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Abstract

Urban air pollution imposes major environmental and health risks worldwide, and is expected
to become worse in the coming decades as cities expand. Detailed monitoring of urban air
quality at high spatial and temporal resolution can help to assess the negative impacts as a
first step towards mitigation. Improvement of air quality needs a variety of measures working
together, including controlling industrial pollution and mitigating automobile emissions. In
contrast to the measurable industrial pollution, in many of the developing countries, the
impact and control of automobile emissions on air quality is neither well understood nor
well established. Moreover, the automobile emission data sets are difficult to collect. In
this paper, we present a data analysis framework to uncover the impact of urban traffic
on estimating air quality in different locations within a metropolitan area. To that end, we
estimate the traffic surrounding 24 air quality (AQ) monitoring stations in Beijing, combining
mobile phone data and road networks with a traffic assignment model. We investigate
how the amount of traffic surrounding each station can impact the modeling of air quality
index (AQI) observed by the stations. We separately estimate the contribution of traffic
information to the modeling of AQI with regression models in the summer and winter.
Further, we group the AQ monitoring stations into four classes, and show that in the summer,
air pollution in the inner city is generally more severe than that in the suburbs due to urban
traffic; while in the winter, air pollution in the south of Beijing surpasses that in the inner
city, most likely due to heating using coal.
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1. Introduction1

With the rapid urbanization and the acceleration of industrialization, today’s air pollution2

has become a global threat of human health, especially for the large scale and densely3

populated cities in developing countries [1, 2]. As pointed by the World Healthy Organization4

(WHO), in 2012 around 3.6 million people died – 16% of total global deaths – as a result5

of ambient air pollution exposure, which makes it the largest environmental risk to the6

health of human beings. Moreover, exposure to air pollutants is largely beyond the control7

of individuals and requires action by public authorities at the national, regional and even8

international levels.9

It is important to detect pollutants in the air, to explore their sources, and to model their10

temporal and spatial patterns, in order to make policy recommendations to mitigate their11

negative impacts. To better predict air quality (AQ), the relationship between the sources12

and AQ needs to be examined and clarified. The sources of air pollution are usually divided13

in 4 categories: stationary, such as industries; mobile, such as transportation sources; area,14

such as agricultural areas, cities, and wood burning fireplaces; and natural, such as dust and15

wildfires. The first two of them are human related factors and represent research priorities in16

the literature. Mobile sources include motor vehicles, marine vessels, and air-crafts. Among17

them, the exhaust emission of motor vehicles is one of the primary factors that influence18

AQ in urban areas [3, 4]. Consequently, clear impacts between traffic and AQ may inform19

environmental policies. To examine the impact of traffic on air pollution, McHugh et al.20

updated an atmospheric dispersion modeling system with a traffic emissions database [5].21

Several studies measured the impacts of traffic and meteorology on air pollution measuring22

data near roads [6, 7]. While these studies are detailed on the chemical processes, they do not23

cover the entire city. Using a data analysis perspective, Zheng et al. studied the variations24

of air quality in space and time in the entire Beijing region via machine learning techniques,25

combining multiple data sources including taxi data, number of facilities, and the road26

network data [8]. In a related work [9], they predicted air quality in each station, informed27

by historical AQ and meteorological data, and weather forecasts without considering traffic28

conditions.29

We focus our study in Beijing, which is one of the most congested and polluted cities in China.30

Improving AQ in Beijing, is a top-priority locally, that has attracted the world’s attention31

in the past few years. These efforts are compromised by the rapid growth of motorization32

and urbanization [4]. Fig. 1 shows the noise-removed values of air quality index (AQI), wind33

speed, and humidity from April 1, 2014 to May 1, 2015 in Beijing. The figure represents34

the variation of AQI at 24 AQ monitoring stations within the Sixth Ring Road of Beijing.35

Higher AQI values indicate worse air quality. Specifically, AQI values in the range of 0-50 are36

established as good air, 51-100 moderate, 101-150 unhealthy for sensitive groups, 151-20037

unhealthy, 201-300 very unhealthy, and 301-500 hazardous. We see that in general the AQIs38

in Beijing in the observation period are from moderate to unhealthy. However, they are more39

stable and lower in the summer (May to October) than in the winter (November to March).40

