San Francisco. The R-square of

this curve-fitting using Eq. (2.5) is below 90% which indicates truncated power-law

cannot well describe the distribution of radius of gyration in San Francisco Bay area.

This motivates our study of finding other functions that can best approxiiate the

P(rg). I will state later in this thesis, a double exponential decaying function (an be
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Figure 2-8: The Zipf plot showing the frequency of visiting different locations (loc.). The symbols
correspond to users that have been observed to visit nL = 5, 10, 30 and 50 different locations. Denoting
with L, the rank of the location listed in the order of visit frequency, the data are well approximated
by Eq. (2.6) (the solid line)

used to approximate P(rg) in log-scale.

2.3.4 The Frequency of Visiting Different Locations

We ranked each location according to the number of times an individual was recorded

in its vicinity to explore the probability of individuals return to the same location.

For example, L =1 represents the most-visited location for the selected individual,

L = 2 represents the second-most-visited location, and so on. We divide individuals

into four group on the basis of the total number of location visited and for every

group calculated the average visiting probability associated with each location. We

find that the probability of finding a user at a location with a given rank L is well

approximated by Eq. (2.6):

P(L) = AL-11 (2.6)

where pu = 1.442 ± 0.006, A = 0.45, independent of the number of locations visited by

the user, as the solid line shown in the Fig. 2-8.

We can clearly see that about 40% of the time individuals are found at their first



two preferred locations. Therefore, individuals tend to devote most of time to' a few

locations with high ranks while spending the remaining time in other locations with

diminished regularities according to the rank. The conformity of the frequency of vis-

iting different locations among four groups supports the conclusion that individuals'

daily travel patterns reflect high degree of regularity.

2.3.5 Modeling Human Mobility Patterns Using Spatial Den-

sity Function

Individuals live and travel in different areas,' yet as shown in Fig. 2-8, each user can

be assigned to a well defined area, where she or he can be found most of the time. We

quantitatively modeled human mobility pat tern in light of the spatial density function

<Da(x, y), which provides the probability of finding an individual a in a given position

(x, y). By diagonalizing each trajectory's inertia tensor using formula mentioned in

section. 2.3.3, we can compare the trajectories of different users in the user's intrinsic

reference frame. The probability of finding a user in a given position is plotted in a

contour graph (Fig. 2-9). As shown in the figure, the spatial anisotropy is prominent

for the <b(x, y) function in this intrinsic reference frame. Notice that the left contour

graph in Fig. 2-9 is generated with 0 rg < 3 while the right orne is generated with

20 < rg < 30, it is clear that the larger an individual's rq, the more pronounced is

this anisotropy.

To quantify the degree of anisotropy associated with individuals with different rg,

we defined the anisotropy ratio S - o/eX, where

__1 "*
- c = =Z(xi - Xen) 2

\ic

\nc 1_

represent the standard deviation of the trajectory measured in the user's intrinsic

reference frame. By calculating Jy/(Tx according to a serial values of r-9, we found
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Figure 2-9: The probability density function <b(x, y) of finding a mobile phone user in a location (x, y)
in the user's intrinsic reference frame. B. After scaling each position with o and ay, the resulting

<D(x/ciz, y/oay) has approximately the same shape for each group. The two plots, from left to right were
generated for 10000 users with: 0 rg 3, 20 rg, 30.

that S does not decrease monotonically with rg (See Fig. 2-10).

By rescaling each user's trajectory with its respective og and o,, we can better

compare the trajectories of different users with individual anisotropy removed. As

shown in the bottom figures in Fig. 2-9, the recalled <D(x/os, y/o-y) distribution i

similar for the two groups with considerably different rg. There fore, in the absence

of the dependence exists between the anisotropy and rg, all individuals seem to fol-

low the same universal <D(x, y) spatial probability distribution. Using the predicted

anisotropic rescaling, combined with the density function <D(x, y), we can obtain the

likelihood of finding a user in any locations.

It has been shown that human trajectories exhibit a high degree of temporal

and spatial regularity, each individual being characterized by a time independent

characteristic length scale and a significant probability to return to a few highly

frequented locations. After correcting for differences in travel distances and the in-

herent anisotropy of each trajectory, the individual travel patterns collapse into a

single spatial probability distribution, indicating that despite the diversity of their

travel history, humans follow simple reproducible patterns.
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Figure 2-10: The change in the shape of <D(x, y) can be quantified by calculating the anisotropy ratio
S ao/o as a function of rg. Error bars represent the standard deviation.

2.3.6 Mobility Characterization around Towers

Section 2.3.3 introduces the concept of individual radius of gyration. By applying the

method detailed in that section, we are able to obtain the radius of gyration of each

individual up to time t. Hence, the trip lengths distribution of an interested area can

be characterized as the aggregated distribution of the radius of gyration of all the

individuals making at least one call in that area (As Fig. 2-7.B shows). However,

we are also interested in the individual mobility patterns from a given tower area,

since resolution at the tower-level would provide us with more elaborate user mobility

information (See Fig. 2-11).

Let R (t) be the radius of gyration of tower i lip to time t, then Ri(t) is calculated

according to Eq. (2.7).

R (t) = Z r"(t) (2.7)
| A(i ,g

where A(i, t) denotes the set including all the users who most frequently make calls

around tower i up to time t, that is tower i recorded most calling activities before t for

user i. r "(t) denotes the radius of gyration of user i, computed by Eq. (2.4). |A(i, t)
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Figure 2-11: A voronoi division of towers in part of San Francisco Bay area. The red points represent
towers, the polygons that contain the red points are defined as areas around towers according to
voronoi division. R (t) is computed for each area by Eq. (2.7).

denotes the number of elements in set A(i, t). Introducing the measure of 2.7 enables

us to characterize traveling behavior at a micro-scale, namely, around communication

towers. Based on the micro-characterization at the tower level, we are interested in

analyzing people's heterogeneous traveling behaviors and how they might potentially

relate to regional income, unemployment rate and other socio-economic factors.
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Chapter 3

Identify Inter-relationship from

Kohonen Map

Kohonen map is widely known to identify correlations among multiple factors. In

this section, we introduce briefly Kohoen map and how it can be applied to analyze

our data. The result of Kohonen map clearly visualize the inter-relationship between

radius of gyration and population density distributions.

3.1 Kohoen Map and Multidimensional Clustering

The Kohen Map, also named Self Organizing Map is type of artificial neural net-

work that is trained under unsupervised learning to produce a low-dimensional and

discretized representation (usually called a map) of the input sample space. Kohen

Map preserves the topological properties of the input space which makes it useful for

visualizing low-dimensional views of high-dimensional sequence. (Note, what follows

in this section is copied from Wikipedia with slight modifications.)

A self-organizing map consists of components called nodes or neurons, which for-

niulates an m x p bi-dimensional surface. Each node has a hexagonal shape surround-

ing by six neighbors (Fig. 3-1). Basically, the algorithm defines the nodes number as

m x p v'k, where k is the population to be clustered. Associated with each node is

a weight vector of the same dimension as the input data vectors and a position in the



Figure 3-1: Schematic self organizing map.

map space. The self-organizing map describes a mapping from a higher dimensional

input space to a lower dimensional map space. The procedure for placing a vector

from data space onto the map is to find the node with the closest weight vector to

the vector taken from data space and to assign the map coordinates of this node to

our vector.

