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Abstract

Using a data-driven approach, this paper simulates 15-minute electricity consumption for households and groups them
into community microgrids using real locations and the road network in Cambridge, MA. We then simulate PV for
these households and use this framework to study battery economics in a high PV adoption, high electricity cost
scenario, in order to demonstrate significant storage adoption. We compare the results of storage adoption at the
level of individual households to storage adoption on the community level using the aggregated community demands.
Under the simulated conditions, we find that the optimum storage at the community level was 65% of that at the level
of individual households and each kWh of battery installed was 64-94% more effective at reducing exports from the
community microgrid to the upstream network. Therefore, given the current increasing rates of residential battery
deployment, our research highlights the need for energy policy to develop market mechanisms which facilitate the
deployment of community storage.
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1. Introduction

It is well known that the generation from roof-top
PV systems is not generally aligned with peak electric-
ity loads and this can lead to limits on the proportion
of solar generation that can be integrated in traditional
systems [1]. Until recently this has not caused signif-
icant concern for grid operators as PV adoption rates
have been low, however several factors mean this is now
changing, including continual declines in the price of
solar panels [2], continually increasing residential elec-
tricity prices, favorable public opinion towards solar [3]
and strong government support mechanisms [4]. As a
result, evermore households are installing roof-top PV
systems. This has led to significant concerns regarding
the over-prevalence of PV generated electricity in elec-
tricity networks [5, 6].

Concurrent with increasing residential electricity
prices, the rewards for exported solar electricity are
falling. Therefore, local PV self-consumption is gain-
ing attention in several countries [7, 8]. Energy storage
is one effective way of allowing a larger fraction of de-
mand to be met by PV-generation [9]. To date, many
studies have examined the techno-economic impacts of

PV-coupled batteries in individual dwellings, examin-
ing the required conditions for economic profitability in
terms of capital expenditure as well as retail tariffs and
export prices [10, 11]. Together with frequency control,
PV-coupled batteries have become a key business area
for energy storage developers, with regions such as Ger-
many and California leading the way [12].

In contrast to storage in individual dwellings, en-
ergy storage can also be introduced for communities,
i.e. Community Energy Storage (CES) [13]. The CES
is then shared between members of the community,
who are typically (although not exclusively) located in
close proximity. Community microgrid storage gener-
ally refers to the case in which the community mem-
bers are electrically connected and the storage is shared
between members in a microgrid, which can operate
with some autonomy from the rest of the network [14].
The topic of optimizing microgrids has gained much at-
tention in the last decade, including how different dis-
tributed generation types can be optimally scheduled
[15], how microgrids can interact with electricity mar-
kets [16], provide demand response [17], include elec-
tric vehicles and stationary energy storage devices [18].
Recent research is also active in solving the optimal
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power flows between clusters of microgrids [19]. Some
potential advantages of CES acknowledged in the pre-
vious literature are economies of scale for batteries and
benefits related to the lower likelihood of short duration
consumption peaks [20]. However, a systematic com-
parison of batteries for individual dwellings and com-
munities in terms of size, location, electricity flows and
economic attractiveness is so far lacking and this study
aims at providing insights into the optimum aggrega-
tion level of storage deployment next to the consump-
tion centres.

One problem in the study of community microgrids is
the lack of location data associated with open electric-
ity meter data, due to privacy concerns. Therefore, we
simulate community microgrids by connecting together
known household locations and matching real monthly
consumption values to data sources where 15-minute
consumption is available [21]. We also simulate real-
istic PV generation profiles. We then use the household
demand profiles or the aggregate community demand
profiles to estimate an economically optimum level of
storage for each household and community respectively,
with the main contribution of our work being a compar-
ison between the two storage scales.

