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Role of persistent cascades in diffusion
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We define a structural property of real-world large-scale communication networks consisting of the recurring
patterns of communication among individuals, which we term persistent cascades. Using methods of inexact
tree matching and agglomerative clustering, we group these patterns into classes which we claim represent
some underlying way in which individuals tend to disseminate information. We extend methods from epidemic
modeling to offer a way to analytically model this recurring structure in a random network, and comparing to
the data, we find that the real cascading structure is significantly larger and more recurrent than the random
model. We find that the cascades reveal a habitual hierarchy of spreading, alternative roles in weekday vs
weekend spreading, and the existence of hidden spreaders. Finally, we show that cascade membership increases
the likelihood of receiving information spreading through the network through simulation on the real order of
communication events.
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I. INTRODUCTION

The increasing availability of large-scale communication
data allows us to study the dynamics of human information
spreading patterns at an unprecedented depth. As an example,
consider cell-phone data, which provides long-term, second-
by-second, unfiltered communication records of individuals
among their social contacts (and we note are more precisely
termed metadata, in that the records contain no information
about the content of each event).

Consider the following two essential questions in the study
of human communication dynamics: (i) Do individuals (or
groups of individuals) exhibit patterns of communication? (ii)
If so, what are the effects of these patterns on information
spread? To answer these questions with the breadth of data
that resources like cell-phone records provide, researchers
often of necessity use simplifying assumptions. For exam-
ple, one may aggregate the available interpersonal events
over some time window and investigate the resulting static
network. Many studies of diffusion processes, or measures
of centrality (i.e., the identification of individuals’ roles,
or importance, within the populations), take place on such
static networks (see, e.g., [1–3]). More recently, however, the
importance of incorporating temporal knowledge has gained
attention (see, e.g., [4–10]), which is the approach we take
here.

*nmarkuzon@gmail.com

Specifically, we approach the first question, of identifying
patterns of communication, by searching for recurring tempo-
ral patterns of cascading communication that indicate persis-
tent group conversations engaged in information spread. We
define a structural property of large-scale communication net-
works consisting of the recurring patterns of communication
among individuals, which we term persistent cascades (re-
ported in [11]). This approach takes advantage of a recurring
observation in the study of human communication dynamics
that events are bursty, or temporally clustered [12,13], and
moreover that the mechanism for this phenomenon is infor-
mation spread and its inherently rapid, cascading structure
[14–19].

We approach the second question, of measuring the effect
of these patterns on diffusion dynamics in the temporal net-
work, by simulating the spread of information over the real
order of communication events and comparing the suscepti-
bility of the individuals engaged in persistent communication
activity against those not. We demonstrate that the diffusion
accelerates under certain conditions and that the persistent
cascades appear to be the key mechanism in this regime.

A. Background

1. Identifying information spread

We first review previous work in identifying meaningful
structure in large-scale metadata and then turn our attention
to how this affects our understanding of diffusion dynamics.
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One approach to the problem of filtering out meaningful
communication events from large-scale data would be to
simply threshold the number of observed events. For example,
require the call event a → b to occur at least k times in some
time window or require the call to be reciprocated, i.e., to
also observe a ← b [3,20,21]. This certainly achieves some
denoising of the data (e.g., it reassures us that the call was
not accidental), but gives us little idea of the purpose or
information-carrying potential of the event.

Some studies use exogenous anomalous events to filter
for meaningful or information-carrying events. For example,
it seems safe to assume the calls immediately following an
earthquake, robbery [18], rocket attack [17], or major sporting
event [17] will tend to carry more weight than calls selected
from an arbitrary period of time. Indeed, these studies find the
heavy-tailed interevent times and cascading patterns associ-
ated with information spread [13]. Yet this approach restricts
our analysis to a very small portion of the available data and
moreover restricts the roles and patterns we might observe.

Another approach is to interpret the problem probabilisti-
cally and ask what the conditional probability is that b calls
c given that a first called b. Often in this context we model
networked communication events as realizations of some un-
derlying multidimensional stochastic point process [22–24].
This statistical learning approach introduces a large parameter
space to reckon with, which we may tame by constraining our
patterns of interest to have cascading structure, as in [25], or
by introducing regularization through priors [22] or explicit
constraints on the network structure [23].

We may instead consider searching for temporally recur-
ring patterns (i.e., time-ordered patterns of calls) [26–28],
which is the approach we take in this paper. This extends the
earlier threshold idea to persistent temporal structures. For
example, in [29] the authors study social structure in large-
scale data by looking for persistent membership in certain core
groups and activities. In [8,9,30] the authors identify temporal
motifs that occur more frequently in the data than expected
under a null model by looking for isomorphic patterns of
communication over time. This focus on motifs gives us an
abstract picture of meaningful structure at a population level,
although in these studies is not carried back to analysis of
individuals.

