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Predicting commuter flows in spatial networks
using a radiation model based on temporal ranges
Yihui Ren1, Mária Ercsey-Ravasz2, Pu Wang3, Marta C. González4 & Zoltán Toroczkai1

Understanding network flows such as commuter traffic in large transportation networks is an

ongoing challenge due to the complex nature of the transportation infrastructure and human

mobility. Here we show a first-principles based method for traffic prediction using a

cost-based generalization of the radiation model for human mobility, coupled with a cost-

minimizing algorithm for efficient distribution of the mobility fluxes through the network.

Using US census and highway traffic data, we show that traffic can efficiently and accurately

be computed from a range-limited, network betweenness type calculation. The model based

on travel time costs captures the log-normal distribution of the traffic and attains a high

Pearson correlation coefficient (0.75) when compared with real traffic. Because of its

principled nature, this method can inform many applications related to human mobility driven

flows in spatial networks, ranging from transportation, through urban planning to mitigation

of the effects of catastrophic events.
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O
ne of the challenges in network science is predicting
network flows from graph structural properties, node/
edge attributes and dynamical rules. While for some

networks (for example, electronic circuits) this is a well-under-
stood problem, it is still open in general, and especially for
networks involving a social component1,2 such as communication
networks3,4, epidemic networks5–7 and infrastructure
networks8–19. Here we focus on the traffic flow prediction
problem in spatial networks, and in particular in roadway
networks, and validate our results using US highway network and
traffic data (http://libguides.mit.edu/gis). Understanding flows in
spatial networks driven by human mobility would have many
important consequences: it would enable us to connect
throughput properties with demographic factors and network
structure; it would inform urban planning20–23; help forecast the
spatio-temporal evolution of epidemic patterns5–7, help assess
network vulnerabilities24,25 and allow the prediction of changes in
the wake of catastrophic events26.

When modelling transportation systems as networks, we
usually associate network nodes with locations and edges with
physical paths between locations. Here, we define nodes as
intersections between the roads and the road segment between
two consecutive intersections as the edge connecting those nodes.
We will refer to nodes also as sites or locations, interchangeably.
Our ultimate goal is to determine the average traffic flow Tij

expressing the number of flow units (for example vehicles) per
unit time (for example per day) through an edge (i, j) of the
network, given the network and the distribution of the
population.

For any traffic to exist, there must be people planning to travel
between locations. Given an origin location a and destination b,
the average number of travellers from a to b is determined by
socio-demographic factors such as distribution of the population,
availability of jobs, resource locations and so on. We define Fab as
the average number of daily travellers planning to go from site a
(origin) to site b (destination), where the average is computed
over a longer time interval such as a year period. We call Fab the
mobility flux, or origin–destination (OD) flux, and use the word
flux exclusively for that purpose. The socio-demographic model
that describes the fluxes Fab will be called mobility law. Note that
the flux Fab does not tell us anything about the path chosen
between the origin and destination. It is simply the size of
population at location a planning to travel daily to location b.
When people travel from a location a to a location b they must
choose a route on the network to do so. Accordingly, the Tij

expresses the average number of daily travellers through edge
(i, j), which can in principle originate from any location a
travelling to any location b as long as their chosen route on the
network contains the road segment (i, j). When referring to traffic
on specific edges (road segments), that is the Tij-s, we will use the
word flow, or traffic interchangeably. Note that Fab is well
defined for any two nodes or locations a and b in the network, but
it does not define any traffic (flow); whereas Tij is defined only for
edges (i, j) and it is a flow quantity. In analogy with physics Fab

corresponds to voltage, whereas Ti,j corresponds to current.
Modelling traffic flows in spatial networks can therefore be

approached via solving two problems: (1) determining the
mobility fluxes Fab for all OD pairs (a,b)27–29 and (2)
distributing the fluxes Fab through the network, that is
determining the network paths along which the flow units are
transported11,12,14,15. We call the first problem the mobility law
problem and the second the flux distribution problem and
present a solution to both problems in this paper.