The training utilizes competitive learning. When a training example is fed to

the network, its Euclidean distance to all weight vectors is computed. The neuron

with weight vector most similar to the input is called the winner. The weights of

the winner and neurons close to it in the SOM lattice are adjusted towards the input

vector. The magnitude of the change decreases with time and with distance from the

winner. The update formula for a neuron with weight vector Wv(t) is Equ. (3.1)

Wv(t + 1) = Wv(t) + E(v, t)a(t)(D(t) - Wv(t)) (3.1)

where a(t) is a monotonically decreasing learning coefficient and D(t) is the input

vector. The neighborhood function E(v. t) depends on the lattice distance between

the winner and neuron v. In the simplest form it is one for all neurons close enough

to winner and zero for others, but a gaussian function is a common choice, too.

Regardless of the functional form, the neighborhood function shrinks with time. At

the beginning when the neighborhood is broad, the self-organizing takes place on the

global scale. When the neighborhood has shrunk to just a couple of neurons the



weights are converging to local estimates.

This process is repeated for each input vector, the network winds up associating

output nodes with groups or patterns in the input data set.

It is also common to use the U-Matrix to characterize the distance between neigh-

bor nodes. The U-Matrix value of a particular node is the average distance between

the node and its closest neighbors. In a hexagonal grid, we might consider six neigh-

bors. To some extent, the visualization of distance between neighbor nodes can give

us a roughly classification.

3.2 Identification of Relationship Between Radius

of Gyration and Population Density from Ko-

hoen Map

Intuitively, there must exist at least vague inter-relationship between radius of gyra-

tion and population density, since people travel differently in those areas with dense

population versus areas with lower population density. Radius of gyration is a good

indicator of human's traveling behavior in terms of characterizing trip length distri-

butions [3], hence what we are interested here is the inter-relationship between radius

of gyration and population density.

The results in the following sections, where we applied SOM learning algorithm

to visualize mobile phone records and population data, show a strong connection

between these two factors. The perfect match between the classification obtained

from Kohoen map and the actual geological separation confirms our intuition.

3.2.1 Training Sample and Vector Construction

A typical issue associated with a statistical learning algorithm is the number of obser-

vations in the interested sample. At the resolution level of autonomous areas, only 24

observations are available, which is far from enough to give us a reliable result on the

statistical relationship between radius of gyration and population information. To
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Figure 3-2: SOM results, the feature vector consists of location of towers (Lat-, Lon), radius of gyration
(AvgRg), number of users (nbusers), and population density (popdensity).

improve the effectiveness of SOM algorithm, the sample points should be sufficiently

large. Therefore, we use a higher resolution at the tower levels, where 14199 towers

(sample points) are ready to be analyzed. Moreover, at this resolution, every tower

is associated with 262.6 users on average, which is enough to reflect the aggregated

mobility patterns and ensure the accuracy of each point in the sample.

In SOM, each node is associated with a weight vector V = (v(1), v(2), ... , v(n)).

v(i)n 1 are features in the input data. In our experiment, candidates for these features

include: The location of towers (latitude and longitude), radius of gyration (as defined

in Eq. (2.7)), number of users, and population density.

Notice that the radius of gyration is the average radius of gyration of all the

users around the tower, as defined in Eq. (2.7)). The population density is the

average density in a polygon containing the interested tower, in which the polygons

are obtained according to voronoi division.

3.2.2 SOM with Geographical Data

In this experiment, we include all the candidates in the vector, that is, the vector con-

tains location of towers, radius of gyration, number of users, and population density.

The result is shown in Fig. 3-2:



At the first glance of the U-matrix in Fig. 3.2, we observe that a green curve at

the bottom divides the whole map into three parts (clusters). Coincidentally we have

three different regions which are Dominican Republic, Bay area and Spain, thereby

we need to explore whether the three parts classified by U-matrix actually represent

the regions. Namely, is the U-matrix classification reasonable or just the outcome of

a data mining method without any worthful meaning?

Obviously, if we separate the points completely according to the location of towers,

then since the towers in different regions are not overlapped with each other, the

result should be grouping all the towers belonged to a same region into one cluster.

This classification is meaningful because it coincides with the geographical separation

among these three regions. Therefore, if we can prove that the classification by U-

matrix is the same as the classification by the location of towers, then we can contend

that U-matrix classification is reasonable.

Take a look at the "Lat" and "Lon" plots in Fig. 3-2. In the construction of

vector, we know these two features should rely on information about the location

of towers. In "Lon", we observe that a shape contrast between the bottom-left part

with blue color and the rest. According to the color bar, blue color denotes the points

with longitude around -122', which coincides with the longitude range of Bay area

(-122.60, -120.9'). The longitude range of Dominican Republic is (-71.70, -68.4'),

and the longitude range of Spain is (-18.00, 4.30), which cannot be visualized as

blue color. In "Lat", the bottom-right part is blue, representing the nodes with

latitude around 28.2. However, the latitudes of towers range from 18.2' to 19.8'

for Dominican Republic, from 36.00 to 38.2' for Bay area, and from 27.7' to 43.7'

for Spain, no such regions coincides with the latitude level shown in the plot. The

reason is that in SOM, the features of every sample point fed to the network are

broadcasted to the neighborhood. Although the effects are diminishing the longer the

Euclidian distance is, if the surrounding sample points' features are strong enough

(here, by "strong" we mean the features are shapely different to the neighborhoods)

and if the number of sample points surrounding the interested area are sufficiently

large, the features' values of interested area would be changed but still maintaining



the topological pattern. This is exactly the case in "Lat": the bottom-right part

is surrounded by a number of nodes with high latitude (about 380, yellow color),

which broadcast their features and increase the values associated with the nodes in

the bottom-right part. Since Dominican Republic has the smallest latitude, we can

assert that the bottom-right part with blue color should represent this region.

Therefore, by according to the "Lat" and "Lon" plots, we are able to identify

the three regions, with the bottom-right be Dominican Republic, the bottom-left be

Bay area, and the rest be Spain. Moreover, taking into consideration the number of

towers, we can get the same results: Spain has the largest number of towers, followed

by Bay area, and Dominican Republic has the smallest number of towers. Hence,

Spain should occupy most of the nodes in the Kohoen map and Dominican Republic

should be associated with least nodes, which are in accordance with our classification.

Coincidentally, the classification according to U-matrix has a perfect match with

the classification according to the combination of "Lat" and "Lon". This proves

that the classification by U-matrix is meaningful and coincides with the geographical

separation. However, since by purely relying on the location of towers, we can obtain

a classification that is in accordance with the reality, we are wondering that if the

weights of the location of towers are much more than the weights associated with

the other three features, then the classification by U-matrix gives us no information

about the relationship between radius of gyration and population density, but only a

geographical partition.

Therefore, by now we are able to propose three hypotheses:

1. U-matrix is dominated by the location of towers.

2. U-matrix is dominated by the relationship between radius of gyration and

population density.

3. U-matrix is generated by the combination of all the features.

We expect to exclude the possibility that the location of towers plays a predomi-

nant role in the U-matrix classification, and finally reach hypothesis 2.
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Figure 3-3: SOM results, the feature vector consists radius of gyration (AvgRg), number of users
(nbusers), and population density (popdensity).

3.2.3 SOM without Geographical Data

To further test the hypotheses, we exclude geographical data (i.e. latitude and lon-

gitude), and construct feature vector only from radius of gyration, number of users,

and population density. Fig. 3-3 gives the outcome of SOM

We observe that there is only slightly difference between the U-matrix in Fig. 3-2

and Fig. 3-1, which implies that hypothesis 2 is acceptable, and that by purely relying

upon radius of gyration and population information, the towers can be classified in

accordance with the real geographical locations.

Therefore, there should exist a relationship between radius of gyration distribu-

tion and population density. The relationship may vary across countries because

some other factors that are not discovered may influence it, however, at least the

relationship exists and can be used to separate towers in different areas.