2. Effect on diffusion

Once the information cascades are identified, we may
turn to the question of their effect on, and role in, diffusion
dynamics [14–16,31]. Previous research has demonstrated
a surprising slowing effect [7], due to the long periods of
inactivity between bursts (or cascades). Compare this with
classical models where we assume complete mixing of the
population, which is closer to random activity. However, it is
not immediately clear why the bursts themselves would not
also accelerate the spreading enough to offset the long tails of
inactivity.

An explanation for this seeming paradox, proposed in [32],
is that it depends on the probability of information passing
(similar to the infection rate of a disease). We provide a
summary of their argument here, since it gives mathematical
motivation to our results in the final section.

We will first borrow terminology from epidemic spread
to say that for a pair of individuals i and j connected via
an edge (ij ), i infects j if j receives information from i.
Let the probability of this infection event occurring be the
transmissibility Tij , and we can then relate the problem of
infection (i.e., information) passing to a bond percolation
model [33].

Let i become infected at time tα and let nij (tα ) be the
number of contacts i has with j after this event before i is
no longer transmitting the information (i.e., recovers). We
denote this interval by [tα, tα + τ ] and note that the trans-
missibility in this interval, for some infection probability λ, is
1 − (1 − λ)nij (tα ).

Now if the i → j interactions do not depend on i’s initial
time of infection tα , then we can apply the total probability to
calculate transmissibility. For example, in the case where the
i → j interactions come from a memoryless Poisson process
over the time interval [0, T0] with rate rij , this leads to the
standard result

Tij =
∞∑

n=0

Prob(nij = n)[1 − (1 − λ)n]

= 1 − e−λrij , (1)

with, for example, rate rij = wij τ/T0, where wij is the total
number of interactions between i and j over [0, T0] [33].

However, let us posit that the i → j events are highly
dependent on i’s initial infection at tα , since i will tend to pass
on information soon after it is received. So we assume only
that the i → j infection events themselves are independent
and average over them:

Tij = 〈1 − (1 − λ)nij (tα )〉α. (2)

When λ � 1, 1 − (1 − λ)n ≈ λn, and when λ ≈ 1, 1 −
(1 − λ)n ≈ 1, for n > 0. So substituting these approximations
into Eq. (2) [32] defines two regimes of transmissibility
depending on the infectivity λ,

Tij =
{

λ〈nij 〉tα , λ � 1

1 − P 0
ij , λ ≈ 1,

(3)

where P 0
ij is the probability of zero contacts with j after the

event tα .
Therefore, in group conversations, 〈nij 〉tα is higher than

random calls and so for low λ explains the increased spread-
ing. By contrast, the long periods of inactivity observed in
group conservations lead to higher P 0

ij than in random calls
and so for high λ explains the decreased spreading.

The authors postulate in [32] there are information cas-
cades doing the heavy lifting of spreading information under
this low-λ regime and whose effects are only masked under
large infectivity λ. We would like to actually identify the
conversations displaying these cascading properties, measure
their role in information spread, and test this claim.

B. Contributions

In this work we first identify information spreading pat-
terns in large-scale communication metadata by extracting
recurrent cascading patterns of communication, which we

012323-2



ROLE OF PERSISTENT CASCADES IN DIFFUSION PHYSICAL REVIEW E 99, 012323 (2019)

(a)

a

b

c

d

e

f

1

2

4

5

2

3

4

6

(b)

a

b

d

5

e

2

1

c

f

4

2

b

a d e

c

b

a d

f

(c)

c

b

d

5

e

2

3

FIG. 1. Simplified illustration of cascade extraction from a temporal graph. (a) Full temporal information (�t = 6 units, times depicted
on edges). (b) Three valid cascades given this temporal snapshot. Note that there is no time ordering of children within a cascade. (c) Invalid
cascade because c-b-e is not a time-connected path and it is missing the edge c-f .

term persistent cascades, using a methodology which is not
typically used in a combination of inexact tree matching and
agglomerative clustering. We show that the resulting patterns
have long-term persistence (multiple months to a year), ex-
hibit a habitual hierarchy of individual roles in spreading,
reveal new roles, such as exclusivity to weekends or week-
days, and reveal hidden spreaders not evident in the static
network. We also demonstrate that the persistent cascades we
identify under this methodology are significantly larger and
more persistent than what we would observe under a random
network with similar structure and rates of interaction, using
an extension of epidemic modeling. Finally, we show that
participation in persistent cascades increases the individual
probability of receiving information spreading through the
network (even after controlling for overall activity) when the
probability of information passing is low.