Also the wind speed and humidity show different patterns in the two seasons. In the present41
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Figure 1: Variations of AQI, wind speed, and humidity from April 1, 2014 to May 1, 2015 in each of the 24
air quality monitoring stations within the Sixth Ring Road of Beijing.

work, we seek to uncover the contributions of traffic to the air pollution modeling in the42

summer and winter separately.43

Our work contributes to the types of studies presented in Refs. [8, 9] in three major aspects.44

First, we establish separate models—one for the winter and one for the summer—to gain45

better understanding of seasonal effects of AQI. Second, to investigate the different spatial46

impacts of urban traffic on AQI, we separately model their relationship by station, taking47

into account a set of online publicly available daily traffic congestion index (TCI) reported48

by the local transportation committee to reflect realistic daily traffic conditions. Finally, we49

enrich the on-line TCI with a travel demand model. We calculate the collective travel time50

(CTT) of all vehicles surrounding the AQ monitoring station, which is estimated from a51

mobile phone data based travel demand model and traffic assignment model integrated with52

the TCI. Relating traffic with the actual number of drivers and their origins and destinations53

is crucial to mitigate congestion in the urban road network, which can take into account AQ54

impact.55

In the next sections, first, we discuss the mobile phone meta data and results from the call56

detail records (CDR) to inform a travel demand model. Second, we analyze the importance57

of traffic information to the prediction of AQI and the diversity of AQ in space per season.58

3



Concluding remarks and directions for future work are given in the last section.59

2. Data and methodology60

2.1. Travel demand estimation from mobile phone data61

We estimate the travel demand for the 19.4 million residents living in the urban area of Bei-62

jing. This is commonly referred to the region within the Sixth Ring Road, shown in Fig. 2a,63

which has 5.6 million privately-owned vehicles registered in 2013 [10]. To our knowledge,64

our work constitutes the first traffic estimates of the region based on mobile phone data for65

Beijing.66

Alexander et al. and Colak et al. outlined a general framework to obtain Origin-Destination67

(OD) matrices from massive mobile phone data [11, 12]. We apply the same methods to68

extract trips of users, and estimate the person and vehicle travel demand by combining them69

with census data within the Sixth Ring Road of Beijing. Fig. 2a shows the map of Beijing70

with the AQ stations marked by blue circles. We focus our study in the inner area marked71

in darker green.72

First, we extract stay locations of massive anonymous users from raw mobile phone data,73

and labeling activities with home, work and other. Second, we infer number of trips among74

the stay locations of users by different time of the day and by purpose. Combining with75

census data, we expand mobile phone users to total population, and estimate an OD matrix76

for an average day. Next (an innovative step proposed by this study), we generate a series77

of day-specific OD matrices by using local reported daily traffic congestion index for the78

city, which allows us to fluctuate the average daily OD to reflect the realistic daily traffic79

conditions. We then assign the daily vehicle demand to the road network.80

2.1.1. Mobile phone data81

The mobile phone dataset contains 100, 000 users with their call detailed records (CDR)82

and data detailed records (DDR) for December 2013. Each record of the CDR and DDR83

data has a hashed ID, time-stamp, longitude, and latitude of the cell tower when the phone84

communicated with it. According to Voronoi tessellation, the average distance between85

towers is 332 meters (with a median of 254 meters), representing the spatial resolution in86

the study. Fig. 2b shows the flow between tracts for the morning peak (6am-10am), obtained87

using the mobile phone data as proxy for surveys, with the methods detailed below. Fig. 3a88

shows the average number of phone usage records per day that a user has during the whole89

month. As we see the majority of users are active with an average of 15 records per day.90

Mobile phone carriers use methods to execute tower-to-tower call balancing to improve their91

service. This generates signal jumps that introduce noises, appeared as fast and long move-92

ments beyond a travel speed limit. To eliminate this artifact, various methods have been93

reviewed in [13]. One of the simplest yet effective methods is to remove the next record if94