The hypothesis is weak because at this stage we can do nothing but assert the

existence of a relationship between radius of gyration and population. We expect to

apply data mining method to parameterize this kind of relationship and eventually

find an exact function which ties one to the other.

Fig. 3-4 shows the distribution or average radius of gyration, population density

and number of users in these areas. Although the relationship between radius of
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Figure 3-4: The histogram of Average Rg (left figures), Population density (middle figures) and
Number of users (right figures) in Dominican republic (upper figures), San Francisco Bay area (middle
figures), and the anonymous EU contry (lower figures).

gyration and population density is not as clear as what SOM shows, we can indeed

observe the differences existing among three countries. The variance of population

density distribution in EU is the biggest among the three countries and San Francisco

has smallest variance. If we treat population density as a random variable, we can

roughly say that population density distribution of San Francisco Bay area first order

stochastically dominates Dominican Republic, which in turn dominates EU. More-

over, the variance and skewness of average R9 distributions are significantly different

by observation. Intuitively, all such differences can imply the existence of the rela-

tionship between radius of gyration distribution and population density distribution,

which is clearly illustrated by SOM.



Chapter 4

Mobility Characterization and

Data Mining

4.1 Samples Construction and Parameterization of

Mobility

The analysis of trip length distributions requires a framework for reconciling different

sets of mobility data and will include methodologies for bias measurement and correc-

tion, as well as advances in geographic-based reconciliation. Although methodologies

in Chapter 2 produce a set of characterizations of trip length distributions, without

further polishment and modification, these measures can hardly reflect the underly-

ing nature of human movement. The framework we need to establish will enable us

to characterize how these cross-sectional data co-vary with each other. Relied upon

data mining and principle component analysis we hope to develop an understanding

of how outcomes of interest, such as population density (and income for San Francisco

Bay area), can influence these mobility patterns. We aim to develop an additional

mobility index that has significant explanatory power on variables such as average

income and education levels.

The existing metrics that can be extracted from the raw call data records includes

travel distances, anisotropy and radius of gyration. Aniong these metrics, the radius



of gyration should be the predominant one because it properly measures the linear

size occupied by each user's trajectory up to a specified time. The radius of gyration

represents the vital diameter within which the user is most likely to be found in the

observation period. We will experiment with quantifying these individual movements

as a "regional radius of gyration" to quantify the bounds on the individual's mobility.

These regional metrics can be used to characterize a neighborhood or other urban

region with known outcomes of interest.

With the probability distributions of radius of gyration for each region, we can

search for salient features that are hidden behind them. Finally, combining with the

population information data we hope to find and fundamentally explain the inter-

relationship between them and furthermore, try to characterize trip length distribu-

tions in various regions.

4.1.1 Area Divisions

Combining mobility data, sets from a wide variety of countries enables us to make a

comparison of human travels at a scale never obtained before. The data sets pro-

vided include detailed calling activities in three countries: San Francisco bay area

(representing part of U.S.), Dominican Republic, the anonymous EU country. Al-

though these data sets are extensive but they cannot be used straightforwardly for

data mining at the statistical level, due to the following reasons:

1. The sampling data represents trip length distributions in three regions with

completely different density of population (For example, the population density of San

Francisco bay area, Dominican Republic and the EU country are 500 - 2000/kn 2,

210/km 2 and 96/km 2 , respectively).

2. For most data mining method, at least 20 different samples are required to

ensure the reliability and generality of the outcome. In this case, more elaborate area

divisions are necessary to better understand the traveling behavior.

To ensure that all the four countries are divided into several sub-regions within

which the factor values are alike, the country is segmented according to autonomous

communities (the first-level political division of the country).



For example, Dominican Republic is segmented into 3 sub-regions: Santo Domingo,

Santiago and La Romana. San Francisco bay area includes 5 sub-regions: Oakland-

Alameda-Fermont metropolitan area, SanFrancisco-Redwood City-San Mateo metropoli-

tan area, San Jose- SunnyValey- Santa Clara metropolitan area, San Rafael - Novato-

Sausalito metropolitan area and Santa Cruz-Watsonville-Monterey-Salinas metropoli-

tan area. And the EU country is divided into 16 sub regions. Hence, totally 24 regions

are available for analysis after segmentation.

4.1.2 Heterogeneity Classification

As shown in section 2.1.4, The radius of gyration of one user characterizes the lin-

ear size occupied by his/her trajectory up to a specified time. By aggregating the

radius of gyration of all the users in a limited space and constructing its probability

density distribution, the radius of gyration distribution for a particular autonomous

region (P(rg)) is obtained. These regional metrics can be used to characterize a

neighborhood or other urban region with known outcomes of interest.

We observed that the distributions of raidus of gyration can be generally grouped

into four families as shown in Fig. 4-1:

A. The P(r 9 ) curve with single peak in the middle.

B. The P(r) curve with single peak near the very beginning.

C. r. (in logscale) distributes as a double-peak curve: achieving locally-maximum

probability density at two points.

D. The P(rg) curve with no peaks, decreasing monotonically from the beginning.

Since Santa Cruz, three autonomous regions in the EU country have less than

2000 users, their P(r) distributions are not considered here. We found that all the

areas in San Francisco Bay areas have P(r,) like A. Santa Domingo, some island

region and the capital of the EU country have P(rg) like C. Santiago and La Romata

have P(rg) like D. Moreover, all the other areas in the EU country have P(rg) like B.

Individuals living in areas belonged to Group A have a tendency to travel a rela-

tively longer distance (Corresponding to the peak in the middle). Since the P(rg) of

all the areas in the San Francisco Bay areas have this kind of shape, we provide two
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possible explanations: Firstly, because of the higher prices of housing and renting

in downtown areas, people tend to live in surburbs which resulted in average long

distance of daily commuting. Secondly, San Francisco Bay area is best known as

the heart of venture capital and high-tech firms of United States, the vital economic

activities and frequent business traveling may cause the P(rg) has single peak in the

middle.

Most of the areas belonged to the EU country fall into Group B. Since the not too

large EU country is further divided into 16 smaller autonomous regions, the single

peak near the beginning of P(rg) curve implies that facilities within each autonomous

region are well developed thereby people have few demand for outside traveling. This

coincides with reality in that EU country.

P(r,) in group C is quite special, which has two peaks. As we observed, only

three areas have this shape. One is a island in the EU country, which have numerous

excellent harbours and is extremely fertile in all produce, except wine and olive oil.

The peak with lower rg is resulting from people's movements within the islands,

and the peak with higher rg corresponding to transportation to the mainland of the

country for commercial purposes. The other two are both capitals of the country, one

of them is Santa Domingo, which is the capital of Dominican Republic.

Regions in Group D display curves with monotonic property. Since only two

regions of Dominican Republic are belonged to this category, we think the shape

might be determined by the country's specific factors. It seems that people living in

both regions have monotonic traveling behavior, namely, their traveling preferences

are negatively correlated with the distance to destination.

4.1.3 Parameterization of Radius of Gyration

In order to facilitate parameters analysis, we need to search for one function that can

best fit all the P(rg) curves. The function should be simple enough for mathematical

analysis and better using least variables to eliminate the possibility of over fitting.

With Matlab curve fitting tools we tried several commonly used functions including

polynomial function, exponential function, logarithmic function, log normal function



and log logistic function. Finally, we found that the double exponential decaying

function is the one that achieving the largest R2 for all the regions on average. The

mathematical representation of this function is:

Y = aie X + a 2 e 32X (4.1)

where a1, C2, /31 and #2 are fitting parameters and x is the variable. Particularly,

in this case, Y = ln(P(rg)) and x = ln(rg).

The following three properties can be found by observation:

Claim 1:

The function value Y is the sum of two simple exponential functions ac& , the

two elements beside the plus sign are symmetrical and have identical influence on the

value of Y.