II. METHODS

A. Identifying persistent cascading patterns

1. Extracting cascades

We now propose a methodology for understanding in-
formation spreading patterns in large-scale communication
metadata, which we will validate using cell-phone records.
We make an assumption that a person receives information
upon first exposure, or in other words, at the earliest possible
time. This implies that information passing exhibits a treelike
network structure where there is a single in-edge to each
person, spanning some interval of time �t (e.g., a few hours
or a week). Formally, this assumption leads to the construction
of a rooted, directed, �t-connected tree which we term a
cascade, following previous work [17–19].

Denote a cascade with root r by Cr , denote the set of all
cascades for root r with maximum time interval �t and total
time period T by Cr (T ,�t ), and use subscripts as necessary
to distinguish multiple cascades with the same root. For
example, we might have the set of all cascades for some root
a:

Ca (T = 1 month, �t = 24 h) = {
Ca

1 , Ca
2 , Ca

3

}
. (4)

Note that we require that the intervals not overlap, i.e., no
calls from Ca

1 can also be in Ca
2 , etc. An example of cascade

construction from a network with all temporal information is
shown in Fig. 1.

2. Measuring persistence

One objective of our study is to identify persistent cas-
cading activity over time. Similar cascading patterns over
long periods of time are more indicative of meaningful com-
munication and more particularly information spread [8,25].
However, we wish to relax any requirement that the patterns
be identical (or isomorphic) due to the inherently inconsistent
nature of human activity.

Therefore, to search for persistent patterns, we employ
inexact tree matching measures of the form s∗ : C × C →
[0, 1], where C is a cascade. We consider two metrics: tree
edit distance, which gives a sense of structural similarity,
and reach set similarity, which gives a sense of membership
similarity (i.e., how similar the members of the cascade are).

Tree edit distance. Edit distance is the process of counting
the minimum number of insertions, deletions, or mutations
required to transform one string into another. One can extend
this concept to trees. Denote the tree edit distance between two
trees (or cascades) C1 and C2 by δ(C1, C2), which maps two
cascades to a non-negative integer. As an example, consider
the following two trees:

C1 : C2 :

a

b

d e

c

f

a

b c d

f

(5)

To change C1 into C2, we can delete d and e, mutate c into
d, and add c again, giving δ(C1, C2) = 4 (note that this is the
same to change C2 into C1).

A canonical algorithm for computing this distance is due
to Zhang and Shasha [34], which we implement with [35].
We can now define a similarity measure using this distance as
follows.

Definition 1 (tree edit distance similarity). Define the
normalized tree edit similarity as

sδ (C1, C2)
def= 1 − 2δ(C1, C2)

|C1| + |C2| + δ(C1, C2)
(6)

and note that sδ lies on [0,1].
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FIG. 2. Actual set of cascades for a root a over a 60-day period. Six persistent cascades are shown, each from temporal subgraphs with
�t = 24 h. Dotted rectangles depict the persistence class groupings. We see a clear set of core friends (nodes b, c, and d) and slight variations
incorporating other groups. We also see the overlap that occurs when a cascade appears to fit in multiple classes. Labeled above each cascade
is the day of the week.

This definition is due to Li and Zhang [36], who also
prove that the corresponding distance metric 1 − sδ meets the
triangle inequality. Note that we make every edit operation
unit cost. Using the example trees above in (5), we now
compute sδ = 1 − 2×4

6+5+4 = 7
15 ≈ 0.47.

Reach set. Consider the unordered set of all nodes in a tree.
For a cascade, this corresponds to all users who potentially
received some information during the time period �t . We
term this the reach set of a cascade (similar to concepts in
[37]).

A simple first approximation of the similarity of two cas-
cades is by comparing their reach sets. Let R(Ci ) denote the
reach set of a cascade Ci . Now, given two cascades C1 and C2,
we define the similarity measure sρ as the Jaccard index of the
two reach sets as follows.

Definition 2 (Reach set similarity). Given two cascades C1

and C2 and their reach sets R(C1) and R(C2), define

sρ (C1, C2)
def= |R(C1) ∩ R(C2)|

|R(C1) ∪ R(C2)| (7)

and note that sρ lies on [0,1].
Continuing with the previous example in (5), we have

sρ (C1, C2) = 5
6 ≈ 0.83.

3. Finding persistence

We may now cluster similar cascades originating from a
given root r into a group we term a persistence class, denoted
by Pr , such that each cascade in the class is at least �-similar
to each other. This group now represents various incarnations
of some underlying, implicit communication structure.