We utilize monthly electric bills obtained from a lo-
cal electric utility in Cambridge and smart meter data
from the Pecan Street project, based in Austin Texas.
This provides a source of 15-minute resolution electric-
ity data for in excess of 1000 households, as well as
solar generation with the same temporal resolution for
those households with rooftop PV installed [22]. Fig-
ure 1 shows the daily load and generation for an exam-
ple home on a typical April day. We see that the mis-
alignment between the generation and consumption is
significant and observe that the average misalignment
for all homes over the month of April is 57%, therefore
only 43% of electricity they produce matches their de-
mand. We also compare the misalignment estimated at
two temporal resolutions and see that higher temporal
resolutions are important for accuracy [7].

The rest of this paper is structured as follows. Section
2 describes the creation of the microgrids, the simula-
tion of the 15-minute electricity consumption and PV
generation, and the battery model. Section 3 gives the
simulation results, including the effects of the simulated
batteries and the economic results, Section 4 provides a
brief discussion and Section 5 presents the main conclu-
sions.

Figure 1: (a) a daily load and generation profile in April. (b) monthly
misalignment values between generation and demand for all homes

2. Methods

2.1. Creating community microgrids

To form the community microgrids we use monthly
electric bills from an electric utility in Cambridge, MA,
which contain monthly consumption and addresses.
Firstly, we cluster the address locations into 200 groups
using longitude/latitude values obtained by geolocating,
using k-means clustering and the euclidean distance to
form the clusters. The k-means approach iteratively
moves K cluster centroids to minimize the objective
function:

J =

K∑
j=1

n∑
i=1

(l( j)
i − c j)2 (1)

Here, l( j)
i is the ith location which has been assigned to

the jth cluster with centroid location c j. For our purpose
of defining local clusters in space, k-means yields satis-
factory results. For each cluster of addresses, we define
the root node of the microgrid as the node closest to
the central point of the cluster. All of the locations cor-
responding to the geo-located addresses are then con-
nected to the road network available from Open Street
Maps. Each cluster is then grown outwards from the
root node along the road network using a multi-source
breadth-first search method based on the Dijkstra short-
est path algorithm. A flow chart of the algorithm is
shown in Figure 2. This aims to provide realistic micro-
grids (Figure 3) and ensure that they connect households
who are close together in space.

2.2. Simulating 15-minute demand and generation

Each of the network nodes (i.e. each of the buildings)
in our microgrids has a monthly electric consumption
associated with it. Firstly, we compare the monthly con-
sumption distributions for all households between the
Pecan Street data and the Cambridge data and find that
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Figure 2: Flow chart illustrating the microgrid forming algorithm.

the distribution for April best matches Cambridge in
July, which is likely due to the low electric cooling loads
at this time in Austin. Additionally the Cambridge dis-
tributions are similar throughout the year (see Figure 4).
We bin both datasets into distinct monthly usage brack-
ets and for each of the Cambridge households a Pecan
Street demand profile in April in the same monthly us-
age bracket is randomly selected, scaling by a constant
factor to match the exact Cambridge usage. Random
noise of the form di(t) = d0

i (t)(1 + βεi) is added, where
d0

i (t) is the initial demand of the user i at time t, di(t)
is the demand after noise has been added, εi is a uni-
formly distributed random variable in the range [−1, 1]
and β = 0.2 to keep the demand within 20% of the Pecan
Street profile.

To assign each household PV generation, we again
sample the Pecan Street data. We observe that for
households with PV, the distribution of the ratio be-
tween their monthly generation and consumption is best
described by a lognormal function, as shown in Figure
5. Therefore, for each Cambridge household we sam-

ple the fitted lognormal distribution to select a Pecan
Street PV profile, ensuring that the potential PV gen-
eration for each Cambridge user is reasonable consid-
ering their consumption. Using data from the National
Solar Radiation DataBase (NSRDB) [23] for the near-
est weather stations we find that the yearly average so-
lar irradiance profile for Cambridge is most similar to
Austin in February. Therefore we sample PV data from
the Pecan Street data in the month of February.