4



ba

#Trips

AQ station

Figure 2: Study Area. (a) The boundary of the whole Beijing, it is about 16,410km2. The city area is
the greener area, within the Sixth Ring Road, marked by the outer purple line. The blue circles are 35 air
quality (AQ) station. (b) Trips between origin destination (OD) pairs in the Morning peak (7am-10am) in
urban Beijing.

the the inferred speed between two records is beyond reasonable speed limit. However, it95

heavily relies on the correctness of the first record. To improve its accuracy, we check if the96

first record is a noise —if the speed between the first and the second record is beyond a97

predefined speed limit, we then remove the first record. We repeat this process until there is98

no artificial jumps between two records. Next, we distinguish stay-point and pass-by from99

the remaining records.100

We improve upon the stay-point algorithm presented in [13, 14] as follows. (i) we apply101

a temporal agglomeration algorithm. The temporally consecutive records within a certain102

radius (e.g., 500 meter) are bundled together with a updated stay duration from the start103

time of first record to the end time of last one. (ii) We then label the records as pass-by104

points and stays, according to the stay duration threshold (e.g.,10 minutes) based on the105

local context in Beijing. In analysis hereafter, we only focus on the stays. We then combine106

all the spatially adjacent stay points for a user (within a threshold) as his or her stay regions,107

which will be later labeled as home, work, and other. For this spatial agglomeration, we use108

R-tree to accelerate the computation [15]. R-tree is a type of spatial B-tree, a spatial search109

balancing tree that checks the boundaries of elements to make the search faster (see details110

in Alg. 1). We then get a mapping relation between stay points and stay regions.111
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Figure 3: Traffic model of Beijing. (a) The distribution average daily records among the 100,000 mobile
phone users (b) Validation of the estimated number of work trips vs. employment information from Census
data (c) Estimated fraction of trip departures per hour of the day. (d) Estimated volumes of cars in the
streets per time of the day.

2.1.2. Stay detection and activity labeling112

We then estimate the type of each stay location for every user, classified as home, work or113

other. The most visited location during weekday nights and weekends are labeled as home,114

and the most visited one during weekday working hours (at least 500 meters away from115

home) is labeled as work, and the rest are labeled as other. We assume that within 500116

meters, it is not necessary to travel by car.117

2.1.3. Vehicle demand estimation118

After labeling the activity type, we estimate residential and working population within each119

zone (i.e, a Voroni polygon generated from towers), and calculate an expansion factor by120

dividing the number of phone users by total population for each zone. We aggregate the121

population data at the 100 by 100 meter grid level obtained from WorldPop 2 to the Jiedao122

level (census zones comparable to towns in U.S.). We compared the total population obtained123

from WorldPop with the Beijing Census data (2010) at the Jiedao resolution, and they are in124

2http://www.worldpop.org.uk/data/methods/
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Algorithm 1: Spatial Agglomeration by R-tree (Python)

1 import index from rtree;
2 tempStay2Stay = dict();
3 idx = index.Index();
4 for node in tempStays do
5 idx.inserts(tempStay);
6 #degenerate the rectangular to a point when inserting the tempStays;

7 for node in tempStays do
8 VectorState[node] = idx.intersection(node’s square buffer);
9 #search the buffer region of each node to see how many nodes are in its neighbor

in the constructed rtree (i.e., idx above);

10 while the sum of StateVector is not 0 do
11 choose the node i with maximum value in StateVector;
12 intersection = idx.intersectionnode i’s square buffer if the

len(intersection)==StateVector[i] then
13 #cluster the nodes within node i’s buffer, get the mapping relationship to the

most central one for nodes j within the square buffer;
14 for node j in intersection do
15 tempStay2Stay[node j] = node i;
16 StateVector[node j]=0;
17 idx.delete(node j);

18 else
19 StateVector[i] = len(intersection);
20 continue;