Definition 3 (persistence class). Define the ith persistence
class of root r , similarity threshold � in time period T over
intervals �t , as the set

P r
i (�, T ,�t )

def= {
Cr

1, C
r
2 ∈ Cr (T ,�t ) : s∗

(
Cr

1, C
r
2

)
� �

}
.

(8)

Definition 4 (persistent cascade). Define a persistent cas-
cade as any cascade Cr

i such that Cr
i ∈ P r

i (·), for at least one
i.

Note we may also choose to ignore any persistence classes
below a certain size. The minimum size is 2 by construction,
but we may decide based on the parameters T and �t that a
minimum size of 3 or more is appropriate.

To find these classes, given our definition and Eq. (8),
we take a clustering approach which allows for overlapping
clusters. Specifically, represent each data point (cascade) as
a vertex in a graph H (�) such that each any two vertices
u, v with similarity s∗(u, v) � � are connected. (Note a single
vertex in this construction represents an entire cascade and
the similarity between two vertices is one of the previously
defined similarity measures.) Then the persistence classes
are the maximal completely connected subgraphs in H , also
known as the maximal cliques.

Let the reader note this is closely related to an agglom-
erative clustering approach with complete linkage. That is,
define the similarity between two clusters U and V as
s(U,V ) = min s∗(ui, vj ) ∀i ∈ U, j ∈ V , where ui, vj repre-
sent cascades within U and V . Then the clusters at iteration k,
such that every pairwise similarity within the cluster is greater
than or equal to sk , represent persistence classes with � = sk .

The agglomerative clustering approach, however, assumes
that each cascade falls uniquely into one class, which we can
imagine is not always true: A spreading pattern among work
friends may overlap with the pattern among social friends and
there may be cascades that are not clearly in one class or the
other. By taking the graph-theoretic maximal clique approach,
we avoid this limitation.

Figure 2 gives an example of the result of this clustering
methodology on several cascades in the data for a particular
root a. We see a core pattern consisting of root a calling
b, c, and d captured in P2

a . Then we see two variations on
this core structure: P1

a , which incorporates e, and P3
a , which

incorporates f and g. Since they are mostly weekend calls, we
might easily imagine this being a core group of social friends,
with variations possibly for family or work acquaintances.
Note the clusters overlap.

B. Random network model

To quantify the significance of the observed patterns in
the data (i.e., the patterns’ nonrandomness), we compare the
distribution of their occurrence against a null model. Specif-
ically, given a random network with a degree distribution
matching the real network, and with average interindividual
call event rates also matching the real data, but without any
of the temporal clustering or mutually influencing effects that
we hypothesize are present in the data, what is the probability
of a cascade of s users occurring n times in a month? That is,
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how likely is it to observe persistence classes of size |P r | = n

such that Cr ∈ P r have |Cr | = s?
To this end we will adapt techniques from the rich fields

of percolation theory and epidemic spreading [33]. We are
concerned with the dynamics of some contagion through a
population with network structure. In our application, the
contagion is information, the initial infected population are
the cascade roots, and the outbreak is the cascade itself.
Further, we assume that the probability of infection is only
dependent on the rate of interaction between individuals.

We first outline a straightforward way to generate this null
model through simulation and then extend the methods in
[33,38] to precisely describe the probability of a particular
outbreak (i.e., cascade) and subsequently the probability of
its recurrence (i.e., persistence).

1. Simulation model

We need to generate both the network structure and the
interpersonal call activity. This will output a sequence of
events, or time series, to which we can then apply the tempo-
ral graph-mining algorithm outlined before to find recurring
similar patterns (persistent cascades).

Network structure. We choose a configuration model with
a degree distribution pk that matches the observed p̂k in the
data. [39] This will give us a closer representation of network
structure than, say, an Erdős-Renyí model, which can only
match the expected degree. We do not consider other random
network models and leave this to future work.

Edge interactions. We will assume that each pair (ij ) can
be modeled by a Poisson process with rate parameter rij . We
estimate this rate for every edge as wij/T0, where again wij

is the total calls between (ij ) and T0 is the total time period
observed (e.g., 2 months). This gives us a real distribution
of rates P̂ (r ), which we approximate as P (r ) with a �

distribution P (r ) ∝ rα−1e−βr . We choose the � distribution
because it is non-negative, conjugate with the exponential
family, and qualitatively provides a good form for P̂ (r ) and
leave consideration of other model distributions for future
work.