This leaves us with one month of simulated 15-
minute demand and one month of potential PV gener-
ation for the simulated households. In the rest of our
work we consider that 40% of households choose to in-
stall rooftop-PV. It is important to note that since the
solar adoption is random, a given community may have
significantly more or less than 40% solar adoption (al-
though we choose an adoption scenario where all com-
munities have at least one solar installation). We find
that as a result of this probabilistic adoption the solar
penetration ranges from 17-80% within the individual
communities, which generalizes our results to a high de-
gree.

2.3. Battery Model

We develop a model for lithium ion batteries for res-
idential storage since this technology is already pre-
dominant for both residential and utility applications,
given its good C-rates, no memory effect, slow calen-
dar losses and low maintenance costs [24]. The charge-
discharge equation is shown by Equation 2. S OC(t) is
the battery’s state of charge at time t and ∆S OC(t) is the
change in the state of charge, which can be either pos-
itive (charging) or negative (discharging). The battery
must always obey the constraints in Equations 3 and 4.
We denote the charging and discharging efficiencies of
the battery as ηchg and ηdisch respectively. The change
in the battery’s state of charge ∆S OC(t) is related to the
power transfer Pb(t) at period t by Equations 5 and 6.

S OC(t) = S OC(t − 1) + ∆S OC(t) (2)

S OCmin ≤ S OC(t) ≤ S OCmax (3)

Prated
dischg ≤ Pb(t) ≤ Prated

chg (4)

Pb(t)∆tηchg = ∆S OC(t) for Pb(t),∆S OC(t) ≥ 0 (5)

Pb(t)∆t
ηdischg

= ∆S OC(t) for Pb(t),∆S OC(t) < 0 (6)

In our simulations, we assume that batteries are used
to minimize the cost of either a household’s or a com-
munity’s total electricity. The cost of electricity at a par-
ticular time period for consumer (i.e. a household or
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Figure 3: Illustrating the community microgrids created. The inset at the bottom left shows the distribution of microgrid sizes and the inset in the
top right zooms in to show the microgrid highlighted in red.

Figure 4: The distribution of monthly usage for Cambridge and
Austin. (a) Cambridge in July and Austin in April. (b) Both cities
in all months (2015)

Figure 5: (a) Generation to consumption ratio for Austin households
fitted by a lognormal distribution. (b) The simulated Cambridge dis-
tribution.

community) i, Ci(t), is dependent on whether the con-
sumer is net importing or exporting at the time, and is
expressed conditionally in Equations 7 and 8.

Ci(t) = [di(t) − si(t) + Pb,i(t)]∆tπgrid (7)

for di(t) + Pb,i(t) ≥ si(t)

Ci(t) = [si(t) − (di(t) + Pb,i(t))]∆tπex (8)

for di(t) + Pb,i(t) < si(t)

Here di(t) is the consumer (household or aggregated
community) demand at time t, si(t) is any PV genera-
tion, P(b,i)(t) is the battery action and πgrid and πex are
the costs for grid electricity and the reward for excess
solar respectively. The battery is scheduled as framed
in Equation 9.

Minimize
∑

t=t0,...,tN

Ci(t) (9)

When considering a battery for an individual house-
hold di(t) is the electric usage of that household and
si(t) is their PV generation at time t. Surplus PV (if
not stored by the household) is used by the commu-
nity neighbors or exported from the microgrid to the
upstream network if no neighbors require electricity.
When considering a community, di(t) is the sum of the
demand of all households in the community and si(t) is
the sum of all the PV within the community at time t.
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Therefore, surplus PV from a household is first used by
the neighbors before being stored or exported from the
community microgrid.

Figure 6: Flow chart depicting the battery scheduling algorithm.

Equation 9 is essentially a simple unit commitment
problem with one controllable aspect — the battery. Ad-
ditionally, when πgrid and πex are constant and πgrid >
πex/(ηchgηdischg), then the optimum battery schedule is
to maximize the use of local PV, by charging the bat-
tery at the maximum possible level with excess PV and
discharging as soon as the PV can no longer meet all
the local demand. The algorithm to schedule the battery
operation is shown in Figure 6.