Claim 2:

If x -+ 0, the function value Y is mainly determined by ao, that is Y can be

approximated by g(x) = C + ax, where C is a constant.

Proof:

Apply Taylor series expansion to Eq. (4.1):

Y = ie,'3x + a2e =1(1 + #1X + ,IX2
2

+ o(X 2)) + a 2 (1 + #2x +
/32
2X2 + o(x 2))2

when x -+ 0, terms of x with power > 2 can be omitted:

Y = a 1 (1 + 0 1x) + a2(1 + #2X) = ai + a 2 + a1/ 1 x + a 2/32x

It is worth emphasizing that, if 1 > 1, Y can be almost entirely determined

by the term a1zIx.

Claim 3:

If x > 0, influence by parameter a can be omitted, Y is mainly determined by

parameter /3.

Proof:



a 1  01 a 2  #32 C# 3 i 01/02 R2

La Romana -4.7820 -0.2498 -0.8583 0.5291 -2.6304 -0.4721 0.8591
Santa Domingo -3.8830 0.3451 0.1440 0.7934 -11.7289 0.4350 0.9643

Santiago -4.5070 0.1603 0.0000 4.9680 1.757e+10 0.0323 0.9546
Oakland -4.6430 0.0827 -0.0004 2.8460 326.5193 0.0291 0.9927
San Jose -4.9240 -0.2010 -0.3480 0.9258 -3.0720 -0.2171 0.982

San Rafael -4.8620 -0.0546 -0.0240 2.0660 -5.3650 -0.0264 0.9886
San Francisco -4.3530 0.1477 0.0000 5.8190 1.4806e+6 0.0254 0.9763
Santa Cruz -4.6610 0.0728 -0.0205 1.3510 12.2289 0.0539 0.9812
EU region1 -4.4270 0.1414 -0.0001 2.3250 1.8736e+3 0.0608 0.9925
EU region2 -4.6490 0.0242 -0.0942 1.0530 1.1330 0.0230 0.9901
EU region3 -4.4390 0.1432 -0.0001 2.2030 3.9290e+3 0.0650 0.9971
EU region4 -4.7110 0.0307 -0.0385 1.3700 2.7361 0.0224 0.9912
EU region5 -4.1500 0.2289 -0.0001 2.5750 4,144.5545 0.0889 0.9729
EU region6 -4.6050 0.1147 0.0000 3.5110 2.6296e+4 0.0327 0.9603
EU region7 -4.6150 0.1144 0.0000 3.6360 9.0865e+4 0.0315 0.9641
EU region8 -4.5710 0.1134 -0.0046 1.5110 73.8063 0.0750 0.9893
EU region9 -4.3350 0.1576 -0.0001 2.3730 2.6732e+3 0.0664 0.9962
EU region10 -4.2750 0.1681 -0.0006 1.9360 616.4954 0.0868 0.9951
EU region1l -4.5450 0.1089i -0.0017 2.0440 145.9602 0.0533 0.9923
EU region12 -4.6050 0.1147 0.0000 3.5110 2.6296e+4 0.0327 0.9902
EU region13 -4.6370 0.0215 -0.0518 1.4080 1.3663 0.0153 0.9962
EU region14 -4.6230 0.1061 -0.0007 1.9500 377.3457 0.0544 0.9906
EU region15 -4.3340 0.1576 -0.0002 1.9250 1.4459e+3 0.0819 0.9955
EU region16 -2.9130 0.3307 -2.0940 -1.0160 -0.4528 -0.3255 0.9817

Table 4.1: P(rg) curve fitting result of 24 autonomous regions.

Intuitively, # is an exponential coefficient while a is a linear coefficient, the sensi-

tivity of Y with respect of / is more pronounced than that of a if x > 0. Moreover,

if L > 1, Y is almost entirely determined by ex.
,82

Applying formula 4.1 to each P(rg) we have, the curve fitting result is shown in

Table 4.1:

In the last column, all the R-square are above 90% (except for La Romana due to

limited sample size), this proves that the double exponential decaying function can

to some extent fulfill our requirement for curve fitting of P(rg).

To better understand the characteristics of this function, the associated P(rg)

curves of 24 regions in San Francisco Bay area, Dominican Republic and the EU

country are displayed in Appendix A.



In Appendix A, we observe:

1. All ai's are negative and around 4.00 - 5.00, and its value determines the shape

of curve when x is small (the left side of the curve). Furthermore, if '13 is large,a2 32 ge
one of the exponential function with parameters a1 and 31 plays a dominant role in

shaping the left side of the curve. Plots of Santiago, Oakland and San Francisco are

such cases. If " < 1, the shape of the curve to some extent is also influenced by

the other exponential function with parameters a2 and /32.

2. If #1 is positive, the curve steadily moves downward from the beginning point

(the left-most point). However, if #2 is positive, the curve moves upward from the

beginning point up to some point after which moves downward steadily (because all

32 's are positive and #2 > #1, so the left tail is determined by #2 , the shape should

moves downward steadily after a threshold of ). Moreover, the larger the absolute

value of x, the more pronounced the upward tendency would be. (See the plots of La

Romana, San Jose, San Rafael)

3. If a 2 has a negative value, the second exponential element would strengthen

the decaying speed of the curve, because in this case, both of the two exponential

functions have negative as which in turn have identicat influences on the decaying

tendency of the curve. Additionally, since /32 is greater than #1, the larger the value

of x, the more the curve is influenced by the second exponential element. It worth

emphasizing that a 2 is positive for Santa Domingo, which is opposite to the sign of

a 1 . Hence, the decaying tendency of first exponential element aie1 X is more than

offset by the influence of the second exponential element with positive exponent a 2 ,

and eventually the curve would move upward.

4. All #2s are positive and greater than #1s, hence the left tail of the curve is mainly

determined by the value of 32. Since the greater the 32, the faster the decaying speed

is. For example, the tails in plots of Santiago, Oakland and San Francisco are steeper,

which are consistent with their larger 0 2s. Furthermore, a larger value of /2/1 implies

that the tail of the curve is mostly determined by the second exponential function.



4.2 Principal Component Analysis

Because of the limited number of data points, it is impossible to characterize the

relationship between each parameter in Eq. (4.1) and population density. By applying

PCA we are able to extract the first two principle components of the four parameters,

which contribute most to the variance of the sample data set. As a first step of data

mining, we expect the PCA can provide us with the possibility to formulate the

relationship at large.

4.2.1 Introduction

Principal component analysis (PCA) involves a mathematical procedure that trans-

forms a number of possibly correlated variables into a smaller number of uncorrelated

variables called principal components. The first principal component accounts for

as much of the variability in the data as possible, and each succeeding component

accounts for as much of the remaining variability as possible.

PCA is mathematically defined as an orthogonal linear transformation that trans-

forms the data to a new coordinate system such that the greatest variance by any

projection of the data comes to lie on the first coordinate (called the first principal

component), the second greatest variance on the second coordinate, and so on. PCA

is theoretically the optimum transform for given data in least square terms.

By applying curve fitting to the probability density distribution of radius of gyra-

tion in each autonomous community, we are provided with four important parameters

that can almost characterize the mobility patterns (regional radius of gyration) in

each region. However, these four parameters may correlated with one another, the

resulted redundant information would increase the complexity of our analysis of the

inter-relationship between these factors and socio economic conditions thus lead to

inaccurate conclusions. The four parameters could be regarded as a combining vector,

hence PCA can be utilized to disentangle the cross correlation among them.