2. Analytical model

We can instead represent this entire framework analyti-
cally. We will make the same assumptions as in the preceding
section (i.e., network structure and average rates of interaction
fit to the data, but all events independent and identically
distributed). At a high level, we will (i) derive a probability
distribution of a cascade (outbreak) of size s happening after
n steps, denoted by P (n)

s , (ii) use this to upper bound the prob-
ability of a particular cascade occurring among a particular
set of users, and (iii) use this in a binomial distribution to de-
scribe the probability of this cascade occurring multiple times
(i.e., persistence).

Deriving a stepwise distribution of cascade size. Denote
the probability distribution of a cascade of size s after n steps
as P (n)

s . To derive P (n)
s we follow techniques in Refs. [33,38],

which we very briefly summarize here.
We can first derive a recursive expression for the probabil-

ity generating function (PGF) of our desired distribution P (n)
s ,

denoted by H (n)(x), in terms of the PGF for the excess degree

of our degree distribution pk ,

H (n) = H (n−1)(xG1(x)). (9)

We can then extract P (n)
s by taking the appropriate derivative

of H . However, we need to resort to numerical differentiation
here, and in practice, the recursive definition of H and inher-
ent small values leads to machine precision errors beyond the
first ten or so values of s. Instead, Newman [33] recommends
applying the Cauchy integral formula to instead derive

P (n)
s = 1

s!

dsH

dxs
= 1

2πi

∮
γ

H (n)(z)

zs+1
dz, (10)

with γ the unit circle (in the complex plane) |z| = 1.
Following Marder [38], we can evaluate this integral

at some large number of points M around the unit circle
m/M for m = 0, 1, . . . , M − 1 and apply an inverse discrete
Fourier transform, that is,

P (n)
s = 1

M

M−1∑
m=0

e−2πism/MH (n)
m = 1

M
FDFT(H,−1)[s], (11)

where H (n)
m = H (e2πim/M ) and the notation [s] denotes re-

trieving the sth element from the returned spectra of the
transform.

Transmissibility. We assumed the probability of informa-
tion transmission (or infection) was 1 at each step in the
previous derivation, which we do not want to assume. Instead,
for an infected individual i interacting with a susceptible
contact j , the probability of infection should be governed
by the average rate of contact (i.e., the average rate of call
activity) over some interval [0, T0], which we define rij =
wij/T0, where wij is the total observed calls on the edge
(ij ) and varies from pair to pair. (Again, for purposes of
our application, this has only to do with the average rate of
interaction and nothing to do with a notion of the infectivity
of the information or disease itself.)

Denote the probability of transmission (transmissibility)
from i to j as Tij . The probability there is not infection is
then

1 − Tij = lim
δt→0

(1 − rij δt )τ/δt = e−rij τ (12)

for recovery period τ and therefore Tij = 1 − e−rij τ [compare
with Eq. (1)].

However, since we are assuming rij is independent and
identically distributed for each pair in the network, then on
a population level it is sufficient [33] to consider the average
transmissibility T = 〈Tij 〉, which we can recover by averag-
ing over all possible values of r . For P (r ) ∼ �(α, β ) this gives

T = 〈Tij 〉 = 1 −
∫ ∞

0
e−rτP (r )dr

= 1 − βα

(β + τ )α

∫ ∞

0

(β + τ )α

�(α)
rα−1e−r (β+τ )dr

= 1 − βα

(β + τ )α
. (13)

This shows that when τ gets larger (i.e., our period of interest
gets longer), the transmissibility goes toward one, and as
the rates skew smaller with larger β, the transmissibility
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FIG. 3. Long-term persistent cascade activity, for three sample persistence classes. Each line of dots represents a single persistence class
and each dot represents an entire cascade. We note temporal clustering and long-term persistence. (Dashed lines indicate a period of no data.)

goes toward zero. We can then simply express the generating
function for the degree and excess degree distributions now as

G0(x) = G0(1 + T (x − 1)), (14)

G1(x) = G1(1 + T (x − 1)) (15)

to capture this effect [33].
Persistence. Finally, to capture the probability that a par-

ticular outbreak (i.e., cascade) happened between the same
set of users multiple times (i.e., was persistent), we can take
advantage of the fact that, given the cascade center and size,
any set of users is equally likely. We will also discard any
notion of approximate similarity and only consider outbreaks
of exactly equal size.

The probability of a specific set χ of users being in an
outbreak rooted at r , for any particular seed or root node r ,
is

q (n)
χ = 1

no. of ways to make χ
P

(n)
|χ | (16)

and so we note that q (n)
χ � P

(n)
|χ | . Qualitatively speaking, this

upper bound is reasonably tight since most of the population
has only two to four persistent contacts and we consider only
|χ | = 3 or 4.