21 return tempStay2Stay;

good agreement. We compare the home-work trips generated by our model with the census125

employment statistics at the Jiedao level, only taking into account the phone users with126

labeled work location. We find that our employment estimation is in reasonable agreement127

with the Beijing 2nd Economic Census (see Fig. 3b).128

Trips are then assigned a trip purpose: home-based-work (commuting), home-based-other,129

and non-home-based, according to the inferred locations of two consecutive stays. We then130

get an overall average departure time distribution from all the trips normalized by the number131

of active days, and an expansion factor for each user. Although a travel survey from Beijing132

is not available to us at the moment, this method has been approved in other cities with133

their travel surveys [12, 16, 11]. In Fig. 3c, we show the estimated fraction of trips per hour134

in an average day.135

We obtained OD matrices by different time periods of an average weekday according to the136
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departure time at both the Voronoi polygon and census tract level, where the number of137

trips are expanded by the expansion factors. To consider trips made by motorized vehicles,138

we weigh obtained person trips by vehicle ownership rates at the district level which is larger139

than Jiedao (e.g, with 18 districts in Beijing). According to the 2013 Beijing Year Book140

[10], due to local traffic regulation policy, around 20% of cars are restricted not to travel on141

the road according to their car license numbers. We multiply 0.8 by all trips, as each day142

two license ending-numbers are restricted by the city. The other factor is the vehicle usage143

rate— many people who own cars tend to use subways rather than driving to avoid traffic144

congestion in peak hours. Consequently, we assume a factor of 80% for all tracts, and this145

step is yet to be improved with more accurate car usage rate data, which is not available at146

high resolution. Finally, with a traffic assignment model [17], we assign the vehicle ODs to147

the road network resulting estimates of travel time and car volumes for each segment of the148

road network.149

2.1.4. Day-specific travel demand estimation150

We extend the average 24-hour demand calculated from mobile phone data to day-specific151

ODs using data reported on traffic congestion index (TCI). TCI is published by Beijing152

Transportation Research Center (BJTRC) [18] and ranges from 0 to 10. As explained by153

BJTRC, 0 indicates all vehicles in the road network traveling in free flow speed; 10 indicates154

the travelers on average take double free-flow travel time on the road segments. TCI reflects155

the degree of congestion, other than the faction of travel demand. We use them, however,156

as a source of of information to generate variations in demand, with the following equation:157

fd =
TCImax + TCId

TCImax + TCImean
(1)

where fd is the demand factor on the dth weekday in our data set; TCId is the value of158

TCI on the dth weekday; TCImax and TCImean are the maximum and mean TCI of all159

weekdays, respectively. As a result, the zone-to-zone OD matrix is scaled with the demand160

factor fd for each weekday. In our experiments, fd ranges from 0.65 to 1.31. This means that161

during weekdays from April 2014 to May 2015, we allow for fluctuations in traffic congestion,162

introducing a degree of uncertainty in the proposed travel demand estimates, enriched by163

the variations reported by in the TCI on the same days over which we will model the AQIs.164

2.1.5. Traffic Assignment165

To estimate the traffic state and travel time of drivers, we assign the vehicle demand to166

the road network using a user equilibrium (UE) model. A UE model assumes that all167

of the travelers in the road network try to find their routes with respect to the shortest168

travel time [19, 20]. The road network of Beijing within the Sixth Ring Road is extracted169

from OpenStreetMap [21]. We extracted or estimated requisite attributes of road segments,170

including free flow speed, capacity, length, and number of lanes, from OpenStreetMap.171
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The road network is represented as a directed acyclic graph (DAG), G(N , E), where N is172

the set of all nodes, E is the set of all edges. In our implementation of the UE model, the173

anticipated travel time on each edge e is calculated by the Bureau of Public Roads (BPR)174

function:175

te =

(
1 + α

(
ve
Ce

)β)
× tfe (2)

where ve is the number of vehicles attempting to use edge e per hour; Ce is the capacity of176

the edge; tfe is the free flow travel time on edge e and is estimated using the limit speed of the177

edge; α and β are two coefficients and we are using α = 0.18 and β = 4 in our experiments.178

To solve the UE model, we minimize the distance between the optimal solution and the179

current solution in an iterative process [22, 23]. In our work, the distance is measured using180

the following equation:181

rg = 1−
∑

o∈O,d∈D t
′
odfod∑

e∈E teve
(3)

where O and D are the set of origin and destination nodes in the road network; fod is the182

demand of flow from o to d; t′od is the shortest travel time of trip (o, d) in the current iteration.183