The total benefit of the battery is positive if the sav-
ings are greater than the cost over its lifetime, Li. To as-
sess this we use the discounted cash flow model which
discounts future cash flows by the discount rate rd, so
that the time value of money is accounted for. Li is es-
timated in years by Li = 3000/(12×EFCmonth), which
assumes that each battery can perform 3000 equivalent
full cycles and EFCmonth is the equivalent full cycles
in the simulated month. The Equivalent Annual Cost
(EAC) is then expressed by Equation 10.

EAC = capCost
rd(1 + rd)Li

(1 + rd)Li − 1
+ OM (10)

OM is the annual operation and maintenance cost.
Since our simulation is monthly, we extrapolate the

monthly battery savings S M
b to annual values, therefore

the Equivalent Annual Value is:

EAV = 12 × S M
b − EAC (11)

This is reasonable as the Cambridge demands are
similar throughout the year (Figure 4b), however a key
assumption is that the seasonal variations in solar are
ignored. While this could be improved, this approach
is an improvement on other works which have simply
considered an average day [25]. We discuss the effect
of using a winter month on our estimated storage via-
bility in the results section. Additionally, while it would
be preferable to use yearly data, restricting our search
of the Pecan Street data to households with yearly data
left significantly fewer households.

For each consumer, we find the battery size which
maximizes EAV in Equation 11. Finally, we then es-
timate the Internal Rate of Return (IRR) for each of
the household and community batteries. IRR is defined
as the discount rate required for the Net present Value
(NPV) of the battery to be zero. The NPV is the sum of
the present values of anticipated monetary flows regard-
ing the battery over the course of its lifetime as shown
by Equation 12. Each yearly net cash flow Cy is the sum
of the yearly cash inflows and outflows. Therefore IRR
is found by solving Equation 10 for NPV= 0.

NPV =

y=Li∑
y=0

Cy

(1 + rd)y (12)

In order to estimate the battery cost we assume that
it is composed of three main components. These in-
clude the cell costs, the inverter costs and the mainte-
nance costs which are modeled depending on the bat-
tery size. Although Balance of Plant (BOP) costs are
sometimes considered separately, many modern battery
manufacturers integrate these within the cell costs that
they quote. We assume cell costs of $250/kWh, inverter
costs of $500/kW [26] and annual maintenance costs
of $10/kW [27]. Additionally, the inverter is sized to
match the maximum charge/discharge rates of the bat-
tery and a reasonable estimate for lithium-ion batter-
ies performing stationary applications is 0.5 × S OCmax.
This is a typical value for stationary energy storage ap-
plications — much higher C-rates have been demon-
strated and are typically proposed for transport appli-
cations, however these are detrimental for cycling ca-
pacity [28]. The relationship between the cost of these
three subcomponents and the battery size was mod-
eled based on recommendations given by various bat-
tery and inverter manufacturers. It was found that the
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cell stack cost increases linearly with the battery capac-
ity but there are economies of scale for battery inverters
and maintenance. As a first approach to model them, we
assume that the inverter costs scale to the power of 0.7
after 3KW and the maintenance costs scale to the power
of 0.6 after 10kW. This leads to a calculated capital cost
of $6,200 for a 14kWh battery and a yearly maintenance
cost of $80. This is similar to the anticipated capital cost
of the 14kWh/7kW Tesla Powerwall 2 [29] (quoted at
$5,500) which includes an inverter. Figure 7 shows the
battery costs as a function of the capacity.

Figure 7: Capital and maintenance costs against battery size in kWh.

2.4. Summary

A summary of the battery properties is given in Table
1.