Denote the probability of a particular pattern χ happening
k times over the course of D disjoint periods (for example,
D = 60 days) by QD

χ ; we can approximate it with a binomial

distribution with parameters D and P
(n)
|χ | ,

Q̂D
χ ∼ Binom

(
D,P

(n)
|χ |

)
. (17)

We may now compare the distribution of Q̂D
χ to the observed

distribution of the size of persistence classes with the same
size cascades, that is,{∣∣P r

i (1,D,�t = 1)
∣∣ ∀r,∀i : |Cr | = |χ |}. (18)

III. RESULTS

A. Data

We perform the analysis on call detail records from two
midsize European cities and their greater metropolitan areas
(cities A and B), over a 15-month period. Both cities contain
residential, commercial, and industrial areas. The data consist
of caller, callee, and time stamp for each phone call or SMS
event recorded by the carrier. (Location information is also
recorded, but not used in this study.)

In city A there are approximately 648 100 unique individ-
uals generating a total of over 82.3 × 106 calls in the period

observed. In city B there are approximately 523 500 unique
individuals generating a total of over 55.7 × 106 calls in the
period observed. Unless stated otherwise in the following
analysis, we perform no preliminary filtering on this data (e.g.,
requiring reciprocated calls).

Three examples of persistent cascade classes in the data are
shown in Fig. 3, where each line of dots represents a single
persistence class and each dot represents an entire cascade.
We note temporal clustering and long-term persistence.

B. Properties of persistent cascades

1. Habitual hierarchy

We may expect that the two similarity measures (one com-
paring structure, the other membership) would give us entirely
different groupings of cascades. In fact, the opposite appears
to be true. We compared the similarity of 105 pairs of cascades
using a Jaccard index over the sets of constituent nodes (i.e.,
the fraction of individuals common to both cascades out of the
total individuals in both) and (normalized) tree edit distance,
which judges both membership and structural similarity. Fig-
ure 4 shows a heatmap of the result.

The Pearson correlation coefficient between the measures
is ρ = 0.91, which is perhaps surprisingly high. In particular,
consider the pairs of cascades with reach set similarity sρ = 1

FIG. 4. Comparing similarity of pairs of cascades using reach set
(RS) similarity (y axis) and normalized tree edit distance (NTED)
similarity (x axis) results in correlation of ρ = 0.91. Since the RS
measure captures similar membership while NTED captures similar
structure, their correlation indicates a habitual hierarchy. The result
is for 105 pairs of cascades in the data.
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TABLE I. Distribution of root nodes by time of cascade. Per-
sistent cascades reveal groups that have a tendency for exclusively
weekend or weekday information spreading. (“Only weekend or
weekday” signifies at least 90% of events. Fridays are designated
as the weekend.

Cascade type Data set Only weekend Mix Only weekday

all city A <1% 99.2% <1%
all city B <1% 99.4% <1%
persistent city A 1.8% 82.5% 15.6%
persistent city B 2.6% 84.5% 12.9%

but tree edit distance similarity sδ < 1; these are conversations
among the same individuals, just in different order. Remark-
ably, this type of cascade pair makes up less than 1% of the
sample. This result implies that when the same individuals
pass information, they tend to do so in the same order. We
may consider this a realization of some habitual hierarchy in
group conversations.

2. Weekend vs weekday roles

In Table I we examine all cascade initiators with at least
one persistent class and at least three persistent cascades. If
we consider all cascades of this group (not just persistent
ones), we see that there is an even mix throughout the week,
as expected: Nearly all users are generating cascades (that
is, making calls to multiple people) on some mix of both
weekend and weekdays. Very few users (less than 1%) are
active exclusively on weekdays and/or weekends.

However, if we examine only persistent cascades, two new
groups emerge: a large portion of root users who only initiate
persistent cascades on weekdays and a slightly smaller portion
who only initiate on weekends. These two extremes constitute
over 15% of all root users, while the same extremes measured
in all cascades are less than 1%. This is a complement to
the observation that people have different mobility similarities
than weekend and weekday contacts [40].

In other words, for these two groups, although they make
calls throughout the week, their role in spreading information
appears to be specialized: Their only persistent patterns of
information spread happen during either weekday (i.e., work
week) hours or weekend hours, but not both. Their other com-
munication is sporadic, or random, and one might conclude,
not meaningful.

3. Comparison to a null model

We compared the resulting distributions of size and fre-
quency of cascades in the real data, simulation model, and
analytical model over an arbitrary 2-month period of data.
Results are shown in Fig. 5 for both the 3-person and 4-
person cases (i.e., persistent cascades among 3 and 4 people,
respectively). We see that the results of the synthetic data and
analytical model are similar, as designed, with slight devia-
tions due to approximations in the analytical methodology.