The mathematical foundation behind PCA is very simple:

Let X be a d-dinmensional random vector expressed as column vector. Without



loss of generality, assume X has zero mean. We want to find a d x d orthonormal

transformation matrix P such that,

Y = PTX

s.t. cov(Y) is a diagonal matrix, P- 1 = pT

By substitution, and matrix algebra, we obtain:

cov(Y) = E[YYT] - E[(PTX)(PTX)T] - E [(PTX)(_XTp) - PT E[XXT ]P = PTcov(X)P

We have,

Pcov(Y) = ppTcov(X)p = cov IX')P

Rewrite P as d x 1 column vectors, so

P = [P1, P2, ..., Pd]

and cov(Y) as

/A1 ... 0

S 0 ... Ad

Substituting into equation above, we obtain:

[A1P 1, A2 P2 , ..., AdPd] = [cov(X)P1, cov(X)P 2, ... , cov(X)P 3]

Notice that in AiPi = cov(X)P, P is an eigenvector of the covariance matrix of

X. Therefore, by finding the eigenvectors of the covariance matrix of , we find a

projection matrix P that satisfies the original constraints.



4.2.2 Computational Procedures

Following is a detailed description of PCA using the covariance method. The goal

is to transform a given data set X of dimension M to an alternative data set Y of

smaller dimension L. Equivalently, we are seeking to find the matrix Y, where Y is

the Karhunen-Love transform (KLT) of matrix X:

Y KLT{X}

Organization of data set

Suppose you have data comprising a set of observations of M variables, and you

want to reduce the data so that each observation can be described with only L vari-

ables, L < M. Suppose further, that the data are arranged as a set of N data vectors

X1, ... , XN with each Xi representing a single grouped observation of the M variables.

1. Write X1, ... , XN as column vectors, each of which has M rows.

2. Place the column vectors into a single matrix X of dimensions M x N.

Calculation of the empirical mean

1. Find the empirical mean along each dimension m = 1, ... , M.

2. Place the calculated mean values into an empirical mean vector u of dimensions

M x 1.

1N

u[mn] = X[m, i

Calculation of the deviation from the mean

Mean subtraction is an integral part of the solution towards finding a principal

component basis that minimizes the mean square error of approximating the data.

Hence we proceed by centering the data as follows:

1. Subtract the empirical mean vector u from each column of the data matrix X.

2. Store mean-subtracted data in the M x N matrix B.

B.= X - uh



where h is a 1 x N row vector of all Is:

h [n] = 1, f or n = 1, ... , N

Calculation of the covariance matrix

Find the M x M empirical covariance matrix C from the outer product of matrix

with itself:

1
C = E [B @ B] = E [B - B*] =N(B-B

where D is the outer product operator, and * is the conjugate transpose operator.

Note that if B consists entirely of real numbers, which is the case in many applications,

the "conjugate transpose" is the same as the regular transpose.

Calculation of the eigenvectors and eigenvalues of the covariance matrix

1. Compute the matrix V of eigenvectors which diagonalizes the covariance matrix

C:

V 1CV = D

where D is the diagonal matrix of eigenvalues of C. This step will typically involve

the use of a computer-based algorithm for computing eigenvectors and eigenvalues.

These algorithms are readily available as sub-components of most matrix algebra

systems, such as MATLAB.

2. Matrix D will take the form of an Ml x M diagonal matrix, where

D[p,q] = AI, for p= q= m

is the mth eigenvalue of the covariance matrix C, and

D[p, q] =0 f or p # q



3. Matrix V, also of dimension M x M, contains M column vectors, each of length

M, which represent the M eigenvectors of the covariance matrix C.

4. The eigenvalues and eigenvectors are ordered and paired. The mth eigenvalue

corresponds to the mth eigenvector.

Rearrangement of the eigenvectors and eigenvalues

1. Sort the columns of the eigenvector matrix V and eigenvalue matrix D in order

of decreasing eigenvalue.

2. Make sure to maintain the correct pairings between the columns in each matrix.

Computation of the cumulative energy content for each eigenvector

The eigenvalues represent the distribution of the source data's energy among each

of the eigenvectors, where the eigenvectors form a basis for the data. The cumulative

energy content g for the mth eigenvector is the sum of the energy content across all

of the eigenvalues from 1 through m:

g~m] =E D[q, q], f or m = 1, ... , M
q=1

Set a subset of the eigenvectors as basis vectors

1. Save the first L columns of V as the M x L matrix W:

W[p, q] = V[p, q], f or p =- 1, ... , M, q = 1, ...,I L

where 1 <L < M.

2. Use the vector g as a guide in choosing an appropriate value for L. The goal

is to choose a value of L as small as possible while achieving a reasonably high value

of g on a percentage basis. For example, choose L so that the cumulative energy g is

above a certain threshold, like 90%. In this case, choose the smallest value of L such

that

g[m = L] > 90%

Conversion of the source data to z-scores



1. Create an Al x 1 empirical standard deviation vector s from the square root of

each element along the main diagonal of the covariance matrix C:

s = s[mn] = C[p,q],for p= qmI,...,AM

2. Calculate the M x N z-score matrix:

B
Z =

sh

Projection of the z-scores of the data onto the new basis

1. The projected vectors are the columns of the matrix

Y = W*Z =_ KLT{X}

2. W* is the conjugate transpose of the eigenvector matrix. 3. The columns of

matrix y represent the Karhunen-Loeve transforms (KLT) of the data vectors in the

colunns of matrix X

4.2.3 PCA Results

In Table 4.1 we present the curve fitting parameters for the distribution of radius of

gyration in each autonomous region. Here we apply the PCA method to transforn

these four vectors into another four but orthogonal vectors and extract the principal

components from them.

The average value and standard deviation of each parameter is computed and pre-

sented in Table 4.2. Totally the sample space is composed of 24 data points. and the

standard deviation of a1, 1 2, /32 are 0.400, 0.133, 0.457, 1.421, respectively. Notice

that the standard deviations are close to each other, that is, no single parameter can

contribute most of the variability existing among different data points. This moti-

vates us to use PCA to orthogonally transform the sample space. The associated

correlation matrix is presented in Table 4.3., as shown clearly the matrix is far from



Mean Std. Deviation Sample Num
a1  -4.456 0.400 24.000
#1 0.100 0.133 24.000

G2 -0.141 0.457 24.000
/2 2.128 1.421 24.000

Table 4.2: Descriptive statistics for parameters alpha and beta.

a 1  01 a2 01

a1  1.000 0.760 -0.631 -0.304
#1 0.760 1.000 -0.018 0.124
a1 -0.631 -0.018 1.000 0.561
#2 -0.304 0.124 0.561 1.000

Table 4.3: Correlation Matrix for parameters alpha and beta.

diagonal.

The eigenvalues and eigenvectors of the covariance matrix are computed accord-

ing to information in Table 4.3. Four components are extracted and the top two

principal components can explain 97.03% variance in the data sets, which guarantees

the efficiency of using PCA to transform parameters' space. The two components

are further analyzed in conjunction with the population density in Section 5.1. (See

Table 4.4, 4.5 and Fig. 4-2)

As Table 4.5 indicates, the two principal components can be calculated using the

formula:

P1 = 0.098a 1 - 0.0091 - 0.193a 2 - 0.97602

Initial Eigenvalues
Components Total % of Variance Cumulative %

1 2.020 87.65% 87.65%
2 0.216 9.38% 97.03%
3 0.068 2.93% 99.96%
4 0.001 0.04% 100.00%

Table 4.4: Total Variance Explained by each component.

(4.2)



Component

1 2 3 4
ai 0.098 0.718 0.577 0.377
#1 -0.009 0.166 0.388 -0.907
a 2 -0.193 -0.646 0.714 0.189
/2 -0.976 0.198 -0.087 0.009

Table 4.5: Composition of components.