We assume electrical costs of πgrid=$0.35/kWh
and that exported solar electricity is rewarded at
πex=$0.05/kWh. Our reasons for adopting these prices
is to demonstrate a regime in which there may be sig-
nificant storage adoption and because $0.05/kWh is a
typical price level for wholesale electricity in our simu-
lated region. It is worth noting that in 2015 the average
price of residential retail electricity in Massachusetts
was $0.19/kWh and it is widely understood that at cur-
rent US prices neither batteries nor PV are economic
without subsidies [30, 31]. However, electricity prices
all across the world are rising and in other developed
nations the price of electricity is significantly higher. In
Germany prices are typically around $0.36/kWh and in
the UK the average electricity price is $0.25/kWh. Ex-
port rewards for PV generation are also falling rapidly
[10].

In all our calculations we use a timestep ∆t = 15 min-
utes and a discount rate rd = 5%. When calculating the
IRR we also assume that retail electricity prices rise at
2% per year and OM costs also rise at 2% per year.

Table 1: Simulated battery properties.

Property Value of Function
Lithium ion cell

cost $250/kWh

C-rate (charge
and discharge) 0.5

Inverter cost
(3kW) $1500

Inverter cost [Inverter cost
(3kW)]×([Capacity(kW)]/3)0.7

O&M cost
(10kW) $100

O&M cost [O&M cost
(10kW)]×([Capacity(kW)]/10)0.6

Charging
efficiency 94.8%

Discharging
efficiency 94.8%

Max. allowed
cycle depth 85%

Lifetime cycles 3000

3. Simulation Results

3.1. Optimum storage size for one community micro-
grid

Figure 8 illustrates how the optimum size of battery is
calculated for one community (the process is the same
for each community as well as for each household). For
this community, the cost of very small battery systems
is greater than the potential savings, however, as the bat-
tery capacity is increased the savings introduced by the
battery become greater than the costs. When this is true
there is a net economic benefit to the battery. The rate
of increase in the battery savings eventually decreases
and subsequently intersects again with the equivalent
annual cost of the battery — at this point there is no
net benefit from installing storage and the annualized
saving is equal to the cost. Between these two values
there is a clear maximum in the EAV, which for this
particular community occurs at 83 kWh. We consider
that the point of maximum total benefit is the optimum
economic level of energy storage. Figure 8b shows the
effect that the 83 kWh battery has on the load profile
of the community microgrid. It is clear that the storage
substantially reduces the surplus solar electricity which
is exported to the upstream grid. However, it is not the
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Figure 8: (a) The benefit and costs of battery against battery size. For
this particular community we see that the net benefit is maximized at
83kWh. (b) The load profile of the community microgrid with and
without an 83 kWh battery.

best economic choice to store all of the surplus solar en-
ergy, as to do this would require over-sizing the battery
for most of its use.

3.2. Results for all households and communities

Using the same approach, it is possible to calculate
the optimum storage level for all of the community mi-
crogrids as well as for all the individual households.
Distributions of the optimum battery sizes are shown in
Figure 9. Although when sized for individual house-
holds the batteries installed have smaller capacities, we
find that the total storage capacity installed in the house-
hold scenario is 13.0 MWh compared to only 8.5 MWh
in the community scenario. For communities, 39% do
not require any storage due to the aggregating effect of
the community (in general, communities with less than
26% PV penetration do not require storage). In addi-
tion, we find that due to higher inverter and mainte-
nance costs per unit capacity, smaller battery systems
below 4kWh are not found to be economic. Typically,
we find the optimum capacity for households is in the
5-22 kWh range, with the average optimum at 12 kWh.
It serves as validation that this does indeed correspond
to typical battery sizes available on the residential stor-
age market. For communities, the corresponding range
is much larger, spanning 5-200 kWh, due to the differ-
ent community sizes and PV penetration levels. Figure
9c shows that for communities in which it is economic
to install a battery, the capacity increases by approxi-
mately 1.7 kWh per household for a 10% increase in
solar adoption.