Further details of the implementation of assignment can be found in [17].184

Fig. 3d shows the assignment results during morning peak hour. The color of each road185

segment reflects the volume-to-capacity (VoC). A larger VoC indicates that the road is used186

by a larger number of vehicles compared with its capacity. As seen from the figure, a large187

proportion of the urban roads are in congestion during the morning peak.188

To verify that the assignment results are reliable and robust, we compare the travel time of189

5, 000 OD pairs with top number of commuters during the morning peak hour with the travel190

time provided by Gaode [24], which is a leading traffic navigation company in China. Fig. 4a191

shows the comparison of travel times, suggesting that our estimated travel times and Gaode’s192

are quite close for most of the trips. Fig. 4b presents the distribution of commuting time193

of the top 5000 OD pairs. The distribution indicates that our assignment model provides194

reliable estimates of travel time delay in the peak hour.195

2.2. Measuring traffic feature by AQ monitoring station196

The coverage radius for an AQ monitoring stations in the city ranges from 500 meters to 4197

kilometers. We define a 2km× 2km square-buffer surrounding each station to examine the198

relation between traffic around the station and its AQ. This enables us to identify stations199

that are more sensitive to local traffic. By assigning the day-specific vehicle ODs (extended200

by the TCIs) to the road network, we estimate vehicle numbers in the streets by hour for201

different days. We then estimate the volume of vehicles and travel times for each road202

segment for each of the days. Since the traffic-related air pollution is not only related to203

the vehicle volumes but also with the time they spend (to approximate emission) in the204

road network, we calculate the collective travel time (CTT) within the buffer area of the205
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Figure 4: Commuting time validation with Gaode travel time. (a) The scatter plot of 5000 trips with top
commuters. (b) The distribution of travel time with three modes: free flow, our estimation, and Gaode map.

AQ monitoring station as a traffic feature to model the AQI. The collective travel time is206

calculated as tc =
∑

e∈B vete, where B is the set of roads in the buffer area. Besides, the total207

VoC is also calculated as the summation of VoC on all roads in the station buffer area.208

Fig. 5 shows the CTT and total VoC per hour per station. The CTT and VoC in each station209

buffer are obtained by assigning the average demand to the road network. As shown in the210

figure, there are three peak hours on weekdays in Beijing. The CTT at four stations: 1, 3,211

5, 31 are significantly higher than others, and three of them also have high VoC. Besides,212

most stations with heavy traffic are located within the Fourth Ring Road of Beijing. In the213

next section we discuss the use the CTT as a predictive feature for AQI.214

2.3. Impact of traffic to modeling of air quality215

Although traffic is regarded as one of the most critical influences on air pollution in urban216

areas, the impact of traffic is still not well measured and understood. Zheng et al. predicted217

the AQI in Beijing with features related to meteorology, number of taxi trips, road properties,218

point of interests (POIs), and traffic related features (e.g., speeds from taxi data) [8]. They219

built a single prediction model for the entire city. That is, the model was trained using data220

from all AQ stations in Beijing, disregarding the spatial variations of AQ. In a later work221

of the same team, they predicted future AQ in each station, but without considering the222

traffic factor in the station [9]. We argue that a city-wide model cannot identify the spatial223

variations reflecting the importance of local traffic feature for the AQI by station, which224

is important in relating AQ with transportation policy. In this work, we investigate this225

aspect, modeling the AQI in each of the 24 monitoring integrating a travel demand model.226

The location and ID of the stations are shown in Fig. 3d. We can see that some stations are227
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Figure 5: Travel demand information per hour in buffer areas of each station (a) The collective travel time.
(b) Total car volume over street capacity (VoC).

located in zones with heavier traffic than others.228

To evaluate the impact of traffic on air pollution, we model the AQI using the meteorology229

and traffic information in the same hour. The meteorological features include wind speed,230

wind direction, humidity, temperature, and pressure. The traffic features include the TCI231

and proposed CTT. We divide the data set into two parts: summer (from May 1, 2014 to232