Compont ID

Figure 4-2: The composition and variance of 4 components.



Table 4.6: PCA results.

P 2 - 0.718a1 + 0.166#1 0.646a 2 + 0.198#2 (4.3)

where P1 and P2 denote the first two principal components, Table 4.6 exhibits

values of the first two components for each area. Since the two components captures

most of the variability of the sample points, we expect to search for their relationship

to population density. This work is presented in the next section.

ai #1 a 2  #2 P1 P2
La Romana -4.782 -0.2498 -0.8583 0.5291 1.6703 1.6703

Santa Domingo -3.883 0.3451 0.144 0.7934 1.3013 0.0031
Santiago -4.507 0.1603 0 4.968 -2.8058 0.4447
Oakland -4.643 0.0827 -0.0004 2.846 -0.7466 -0.0861
San Jose -4.924 -0.201 -0.348 0.9258 1.1701 -0.4908

San Rafael -4.862 -0.0546 -0.024 2.066 -0.0008 -0.4054
San Francisco -4.353 0.1477 0 5.819 -3.6214 0.7219
Santa Cruz -4.661 0.0728 -0.0205 1.351 0.7151 -0.3839
EU regioni -4.427 0.1414 -0.0001 2.325 -0.2175 -0.0247
EU region2 -4.649 0.0242 -0.0942 1.053 1.0218 -0.3948
EU region3 -4.439 0.1432 -0.0001 2.203 -0.0996 -0.0572
EU region4 -4.711 0.0307 -0.0385 1.37 0.6955 -0.4114
EU region5 -4.15 0.2289 -0.0001 2.575 -0.4352 0.2383
EU region6 -4.605 0.1147 0 3.511 -1.3925 0.0780
EU region7 -4.615 0.1144 0 3.636 -1.5155 0.0956
EU region8 -4.571 0.1134 -0.0046 1.511 0.5643 -0.2911
EU region9 -4.335 0.1576 -0.0001 2.373 -0.2555 0.0536

EU region10 -4.275 0.1681 -0.0006 1.936 0.1770 0.0121
EU region1l -4.545 0.1089 -0.0017 2.044 0.0459 -0.1695
EU region12 -4.494 0.1308 0 2.962 -0.8458 0.0516
EU region13 -4.637 0.0215 -0.0518 1.408 0.6683 -0.3437
EU region14 -4.623 0.1061 -0.0007 1.95 0.1299 -0.2452
EU region15 -4.334 0.1576 -0.0002 1.925 0.1820 -0.0344
EU region16 -2.913 0.3307 -2.094 -1.016 3.5948 1.7849
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Chapter 5

Regression Analysis

5.1 A Simple Linear Regression Model

We expect to find the relationship between radius of gyration and population for

autonomous areas. With the assistance of ORNL LandScan data sets, we are able

to collect the 2008 population density information accurately for every interested

area.The statistics presented in Table 4.6 are in number of persons per square kilo-

meter.

To find the correlation property, one trivial way is to regress the first component

Pi on the population density we collected from Landscan data. Since we already know

that P1 contributes 87.65% variance of the four parameters, thereby if we can identify

the relationship of P1 and population density, then we could roughly estimate the 4

original parameters cZ1, C2 , /1, #2 by holding the other three components constant or

with small random variations (which will not affect the estimation greatly because

the total variance of the remaining components are about 12.35%).

However, as we see in Fig. 5-1, the 24 points are almost randomly distributed on

the plane and it is hardly possibly to find a clear relationship. Since by observation,

there is no clear relationship between population information and radius of gyration,

we expect to use linear regression model to discover this relationship.

Let Pd represent the population density data, P1 be the most significant component

that reflect human's radius of gyration.



Population density Mean Std. dev.
Dominican La Romata 119.454 1100.535
Republic Santa Domingo 164.250 1205.920

Santiago 151.955 1153.863
Oakland 763.633 1553.614
San Jose 524.755 1237.002

San Francisco San Rafael 174.431 550.223
Bay Area San Francisco 1158.813 3059.732

Santa Cruz 257.717 782.182
EU regioni 88.892 619.176
EU region2 98.638 800.856
EU region3 25.913 272.903
EU region4 98.523 508.866
EU region5 292.965 1657.708
EU region6 47.972 426.564
EU region7 55.199 466.438

Spain EU region8 25.022 341.798
EU region9 192.292 1179.188

EU region10 173.497 950.976
EU regionil 101.810 541.583
EU region12 21.798 185.247
EU region13 666.767 2481.453
EU region14 257158 187.652
EU region15 80.117 636.881
EU region16 158510 589.263

Table 5.1: Population density statistics for all the autonomous regions.
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Figure 5-1: P] versus Population Density.



Consider the simplistic linear regression model:

P1 = 7 + PyY1 + E (5.1)

Suppose the cross-sectional data we have satisfies the Gauss-Markov conditions,

which guarantees the validity of OLS linear regression:

GM1: Y= X -+ E, / E Rk, linearity

GM2: rank(X)=k, identification

GM3: Eo[e|X] = 0 VO E 0, orthogonality, correct specification, exogeneity

GM4: Eo[eIe'X] 2 n

Where, in our model, Y is P1 , X is [1, Pd].

The regression result by Eq. (5.1) is not appealing, the associated R 2 is 0.010,

which imply nothing but a random walk. Hence, simply using population density as

the regressor is not sufficient to provide us an acceptable result. As we have shown in

Chapter 3, there do exist a relationship between population information and radius

of gyration. Here by regressing the regressand P1 on regressors the unit vector ei

and population density Pd, the regression performance is very bad. To improve the

regression, we generally come up with two choices:

1. Include other statistics of population density, such as its standard deviation.

2. Include other socio-economic factors, such as income, unempolyment rate, etc.

In the next section, we conduct a further regression analysis for each of the above

propositions.

5.2 Multivariate-Regression Model

The mean of population density reflects the average value of the population, but fails

to reflect the variations of population distribution in an interested area. As a natural

way to enrich the simple linear regression model in Eq. (5.1), we incorporate the

normalized standard deviation o-(Pd) /Pd.

Additionally, the multivariate-regression model we propose in this chapter contains

another two explanatory variables c3 and o.2 derived from a Multiplicative Spatial



Models of Supply and Demand [11].

So, we use the model Eq. (5.3)

P = -YO + Payl + Pd 72 + c373 + G 74 + e (5.2)

The estimators given by OLS are:

-o = -3.5524, 11i = 1.0776, 12 6.6929, ia -0.0019, 14 = -0.5024, R 2 
- 0.2879

Although, a 0.2879 R 2 is far from enough to give accurate estimation, at least

it gives us prediction power with population information given by the census data.

However, it is worth noticing that in Eq. (5.3), we are using 4 regressors which are two

much for a sample containing 24 points. In this case, a better approximation of the

data points (implied by a larger R 2) doesn't always mean a better estimation of the

true regression parameters' values according to econometrics theory. The standard

error of our estimator gamma is given by Eq. (5.4):

2 gFg
std.crror s - (5.3)

where & is the residual, k is the number of regressors, as Eq. (5.3) implies, if

k increases, the standard error of beta may also increase, this effect is particularly

significant for a small value of n. Therefore, the improved R?2 obtained from Eq. (5.3)

doesn't imply that the value of 3 will be more reliable.

5.3 Regression in San Francisco Bay Area: Influ-

ence of Demographic Information

The rich information available in San Francisco Bay area enables us to conduct a

specific research. The population density, median family income, unemployment rate

and niedian age, etc. at a resolution level of the transmission distance of towers are

obtained from TransCAD (See Fig. 5-2). The radius of gyration associated with each
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Figure 5-2: Population density and Income distribution in San Francisco Bay area. The upper-left
graph is population density distribution, at a resolution level of /km 2 ; The upper-right graph is median
household income distribution; The lower-left graph is the distribution of mobile phone users (note:
we use user's most visited location as proxy for his/her home location); The lower-right graph is the
distribution of number of calls.

tower is defined as the mean value of radius of gyration of users who most frequently

visit the tower.