Table 2: Comparison of Community batteries to households batteries.

Individual
household
batteries

Commu-
nity

batteries
Total demand

(MWh) 3244 3244

Solar generation
(MWh) 851 851

Base imports 2523 2523
Base exports (MWh) 130 130

Total storage
capacity (MWh) 13.0 8.5

Average IRR (%) 8.0 9.3
Imports with storage

(MWh) 2464 2432

Exports with storage
(MWh) 49.5 27.8

Import reduction per
kWh storage (kWh
per kWh storage)

4.6 10.7

Export reduction per
kWh storage (kWh
per kWh storage)

6.2 12.0

Table 2 compares the household and community bat-
tery scenarios for the simulated month. We find that
community batteries generally offer better return on in-
vestment than household batteries. We also see that for
communities, the battery IRR increases as the fraction
of households with PV in the community increases (see
Figure 10). Considering the local microgrids, commu-
nity storage is also much more effective at reducing the
imports and exports between the microgrids and the up-
stream grid. In total, the monthly imports for all the
microgrids were reduced by 91 MWh, from a total of
2523 MWh to 2432 MWh with community batteries.
This compares to a reduction of 60 MWh with house-
hold batteries. The corresponding reduction in exports
is larger in both cases - due to the efficiency loss of the
battery. For community batteries this was 102 MWh
while for household batteries it was 80 MWh. The re-
duction in exports with household batteries also does
not translate directly into a reduction in the microgrid
exports, because consumers are scheduling their batter-
ies according to their own load profile, thus they often
store solar energy when it could be used by their com-
munity neighbors. This has the effect of increasing the
overall microgrid imports due to the efficiency penalty
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Figure 9: Distributions for the optimum battery capacities. (a) For the individual households with PV. (b) For the community microgrids. (c)
Optimum battery capacity against the fraction of households with PV.

associated with the battery. Calculating the reductions
per unit of storage installed further emphasizes the ad-
vantages of community batteries. Each kWh of commu-
nity battery reduced the monthly imported electricity on
average by 10.7 kWh and the corresponding exports by
12.0 kWh, compared to 4.6 kWh and 6.2 kWh respec-
tively for household batteries.

Figure 10: Internal Rates of Return for batteries. (a) For the indi-
vidual households (green) and the communities (blue). (b) The IRR
of community batteries against the fraction of PV households in the
community.

3.3. Sensitivity to the solar resource

Finally, we examine the sensitivity of the results to
the solar resource. To do so we model PV generation
from the month of January in Cambridge, when the solar
resource is significantly smaller than the yearly average.
To simulate the solar PV profiles for our Cambridge
households we use Pecan solar data for December. We
also ensure that each Cambridge household is assigned
generation data from the same Pecan PV installation as
for their yearly average generation. We find that the
community battery IRRs suffer significantly, with the
average IRR falling from 9.3% to 4.6%, whereas the
corresponding reduction for household batteries is much
more modest, dropping only from 8.0% to 7.1%. The

explanation for this is that the optimum storage size for
households is generally smaller than their solar exports,
and therefore even with January solar production the re-
duction in the use of household batteries is small. Con-
versely the optimum community battery capacities store
much higher proportions of the excess solar production,
so they are under-utilized to a much greater extent when
the solar production is decreased. However, community
storage was still far more effective at reducing imports
and exports. This result is in agreement with a previous
study which informed that the community scale helps to
increase the size of the optimal battery capacity relative
to the maximum storage demand, defined as the largest
daily PV surplus energy throughout the year [20]. The
corresponding values were an import reduction of 5.6
kWh and export reductions of 6.2 kWh per kWh of com-
munity battery capacity installed, compared to 2.4 kWh
and 3.8 kWh per kWh installed for household batteries.