The common approach to the mobility law problem has been
through the use of gravity models3,11,16,28–31, which assume that
the fluxes have the generic form Fab ¼ ma

anb
b=f rabð Þ where ma

and nb are the population sizes of origin a and destination b, rab is
the distance between them, and f (x) is called the deterrence
function. Typical forms for f are power-law f rabð Þ ¼ rgab or
exponential f rabð Þ ¼ edrab , where a, b g and d are fitting
parameters. As shown in ref. 27 gravity models are essentially
fitting forms and they have numerous ills. Besides not being based
on first principles, the fitting parameters can vary wildly even
within a single data set (as function of rab)3,7,30–32. They can also
show non-physical behaviour, for example, when the destination
has a large enough population, the number of travellers can
exceed the size of the origin population. Recently, a novel
mobility law called the radiation model was introduced using
probabilistic arguments, which avoids the problems of gravity
models27,33. Here we will use the radiation model as the mobility
law with a first-principles-based generalization that allows us to
couple it with the network structure, where mobility takes place.

Given the Fab fluxes for all the N(N� 1) node pairs (a, b)
obtained from the generalized mobility law, here we solve the flux
distribution problem by using a cost-minimization principle,
based on the expectation that commuters tend to minimize the
cost of travel. This results in a novel, efficient capacity-aware flux
distribution algorithm that helps predict traffic in roadway
networks.

Results
A cost-based radiation model. The averaging in the definition of
the flux Fab reduces the effect of fluctuations due to seasonal and
occasional travel, and thus it is expected to be determined mainly
by travellers who commute regularly between home locations and
job sites and regular freight traffic. The radiation model is a socio-
demographic model27 based on the assumption that people will
search for the closest job opportunity that meets their expectation
(see Supplementary Note 1). The expectation of an individual is
modelled by a single variable z called the benefit variable, which
acts as an absorption threshold: an individual ‘emitted’ from
location a will take a job at another location b (it becomes
absorbed at b) only if the z variable associated with the job site at
b surpasses that of the individual’s and she could not find any
such absorption site closer than b. Paper27 derives the expression
of the probability pab for an individual from location a with
population ma to find the closest job opportunity that meets her
expectation at location b with population nb and nowhere closer
within a range of rab, where rab is the distance between a and b.
Assuming independent emission-absorption events, the average
mobility flux from a to b is then given by:

Fab ¼ zmapab ¼ z
m2

anb

ðmaþ sabÞðmaþ sabþ nbÞ
; ð1Þ

where z is the fraction of travellers in a location, considered to be
an overall constant characterizing the whole of the population
and sab is the size of the population within a disc of radius rab

centred on a, excluding the populations at locations a and b, see
Fig. 1a. The distance rab is interpreted as the crow flies, which, in
heterogeneous environments does not usually correspond to the
actual length of travel from a to b. Here we extend the radiation
model by saying that the individual will be choosing the site b that
has the lowest travel cost cab on the network, with a benefit factor
at least as large as the individual’s. We will refer to this model as
the cost-based radiation model. We compare two travel cost
measures, in particular one based on path lengths cab and the
other based on travel times tab, both measured along roads. The
path length cab is the shortest distance (in km) from a to b along
existing network paths, so it is closely related but larger than the
geodesical radius rab (measured as great-circle distance). The
second travel cost measure is the shortest time (in minutes) tab it
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takes to go from a to b along the network paths, and thus it
depends on travel speeds as well. The expression for the fluxes is
still given by (1); however, the population sizes sab are computed
differently. Accordingly, the shape of the area around site a with
cost of travel not larger than cab on the network is no longer an
annular disc with a dent as in Fig. 1a, but it has an amoeboid
shape as shown in Fig. 1b. There is an important difference
between the criterion rab used in ref. 27 and our general cost
criterion cab. The former decouples the mobility law from the
underlying transportation network, whereas the cab (hence sab

and thus the Fab) depends on the network of paths and their
properties, thus coupling the mobility law with the network itself.