Importantly, in both cases, the real data exhibit a heavy
tail of cascades occurring five or more times, in contrast
with the null model, which exhibit near-zero probability of
recurrence past four to five. This lack of long-term persistence

FIG. 5. Data exhibit significantly more recurring patterns than
we would observe under Poissonian communication in a network
with similar degree distribution. Shown are distributions of Q̂χ for
(|χ | = 3)-person (top) and 4-person (bottom) cascades.

in the model is due to the exponential decay of the binomial
distribution. This allows us to reject the hypothesis that degree
distribution and call volume (i.e., the distribution of average
rates of activity) are enough to explain the patterns in the
data. In the Conclusion we mention possible improvements
to this model (e.g., would a nonhomogeneous edge process be
enough to explain the recurrence?).

4. Effect on connectedness and centrality

Now consider applying this knowledge of persistent struc-
ture back to a static structure and observing the effect on, in
particular, centrality. Specifically, consider a static network
G = (V,E) consisting of all individuals observed making
calls over a time period T , placing an edge (ij ) whenever
i, j ∈ V make at least m calls.

We weight the subset of edges EC that are present in at
least one persistent cascade with wc = α ∈ [0.5, 1] and all
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FIG. 6. Two example individuals’ ego networks, with persistent edges in thick black. On the left is a high-degree node which participates
in no persistent information cascades and on the right is a hidden spreader with an unremarkable number of connections but a large proportion
of which are persistent.

en ∈ E \ EC with wn = 1 − α. With α = 0.5 we recover the
standard aggregated network and with α > 0.5 we are putting
extra weight on the persistent edges which we claim carry
more meaning.

For city A over a T = 1 month period, this results in a
network of approximately 278 000 nodes and 505 000 edges,
with about 45 000 users having at least one persistence class
of 2 or more cascades. (Results are similar month to month.)
Setting α in [0.5,1), we find a large connected component
comprising 80%–85% of the total network for all three data
sets (cf. [3]). With α = 1, the large connected component
splits into several thousand smaller subgraphs, the largest
being approximately 2000 nodes. This echoes previous results
that show the inability of information to reach any sort of
macroscopic diffusion when traveling solely through informa-
tion cascades [19].

Consider the weighted degree (sometimes node strength)
of a user i, defined ki = ∑

j Aij , where A is the adja-
cency matrix of G and Aij = wc if (i, j ) ∈ EC , wn if
(i, j ) ∈ E \ EC , and 0 otherwise. (We use the tree edit dis-
tance similarity measure sδ for this analysis, with � = 0.8.)
Considering again a 1-month time period in city A, for
both the unweighted (i.e., α = 0.5) and cascade-weighted
(α > 0.5) networks, we compare the individuals identified
as high centrality (top 10% of users) in both groups in
Table II.

We note several groups that emerge. First is the large group
of people (about 6% of the total population) that are only cen-
tral in the cascade-weighted network. This suggests a group
of individuals with unremarkable importance as measured in
a naive way by counting calls, but who play a pivotal role in
the persistent communication patterns of their social network.
Similarly, a large group of influential users in the standard
unweighted network disappears when we begin weighting
cascades, implying their centrality was only due to a web of
edges corresponding to mostly random calls. Finally, we note

that a large portion of the network has their status essentially
unchanged.

C. Measuring the role of persistent cascades in diffusion

The analysis in [32], outlined in the Introduction, pos-
tulates that there are information cascades doing the heavy
lifting of spreading information and whose effects are only
masked under large infectivity λ. We claim to have actually
identified conversations displaying these cascading properties,
the so-called persistent cascades of this paper. Our hypothesis
is then that when λ is small and we follow the real order
of interactions, the persistent cascades will play a significant
role in spreading and cascade membership will contribute to
higher probability of infection (i.e., receiving information).
On the other hand, when λ is large, the cascades’ importance
will be masked by the high volume of random calls and we
will see no significant difference between cascade member-
ship or not. In another sense, we observe that there is both
random and cascading activity occurring simultaneously in
the real data and we have identified the individuals consti-
tuting both groups, and so by tracking the epidemic spread
separately for both, we should see the contrast in infective

TABLE II. Persistent cascade effect on notions of centrality.
When edges are weighted by persistent cascade activity, a group
of hidden spreaders emerges (the top right group is 6.8% of the
population in this sample). Bottom ranked refers to the bottom 90%
of users and top ranked to the top 10% of users.