4. Discussion

In our analysis, storage is operated to maximize PV
self-consumption, however, there are many other appli-
cations for storage to create value. These include provi-
sion of ancillary services [32] and participation in en-
ergy markets with fluctuating prices [33], although a
minimum size threshold is required for the latter [34].
One method of further incentivizing community storage
could be through capacity tariffs [35] which explicitly
reward the limitation of microgrid imports and exports
in power terms. These tariffs are already offered by util-
ity companies to medium and large industrial customers
and are expected to become more relevant for residen-
tial consumers in future, especially with the deployment
of electric vehicles and heat pumps.

This work raises questions in terms of storage own-
ership and operation — i.e. which parties can have a
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financial interest in storage. While for individual house-
hold storage it seems clear that the household owner
or occupant should be able to own and operate the
storage, microgrid storage could be community-owned,
utility-owned, owned by the Distribution network oper-
ator (DNO), or owned by a combination of stakeholders.
The relevant electricity tariff structure would have to ac-
count for the stakeholders involved [36]. While house-
hold consumers are offered a standard set of electricity
tariff options, any community storage must be negoti-
ated on a case-by-case basis. Therefore, policy develop-
ments which introduce standardized community storage
options would be invaluable in understanding the finan-
cial arguments.

It is likely that the framework we have developed is
useful for other purposes. To create our microgrids, we
have employed aspects graph theory which has yielded
plausible microgrid topologies. Each household is a
connected node in the network and we have simulated
electricity consumption and generation at each node in
the network. It would serve as a validation to compare
the network topology produced with a real distribution
network, however this information is typically unavail-
able due to security concerns. If this could be done,
however, then different spatial deployments of PV and
storage could be studied, to find the locations in the net-
work where benefits were maximized, for example, by
minimizing line losses in the distribution network and
delaying (or even avoiding) investments in infrastruc-
ture such as transformers or extra transmission capacity.

5. CONCLUSIONS

Our results illustrate that community storage has a
number of advantages over household storage includ-
ing, decreasing the total amount of storage deployed,
decreasing surplus PV generation which must be ex-
ported to the upstream network and subsequently in-
creasing the self-sufficiency of microgrid communities.
The increase in community self-sufficiency arises from
the fact that household batteries are scheduled accord-
ing to the needs of the individual households, and thus
often store excess solar when it could be used by com-
munity neighbors.

In terms of economic arguments, we found that IRR
values were higher for community storage than for
household storage. Additionally, for community storage
the IRR increased with the amount of PV in the commu-
nity. However, this meant that it was also more sensitive
to the solar resource, suffering significantly more than
household IRR if the solar resource was decreased.

Therefore finally, due to the system-wide benefits
of community storage, we argue that specific market
mechanisms should be developed which favor commu-
nity storage deployment, especially in regions where the
proportion of solar households is high or is expected to
rise significantly in future. This is especially important
because of the high energetic costs of batteries and the
finite nature of materials required for battery manufac-
ture. This work is timely due to the potential for a boom
in household battery adoption in high solar regions.

Nomenclature

Table 3: Nomenclature.

ηchg battery charging efficiency (%)
ηdischg battery discharging efficiency (%)

πgrid, πex
electricity price for the grid, for exported

solar ($/kWh)
Ci Cost of electricity for consumer i ($)

CES Community Energy Storage ($)
EAC Equivalent Annual Costs ($)
EAV Equivalent Annual Value ($)
IRR Internal rate of Return (%)
K Number of Clusters
Li Lifetime (years)

OM Operation & Maintenance cost ($)
NPV Net present Value ($)

Pb Battery Power (kW)
Prated

chg ,
Prated

chg

Battery rated charging/discharging
capacity (kW)

S M
b Monthly saving due to battery ($)

S OC Battery State of Charge (kWh)
∆S OC Change in battery state of charge (kWh)

c j centroid location of the jth cluster
di consumer i’s demand (kW)
li location of the ith household
rd discount rate (%)
si consumer i’s PV generation (kW)
t time period (15-minute timestep)
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