Flux distribution without capacity limitation. The total flow Tij

through edge (i, j) is generated by all those travellers that happen
to have edge (i, j) on the lowest cost path between their start
and end locations. For a pair of OD sites (a, b), let us denote
by Pab the set of all network paths from a to b and by
oabAPab a minimal cost path. Thus oab is a sequence of
edges oab¼ {(a, i2),(i2, i3),y,(iL, b)} such that

cab ¼ minpab2Pab f
P
ðil ;ilþ 1Þ2pab

cil ilþ 1g

is attained for pab¼oab (see Fig. 1c). Note that in principle, there
might be several paths with the same lowest cost (called ‘minimal’
paths hereafter) and this possible degeneracy must be included in
the expression of the total traffic flow through a given edge (i, j):

Tij ¼
X

a;b2V

gabði; jÞ
gab

Fab: ð2Þ

Here gab is the number of minimal paths from a to b and
gab(i, j) is the number of minimal paths that contain edge (i, j).
When the cost cab is not an integer value but a real number
(physical distance or travel time), usually there is no degeneracy
(gab ¼ 1 and gab(i, j) ¼ 1 if (i, j) belongs to oab, zero otherwise)
and (2) sums whole fluxes. According to (2), traffic values are

obtained from sums of fluxes weighted by adimensional
quantities, and thus traffic and flux have the same unit of
measure. Realistic traffic data are typically provided in units of
vehicles per day in which case we need to multiply the r.h.s. of (2)
with an overall constant representing the average number of
vehicles per travelling person, here included into z, for simplicity.
Also for simplicity, we will omit to indicate the unit of measure
for fluxes and traffic, showing only numerical values, with the
implicit assumption that they are in units of number of vehicles
per day.

Equation (2) is similar to the expression of edge betweenness
centrality25,34–37, with the difference being that instead of
computing with the number of minimal paths, we now use
weights of minimal paths, which are the mobility fluxes computed
from the mobility law (the cost-based radiation model in this
case). Therefore, the flows Tij can be obtained using the same
algorithm as for weighted betweenness centrality25,34,35 with two
necessary modifications.

One concerns implementation (see Methods section) and the
other exploits the notion of range-limitation. For realistic size
networks (infrastructure networks with hundreds of thousands to
millions of nodes) the computation of (2) for all edges can
become unfeasible (especially for collecting statistics). One can
reduce the computational costs by introducing a range-limit on
how far (in cost measure) we build the minimal paths tree (MPT)
from the source (root) node25,37. In particular we only build the
largest MPT from root a such that for all nodes u in it we have
caurC. The rationale is that beyond a cost threshold C the
contribution of the corresponding mobility fluxes is very small.
The full-range algorithm has a complexity of O(NM logN), where
N is the number of nodes and M is the number of edges. In the
case of US highways (sparse network) this is a computation on
the order of 1010–1012, which is relatively costly. However, as we
show in later sections, for the case of contiguous US, range
limitation can reduce this complexity by several orders of
magnitude without considerably affecting the accuracy of the
results.

Flux distribution with capacity limitation. Network congestion
is a ubiquitous phenomenon, resulting from edges having a finite
transmission capacity. We define the transmission capacity Cij of
an edge (i, j) as the largest daily flow value above which indivi-
duals will choose alternative routes with high probability. Next we
show how to distribute the mobility fluxes in a capacity-limited
network assuming that all the Cij values are known.

We use dynamic distribution of the traffic by gradually
increasing the number of travellers until the first q congested
edges appear. The congested edges are then removed from the
network for further traffic. More travellers are subsequently
added to the network until another q edges become congested,
which are then closed for further traffic, and this process is
repeated until all travellers have been distributed into the
network. Ideally q¼ 1, but it is better to choose q41 (such as
q¼ 100, but still with qooM), because on one hand congestion
thresholds in finite systems are not sharp and thus q41 serves as
a ‘softness’ parameter, and on the other hand it speeds up the
computations.