September 30, 2014) and winter (from December 1, 2014 to March 31, 2015). For each part,233

we train a estimation model for each station under the three aforementioned scenarios, and234

use the raw AQIs as response. Moreover, as people are more concerned with air quality235

during daytime, we select the samples from 6:00am to 8:00pm everyday. After eliminating236

the missing data, the summer data set contains about 430 sample-hours per station; the237

winter data set contains about 530 sample-hours per station, corresponding to only 31 and238

38 days with complete data, respectively. To avoid the overlap between training and testing239

sets, the first 70% sample-hours are used to train the models, and the last 30% hours are240

used to test. Subsequently, we estimate the AQI with two distinct models, linear regression241

and non-linear random forest model [25, 26]. To obtain stable estimation, we repeat training242

the model 20 times at each station. At each time, we randomly select 90% data from the243

training datasets to train the model. The average value of the 20 estimations is regarded as244

the final estimation of AQI at the station.245

3. Results246

3.1. Analysis of AQI estimation247

To assess the impact of traffic features on air quality, we first calculate the relative feature248

importance of three feature sets, meteorology, TCI, and CTT in two regression models. A249
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linear regression model, and a random forest. For the linear regression, we use the Lindeman,250

Merenda and Gold (LMG) method to quantify the contribution of individual feature sets to251

modeling AQI [27]. For random forest, the importance of a feature set is calculated through252

the difference of training accuracy with and without the feature set. The estimation accuracy253

of AQI is calculated by:254

p =

(
1−

N∑
i=1

| ˆAQI i − AQI i|
AQI i

)
× 100% (4)

where ˆAQI i is the estimated value of the ith sample; N is the number of samples in the255

testing set.256

Fig. 6a and Fig. 6c illustrate the relative feature importance of meteorology, TCI, and CTT257

in summer, with linear regression and random forest, respectively. As can be seen, mete-258

orology is the leading factor at most stations. However, linear regression suggests TCI is259

less important than CTT, while random forest suggests TCI and CTT have equal level of260

contribution to AQI. The importance of features to AQI estimation in winter are divergent261

for the two regression models, as shown in Fig. 6e and Fig. 6g. Such diversity between two262

models reflects the AQI in winter is more difficult to model than summer.263

Fig. 6b and Fig. 6d present the distribution of the estimated accuracy in all stations in the264

summer, with the linear regression and random forest, respectively. The red distribution is265

obtained with model trained with all features, while the blue one is obtained with model266

trained without traffic features (TCI and CTT). Integrating the traffic features with the267

meteorological features, the accuracy decreases in some stations. This indicates that the268

traffic information in a given hour has not direct impact in the AQI in the same hour. The269

impact of traffic to air quality may be delayed for more than one hour. Similar results270

were obtained in winter, as shown in Fig. 6f and Fig. 6h. From these results, we notice that271

although the traffic information has significant importance in the training phase of regression272

models, it can not promote the estimation of AQI in the testing phase.273

3.2. Spatial diversity of AQ monitoring stations274

We further analyze the different relationship between AQI and traffic demand information275

among the 24 stations. In Fig. 7a and 7c, we plot the median value of AQI and CTT at276

each station in summer and winter, respectively. As shown in the figures, the CTT at the277

24 stations are distinctly separated in two groups: heavy and light traffic stations. Heavy278

traffic stations are located in the inner urban area, while lighter traffic stations are located279

in the suburbs. To divide the AQIs, we use 100 as a threshold—according to the U.S.280

Environmental Protection Agency, a AQI higher than 100 is regarded as unhealthy.281

Finally, we partition the 24 stations into four groups: healthy with light traffic, healthy with282

heavy traffic, unhealthy with light traffic, and unhealthy with heavy traffic, shown in Fig. 7a-283

d with different colors. As seen from results in Fig. 7a and 7b, the median AQIs of all light284
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Figure 6: Feature importance and AQI modeling accuracy. (a-b) Relative feature importance per AQ station
and the distribution of estimated accuracy of all AQ stations with linear regression in the summer. (c-d)
Relative feature importance and the distribution of estimated accuracy with random forest in the summer.
(e-h) Results in the winter, e and f are results of linear regression, g and h are results of random forest.
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Figure 7: The spatial separation of stations according to AQI and CTT. (a, b) Stations separation results
in summer. (c, d) Stations separation results in winter. (e) The location of major coal power plants in and
around Beijing.
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traffic AQ stations (green) are under 100, which indicates that around these stations, the air285

quality on most days in the summer are healthy. For the stations with heavy traffic, only286

two of them (station 12 and 34) are unhealthy. Station 12 is located at the West Fifth Ring287