Notice that among the 954 towers, 401 towers are distributed in the areas with

very low population or with less than 100 mobile phone users around(according to

our one-month mobile phone record). Hence these data points are eliminated and 553

data points are available for regression analysis.

Let I be the median family income, Pd be the population density, A be the median

age, U be the unemployment rate for people who are at least 16 years old and in the

labor force, Eq. (5.4) is used as the regression model:



70 7 72 3 Y4
Value 10.9862 1.1927 -0.6398 -1.5870 -0.1354
S.E. 0.5049 0.2162 0.0544 0.4792 0.0954
t-stat 21.7600 5.5158 -11.7501 -3.3117 -1.4196

Table 5.2: Regression result: regressing radius of gyration on income, population density, age and
unemployment rate.

R9 = 70 + IY + P7 2 + A73 + U 4 +e (5.4)

We normalized the data of median family income, population density, median

age, and unemployment rate by dividing the value of each data point by the mean.

The estimators and test statistics given by Ordinary Least Squares regression are

presented in Table 5.2:

We obtain adjusted R-square R2 = 0.3188 and mean squared error MSE =

2.2667, which is sufficient for the cross-sectional data. Fig. 5-3 presents the estimated

rg using Eq. (5.4) and the true r9 obtained from mobile phone records. As shown

in the figure, the dots lie around the 45 degree line, implying that the estimated rgs

approximate the true rs well.

A positive 11 implies that the radius of gyration is larger in wealthier areas, which

is very reasonable since wealthier people may tend to travel frequently and can afford

long distance trips. 1Y2 is negative implies that the radius of gyration is smaller in

populated areas. The low population density area is usually rural and surburb area,

which means people are more likely to travel by cars between rural (their home)

area to downtown (high population, work, office) area. The high attraction of the

downtown will cause people living far away to visit it, thus increase the value of rg
which reflects the average trip length of people in that area. On the other hand, the

high population density areas are caused by a huge amount of people living in the

downtown, who commute in a short distance by means of walking or using public

transportation every day. A negative is implies that the elder people travel less

which is fairly reasonable. A negative sign of 14 implies that in the area with a

high unemployment rate, people traveling less, this substantiates the analysis above,
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Figure 5-3: The estimated rg v.s. the true r9 .

where we state that people living populated areas travel less because they undertake

pressures from the possibility of losing jobs. In fact, the t-stat of i is only -1.4196,

which is not sufficiently significant.

We are particularly interested in how the distribution of radius of gyration depends

on demographic information, namely, how the parameters in Eq. (4.1) related to

population density, income, age, and unemployment rate, etc. However, due to the

lackness of available data, it is impossible to precisely identify such relationships.

Therefore, we expect to use some general methods to provide intuitions.

Since the information about age and unemployment rate have little influences on

rg (if we run a regression of rg on age and unemployment rate, the resulting R2 is only

about 0.52875), here we only consider population density and family median income

information.

We separated the 951 towers in San Francisco Bay area into 9 group (3 towers are

eliminated due to lack of income and population density information):

1). towers in low population and low income area



num. of towers Low Population Mid Population High Population Total
Low Income 85 73 159 317
Mid Income 81 119 117 317
High Income 151 125 41 317

Total 317 317 317 951

Table 5.3: Number of towers in each group. Low population density: 0 - 2039/km 2 , Median population
density: 2039-7285/km 2 , High population density: > 7285/km 2 ; Low income: 0-61100$, Median income:
61100 - 89440$, High income: > 89440$

2). towers in low population and mediate income area

3). towers in low population and high income area

4). towers in mediate population and low income area

5). towers in mediate population and mediate income area

6). towers in mediate population and high income area

7). towers in high population and low income area

8). towers in high population and mediate income area

9). towers in high population and high income area

As shown in Table. 5.3 and Table. 5.4, each group of towers have sufficient number

of towers and enough number of users. Notice that for the high population area, there

is a larger percentage of people (about 62640/114301 = 54.8% users) with low income

than those areas with median or low population area. This fact is reasonable and

substantiates the validness of our mobile phone data.

Fig. 5-4 shows the P(rg) of each group, the arrangement order is in accordance

with that in Table. 5.3. Fig. 5-5 shows the P(rq) distributions in areas with the same

mediate level of income but different population densities. As it is clearly shown,

the area with low population density has a higher probability to achieve larger rg

than the area with mediate or high population density. This is because areas with

low population density are most likely to be suburbs, where people need to travel

relatively long distances everyday from home to work places or do anything else. In

contrast, areas with high population density are mostly downtown, where people have

less tend to make long distance trips. Fig. 5-6 compares the P(rg) distributions in

areas with the same population density but different levels of income. As shown in



num. of users Low Population Mid Population High Population Total
Low Income 11591 16960 62640 91191
Mid Income 6199 23564 40891 70654
High Income 11904 15579 10770 38253

Total 29694 56103 114301 200098

Table 5.4: Number of users in each group.

the figure: On the one hand, the area with low level of income has a higher probability

to achieve larger rg than the area with mediate or high level of income. This is very

reasonable since areas with low level income are most likely to be less developed,

which don't have sufficient facilities or public goods to satisfy the daily demand of

individuals. Therefore, people need to go to other regions for shopping or whatever

they need, which in turn increases the probability of larger rgs. In contrast, areas with

high level of income are economically healthier and well developed, individuals living

in such areas find there demands easily to be satisfied within the area hence have no

needs to make long distance trips. On the other hand, however, the area with low

level of income also has a higher probability to achieve smaller rg, this is clearly shown

in the figure by taking a look at the cutoff point on y-axis. This phenomenon can

be explained as individuals with low income tends to make less trips (corresponding

to the cutoff, which is the probability of do not traveling.), because they cannot

afford the cost from too much traveling. Or they prefer to make short distance trips,

which may cost less. The higher probability of short distance trips and long distance

trips are not in contradiction, because those long distance trips are necessary trips to

satisfy their basic demands that all individuals cannot avoid.

We fitted the P(r) curves in Fig. 5-4 by applying Eq. (4.1), and the associated

parameters for each group are presented in Table. 5.4. The sufficiently large R2s

indicate that Eq. (4.1) indeed fit the P(rg) curve very well. The numbers in table. 6

provide some useful hints on determining values of parameters if one want to use Eq.