Let us denote by tij(G) the flow on the edges of a network (or
graph) G computed using equation (1) with z¼ 1, that is with
Fab¼mapab. Note that the multiplicative coefficient z in the
mobility fluxes (1) is also multiplicative in the traffic (or flow)
values. Let us denote by Gn the graph obtained from Gn� 1 after
removing the set Ln of q congested edges in the nth step. We
define recursively zn ¼ Cij;n� 1=tij;n

� �
Ln

with Tij;0�0, G0¼G,
where tij;n ¼

Qn� 1
r¼1 1� zrð Þtij Gn� 1ð Þ is the non-adjusted traffic
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Figure 1 | Schematics for traffic flow modelling. (a) The original

radiation model uses distance rab as a search criterion. (b) The cost-based

radiation model uses network travel cost cab as a search criterion, which

usually has a heterogeneous distribution. (c) The flow Tij through edge (i, j)

is the sum of contributions from all those mobility fluxes Fab whose

minimal cost paths oab contain (i, j).
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coming from mobility fluxes Fab corresponding to the fraction of
the population not already in the network in that step and
Cij;n� 1¼Cij�Tij;n� 1 are the corresponding reduced capacities
in Gn. The set Ln is defined as the q edges with the smallest
ratios Cij;n� 1/tij;n. In the Methods section we show that after
k iterations the final flow becomes:

Tij;k ¼ a1ti;jðGÞþ a2ti;jðG1Þþ . . . þ akti;jðGk� 1Þ ð3Þ
where

an ¼
Cij;n� 1

tijðGn� 1Þ

� �
Ln

¼ zn

Yn� 1

r¼1

ð1� zrÞ ; n ¼ 1; . . . ; k: ð4Þ

The total number of iterations k (stopping criterion)
is determined by having all the travelling population
z
P

i
mi ¼ zm distributed onto the network, that is, k is the

smallest integer for which

a1þ a2þ . . . þ ak � z ð5Þ
holds.

Comparison with empirical data. To validate our approach we
compared the model’s output with real traffic data from a US
highway network database (http://libguides.mit.edu/gis), which
consists of M¼ 174,753 road segments (edges) and N¼ 137,267
intersections (nodes). The node features are longitude and lati-
tude and the edge features are the IDs of the end nodes, road
length, road class, number of lanes and annual average daily
traffic (number of vehicles per day). The traffic values are
available for about 43% of all edges (road segments) randomly
distributed throughout the continental US (see Fig. 2a) providing
a good statistical basis for comparisons.

Traffic values were generated for all road segments by the
model via equations (2) or (3–5) following the methods described
in the previous sections (also see Supplementary Method 1). The
computation of the fluxes Fab for all OD pairs requires the

knowledge of the population sizes at the level of intersections
(nodes). To that end, population sizes at the level of intersections
were generated using population data from the US Federal Zip
Code database (http://federalgovernmentzipcodes.us/) and a
Voronoi mesh-based partitioning (Fig. 2b) as described in the
Methods section.

We compare two statistical quantities between the model
output and data. One is the overall distribution of traffic flow
values (specifically the logarithm of the traffic, justified below)
and the other is the Pearson correlation coefficient (PCC)
between the predicted traffic flow and the actual traffic flow on
the edges where these data are available. Note that the PCC is
computed not with logarithmic traffic values but actual traffic
values. The PCC is a much more stringent comparison criterion
as it tests for the strength of linear relationship between model
and data. The higher the PCC, the higher the ability of the
model to predict traffic flow values at the individual edge (road
segment) level.

As discussed in the paragraph under equation (2) the rather
costly computation of the traffic using equations (2–5) can be
performed efficiently if we include only those OD fluxes Fab for
which the travel cost cab is below some threshold (range
limitation). Before we compare the traffic values, in the next
section we show that the mobility fluxes obey a simple scaling law
over several orders of magnitude, which then can be exploited to
determine the range limit for accurate and efficient traffic
computations.