Road; station 34 is located at the South Third Ring Road; and both of them suffer with busy288

traffic. Fig. 7c and 7d show the results in the winter. In general, the air pollution in winter289

is much severer than that in the summer. Consequently, AQ at some stations (e.g., station290

10, 15, 31, 32 and 35) change from healthy in the summer to unhealthy in the winter, while291

only stations 12 and 5 improve their AQIs in the winter. Interestingly, these stations are all292

located in the southern area of Beijing. Meanwhile, from the map of major coal power plants293

in and around Beijing in Fig. 7e, we observe there are some large-capacity power plants at294

the south-eastern area of Beijing, e.g. Hebei province and Tianjin. This argument has been295

demonstrated in literature [28]: in the winter, the air pollution in the north China is more296

critical than the south because of the burning of coal for heating. On the other side, the297

traffic is heavier in the inner core for both winter and summer. Therefore, we argue that the298

degraded air quality in the southern area of Beijing reaching the unhealthy limits, is likely299

not related to traffic but due to heating by coal sources.300

4. Conclusions301

In this paper, we studied the contribution of traffic related features to the air quality index302

in the same hour in 24 monitoring stations in Beijing. We integrated mobile phone meta303

data and publicly available daily traffic congestion index (TCI) to define the traffic features.304

First, we estimate zone-to-zone vehicle travel using mobile phone data, census data, vehicle305

usage rate, and road network information. Second, we generate day-specific hourly ODs306

using TCIs. The day-specific ODs are then assigned to the road network, and the maximum307

collective travel time (CTT) surrounding each AQ station area is estimated per day in the308

studied period. Based on the meteorological data, the TCI, and our estimates of CTT, we309

built two regression models for each station in the summer and the winter. The results show310

that the traffic information has significant importance in the training phase of the regression311

model. However, it cannot promote the estimation accuracy in the testing phase. The main312

reasons may be: (i) the air pollution generated by automobile can not be reflected by AQI313

immediately; (ii) the regression models do not capture the relations between traffic features314

and AQI effectively due to the limited period of observation and sample size of mobile phone315

data to generate the travel demand model.316

Modeling AQ variations and with urban travel demand are the first step towards trans-317

portation policy recommendations. Given the difficulties on relating the existing data-sets,318

we hope our findings serve as a reference for designing future studies and as a base case for319

improvements, testing our hypothesis (i) and (ii) reported above.320

Moreover, to relate the impact of traffic on air quality in space, we categorize the 24 stations321

within Sixth Ring Road of Beijing into four groups. We find that the stations with heavy322

traffic are in the inner core of the city both in winter and summer. The stations with323
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unhealthy levels of air pollution appear in the winter and are concentrated in the southern324

area of Beijing. Based on these observations, it suggests that the coal heating rather than325

traffic contributes significantly to the degraded air quality in south Beijing in the winter.326

The presented framework is portable, as the data sets employed here can be easily obtained327

for other cities. The traffic estimation model is of low cost in computation and data re-328

quirements. This work also provides a data pipeline to categorize AQ monitoring stations329

more affected by traffic congestion, and to estimate AQIs based on meteorology data, traffic330

congestion index, and travel demand estimates from mobile phone meta data. There are331

important avenues for improving the presented framework, these include: (i) to further in-332

vestigate the variation of specific pollutants such as NO2, PM2.5 and PM10 in space; (ii)333

to employ disaggregated vehicle models to detect the bottlenecks of congestion in the road334

network, with sensitivity analyses for the effects of unknown parameters (such as presences335

of buses and trucks, which are important sources of vehicle emissions); (iii) to validate the336

potential sources of pollution, integrating aerial images (from providers of remote sensing337

data such as Planet Labs) with longer and more detailed observations of pollutant sources338

and presence of vehicles.339
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