Weighted

ki degree rank Bottom ranked Top ranked

Bottom ranked 192 626 (83.2%) 15 771 (6.8%)
Unweighted

Top ranked 15 771 (6.8%) 7385 (3.2%)
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dynamics between regimes of λ without even randomizing the
order of calls.

Note that in this section we simulate the spread of in-
formation but use the real order and timing of interactions
observed in the data. We of course do not have access to
second-by-second tracking of the spread of some real piece
of information or news through the network (as we might in a
Twitter or internet blog or email data set), but we are instead
claiming that if such a spreading process were occurring,
where the probability of the news being passed was λ, our
simulations reveal the dynamics of what that spread would
be.

Therefore, we simulate the susceptible-infected-recovered
model in the temporal social network resulting from one
month of cell-phone data. We start each simulation by choos-
ing at random 1000 nodes and considering all other nodes as
susceptible. We ensure there is an equal probability of cascade
members or nonmembers chosen as seeds in each simulation.
We then step through the call data in order and in each call
letting the caller infect the callee with probability λ. Infected
nodes recover after a period τ , and cannot be infected again.
We continue until all nodes are susceptible or recovered. We
repeat this for 100 simulations of 1000 seeds spread across the
network.

Throughout the simulation we monitor two populations:
those individuals involved in a persistent cascade and those
not (see Fig. 6). We consider two regimes of infectivity, λ =
0.05 and λ = 0.3, with the recovery period τ = 3 days. We
measure the probability that a node is infected by counting
the fraction of times it is infected over all simulations and
average this across all nodes in a particular type of cascade
membership and range of call activity. We control the number
of total calls since we want to separate out any increase in
probability of infection from simply having more exposure in
general. (Note that this gives a series of conditional probabil-
ities, not a distribution.)

The specific values of λ are chosen to be comfortably
far away from the transition point (i.e., when the spreading
process tends to become population scale) on each side and
follows [32]. This transition point is determined empirically
to be approximately λ = 0.15 for these data. Our results are
in Fig. 7, which plots the conditional probability of being
infected given some range of total call activity and population
membership.

We find that the argument from the preceding section
is borne out: When λ is low, the group conversations are
doing the majority of work of spreading and so we see an
increased probability of infection for these individuals. By
contrast, when λ is high, the long tails of inactivity in these
conversations allow them to be overpowered by the more
random calls going on in the rest of the population.

We find that this result remarkable, as it implies that there
is a special subgroup of the population who are more likely
to receive information when receiving information is difficult,
which in some sense is the more interesting case. Moreover,
we are able to identify this subgroup using the methodology
outlined in Sec. II, and we know their membership in the
group is by definition persistent over long periods of time.

FIG. 7. Probability of receiving information given a particular
range of total call activity for high (top) and low (bottom) infec-
tivity. Persistent cascade members (black circles) are more likely
to receive information in a low-infectivity regime than nonmembers
(cyan squares). The population average across all simulations (not
conditioned on call activity) is shown as a solid line, with two
standard deviations above and below shown as a shaded rectangle.

IV. CONCLUSION

We introduced a method for extracting temporal patterns
of information spread from large-scale communication meta-
data, using methods of inexact tree matching and hierarchi-
cal clustering. We showed that analysis of these so-called
persistent cascades reveals different properties of information
spread, such as weekday-weekend roles, a habitual hierar-
chy of spreading, and long-term persistence on the scale of
months and years. The analysis also leads to an understanding
of centrality and revealed a population of superspreaders
who were otherwise unremarkable under an aggregated ap-
proach. We then showed that these patterns are significant by
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comparing them to both analytical and simulated models of
the network, indicating that the temporal clustering inherent
in real communication patterns is critical to producing the
persistent cascading patterns we observe in the real data.

Finally, we also demonstrated that these persistent cas-
cades play a crucial role in information spreading through
simulation of diffusion processes on the temporal network.
Specifically, members of a persistent cascade are more likely
to receive information spreading through the network under
conditions where the probability of transmission is low.

A. Future work

This analysis imposes a specific ideal on the structure of
information spread, that is, cascading structure; it may be
revealing to examine instead a more general model of spread
(such as the temporal subgraphs examined in [8]) while still
incorporating inexact graph matching.

The null model we proposed uses a homogeneous Poisson
process as the underlying model of interindividual commu-
nication, and we show that this is not enough to explain the
persistence observed in the data. However, it may be possible
to explain the persistence using a nonhomogeneous Poisson
process that varies with time, such as demonstrated in [41].

We also hope to validate methods proposed in this paper,
and others, by using large-scale communication data where
the content is known (e.g., email data). In this way, we can
apply the method on the anonymized metadata and then reveal
the content to validate our claims.
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