(4.1) to characterize the radius of gyration distribution in another region. The ranges

of ai, a2, /32, /32 are (-5, -8), (-0.4, -1.2), (-0.3, -0.6), (0.5, 0.8), respectively. As

we can see, the range of a1 and G2 , and the range of 71 and 42 are very different,
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a1 01 a2 /2 R2
Low Population Low Income -6.415 -0.613 -0.9243 0.60331 0.963
Low Population Mid Income -6.543 -0.384 -0.4288 0.7524 0.9297
Low Population High Income -7.323 -0.4884 -0.4765 0.7525 0.9395
Mid Population Low Income -5.377 -0.5739 -1.127 0.5581 0.9677
Mid Population Mid Income -6.719 -0.5015 -0.5613 0.7364 0.9667
Mid Population High Income -7.192 -0.5674 -0.6176 0.7103 0.9568
High Population Low Income -5.371 -0.5318 -0.9556 0.6196 0.989
High Population Mid Income -6.117 -0.5125 -0.6899 0.7025 0.9842
High Population High Income -6.06 -0.5599 -0.8342 0.6462 0.9676

Table 5.5: Parameters value for each group.
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Fixed Population Density
Income at i1 02 32

M id - Lott (-0.13. -1.34 -0.75) (0.23. 0.07, 0.02) (0.50, 0.57. 0.27) (0.15. 0.18. 0.08)
High Mid (-0.78, -0.47, 0.06) (-0.10, -0.07, -0.05) (-0.05, -0.06 -0.14) (0.00, -0.03, -0.00)

Fixed Income

Population ai #1 a 2 32
Mid - Low (1.04. -0.18. 0.13) (0.04. -0.12, 0.08) (- 20. -0.13. -0.14) (-0.05, -0.02 -0.04)
High - Mid (0.01. 0.60. 1.13) (0.04 -0.01 ) (0.17 -0.13, -0.22) (0.06 -0.03. -0.06)

Table 5.6: The upper table is obtained by fixing population density at a certain level (i.e. Low,
Mid and High correspond to the first, second and third number in the parenthesis respectively) and
calculating the difference between values at different income levels (Mid-Low, High-Low) for each
parameter. The lower table is obtained by fixing income at a certain level (i.e. Low, Mid and High
correspond to the first, second and third number in the parenthesis respectively) and calculating the
difference between values at different population densities (Mid-Low, High-Low) for each parameter.

which provides sufficient flexibility to characterize distributions of radius of gyration.

A simple sensitivity test or mathematical analysis would show that:

1. the shape of the beginning part of Eq. (4.1) is mainly determined by the values

of a 1 + a 2 , which is also the cutoff on the y-axis. (Can be proved by Talor expansion

at rg = 0)

2. the shape of the tail is mainly determined by a 2e 21n(rg), i.e. the second expo-

nential element. This is because #1 is negative, so when rg is large (corresponding to

the tail part), the first exponential element decays to zero, and have little influence.

However, 32 is positive which increases the second element exponentially and in turn

provides much stronger influence.

3. the middle part of the curve is determined by both exponential elements. Since

the sign of 31 and beta2 are different, the two elements have offsetting effects on

the shape which imply the models flexibility. (The offsetting effects can be showed

mathematically from the first derivative of the function.)

Roughly known the range of the parameters value is not enough if we want to

achieve a high level of accuracy. Therefore, we are interested in the relationship

between each parameters and the demographic factors, namely population density

and income. A simple calculation as shown in Table 5.5 provides a lot of insights.

Table. 5.6 is a transformation of Table 5.5 by replacing a positive value in the

table with "+", a negative value with "-" and zero with "-/+".

As the signs in table. 5.6 clearly show, for fixed population density: a 1 decreases

when income increases (except for areas with high population density, where aI firstly



Fixed Population Density
Income ai #1 a 2  #2

Mid - Low (-, -, -) (+, +, +) (+, +, +) (+, +, +)
High - Mid (-, -, +) (-, -, -) (-, -, -) (-/+, -, -)

Fixed Income
Population a1  #31 a 2  #2
Mid - Low (+, -, +) (+, -, -) (-, -, -) -, -)
High - Mid (+, +, +) (+, -, +) (+, -, -) (+, -, -)

Table 5.7: A transformation of Table 5.5 by replacing a positive value in the table with "+", a negative
value with "-" and zero with "-/+".

decreases and then increases). a 2, /31 and 32 increases when income increases from

low level to mediate level, but decreases above the mediate leve. For fixed income

level: a1 increases when population density increases (except for areas with mediate

income level, where a1 decreases first and then increases). 01 increases when pop-

ulation density increases at the low level income areas, however #1 decreases when

population density decreases at the mediate level income areas. a 2 decreases when

population density decreases (except for areas with low income level). 32 decreases

when population density decreases (except for areas with low income level).
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Chapter 6

Conclusions

Mobile phone records provide us unprecedented access to the spatiotemporal localiza-

tion of hundreds of millions of users. Analyzing the calling activities through mobile

phone data in conjunction with population density data and income data from GIS

files, we conducted a thorough research with the purpose of understanding heteroge-

nous trip length distributions in various regions and how they might be correlated

with socio-economic factors, such as population density and income.

The trip length distributions can be characterized by radius of gyration distri-

bution, which measures the linear size occupied by individual's trajectory up to a

specific time. Moreover, the radius of gyration can also be interpreted as the radius

of a circle within which the individual can be probably found. By display the ra-

dius of gyration and population density in a single Self-organizing map, we visually

identified the inter-relation between the two factors. The existence of such kind of

inter-relationship between radius of gyration and population density motivates us to

formally characterize them with a mathematical formula. Using a double exponen-

tial function, we are able to well fit all the 24 P(rg) curves, that is, each curve can

be characterized by four parameters and an exact function. However, using popula-

tion density (or additional socio-economic factors, which are not considered in this

dissertation) as the independent variable to mathematically represent all the four

parameters in a function form are impossible because of the limitation of available

sample points. This leads us to conduct the PCA analysis which is widely-known as



a powerful tool in terms of reducing the dimensionality of sample space. By apply-

ing PCA, we project the 4 parameters getting from fitted distribution of radius of

gyration of each autonomous area into orthonormal vectors, and find the principal

component that contributes most to the variation of data. A multi-variate linear

regression associates the principal component with the population information in 24

autonomous region. The resulted R2 is not enough good, which indicates that the

regression function cannot be used for prediction purposes. The failure of using PCA

to characterize the relationship between population density and radius of gyration

maybe due to the fact that too few sample points are available to obtain a significant

regression result. Furthermore, the resulted low R 2 excludes us from using a regres-

sion formula for prediction purposes even if the regression result might be significant.

Generally, we think although there do exist correlation between population and den-

sity, the correlation is not strong enough to provide us an exact function relationship.

It seems that other socio-economic factors should also be considered, and more com-

plicated function form is necessary. Due to the limitation of data sources, we could

not conduct further analysis.

Finally, a finally as a case study we consider the San Francisco Bay is conducted

in San Francisco Bay area. By dividing the whole Bay area into several polygons

according to tower locations, we are able to analyze the data at a micro-scale (at the

resolution of towers). Regressing radius of gyration on population density, median

family income, unemployment rate and median age, we find a negative correlation

between radius of gyration and population density and a positive correlation between

radius of gyration and income. This implies that people living in wealthier and

unpopulated areas tend to travel more frequently and make long distance trips. We

are also particularly interested in how the distribution of radius of gyration depends

on demographic information, namely, how the parameters in Eq. (4.1) related to

population density, income, age, and unemployment rate, etc. We separated the 951

towers in San Francisco Bay area into 9 groups according to local income level and

population density. We found that the area with low level of income has a higher

probability to achieve larger rg than the area with mediate or high level of income.



This is very reasonable since areas with low level income are most likely to be less

developed, which don't have sufficient facilities or public goods to satisfy the daily

demand of individuals. Therefore, people need to go to other regions for shopping or

whatever they need, which in turn increases the probability of larger rgs.

In this thesis, we presented a cross-cultural study of human's trip length distri-

bution by considering billions of data points of time and space from tens of millions

of mobile phone subscribers in regions ranging from rural Dominican Republic to ur-

ban California. Similarities of trip length distribution in three countries, i.e. United

States, Dominican Republic, and a European Country are captured by a double expo-

nential function. The research described in this thesis also open opportunities to use

mobile phone data to detect commuting. Since traditional travel preference surveys

are expensive and time-consuming, the analysis of mobile phone records presented

in this thesis also provides an efficient method to collect trips among locations and

estimate origin-destination matrix. Furthermore, this thesis is a step further in the

contribution to numerically analyze and understand mobile phone records, which can

be used for public services.
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