A scaling law for the mobility fluxes in the contiguous US.
Using the distribution of the population and the roadway net-
work from the data we computed the Fab mobility fluxes via the
cost-based radiation model (1), using both travel distance cab and
travel time tab as travel cost, to determine sab (Supplementary
Method 1). Let n(F) denote the un-normalized number density of
OD pairs with mobility flux F, that is dF n(F) is the number of

–77.2 –77.1 –77.0 –76.9 –76.8
38.75
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Travel distance based 
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Figure 2 | Network and population data. (a) The US highway network with nodes as intersections and edges as road segments between intersections.

It has N¼ 137,267 nodes and M¼ 174,753 edges. The red segments (43%) have recorded annual average daily traffic values. (b) Assigning a

population size (see the Methods section) to every intersection (red dots) using a Voronoi mesh and zip-code level census data (zip-code centers

indicated by black stars); Washington DC area is shown. (c) Geographical area of locations around a node centred in Minneapolis, MN, with travel

cost cab not larger than a given value using travel distance cab as travel cost. (d) Same as (c), but using travel time tab as travel cost.
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OD pairs with fluxes in the range [F, Fþ dF) and
R

dFn Fð Þ ¼
z
P

i
mi is the total flux. Figure 3a,b shows that the mobility flux

density follows a power-law

n Fð Þ � F�m; m ’ 1:48 ð6Þ

holding for over seven orders of magnitude. Note that it actually
holds for over nine orders of magnitude; however, we may neglect
the very small flux values (below 10� 4) as they do not contribute
significantly to traffic. The scaling behaviour (6) can be derived
from a counting argument using (1), described as follows. At
intermediate to large ranges for cab, the population sab within the
ameboid domain is much larger than those at sites a or b: sab 44
max(ma, nb) and therefore Fab ’ zm2

anbs� 2
ab . Assuming a typical

population size /mS at any node, we have Fab ’ zhmik� 2
ab ,

where kab is the number of nodes within the ameboid domain.
Moreover, k¼ kab is also the index of the node on the minimal
path tree centred on a (index 0) just before node b. As the index
has a uniform distribution, we can use the method of inverse
transform: F0(k)¼ � 2z/mSk� 3, k0(F)¼ (z/mS)1/2F� 1/2 so
n(F) ¼ 1/|F0(k0)| ¼ (1/2)(z/mS)1/2F� 3/2, and thus m¼ 3/2. In
Supplementary Note 2 we show that an alternative approach
using the assumption sab � c2

ab and computing thus the dis-
tribution of Fab � c� 4

ab , while also leading to a power law,
generates an exponent of 1.3 (Supplementary Fig. 3). The reason
for why this approach generates a different exponent for the flux
distribution is because the assumption sab � c2

ab does not hold for
the roadway network due to the fractal-like nature21,22,38 of the
ameboid domains; instead it obeys a scaling sab � cnab with
nC1.33 (Supplementary Fig. 4). This observation provides
additional support to studies of the fractal morphology and the
underlying roadway networks of urban sprawls21,39.

The scaling law (6) implies that over several orders of
magnitude the OD fluxes are heterogeneous and scale-invariant,
namely, fluxes from fractional values to hundreds of thousands of
vehicles are transported across the highway network, daily. This,
in turn determines the width of the traffic distribution, which, as
shown in the following sections, obeys a log-normal distribution.
The power-law (6) is a consequence of the scaling Fab � s� 2

ab ,
which in turn is a consequence of the threshold condition for
mobility in the radiation law (Supplementary Note 1) that is, of
the fact that individuals will travel to the site that meets their
expectation and it is the least costly to reach on the network.

Network flow modelling. The traffic values were computed on all
edges using equations (2–5) and compared with real traffic values
on the subset of edges for which these data are available (red
edges in Fig. 2a). Figure 4 shows the comparisons using the

density of log traffic r(log10(T)) and the PCCs between data and
model traffic values.

The case without capacity limitation is shown in Fig. 4a.
The overall multiplying factor z in the model was set to match the
mean of the distribution of traffic in the model with that in the
data. As shown in the left panel of Fig. 4a, the model distributions
(blue and red lines) track rather closely the log traffic distribution
(black line) of the data with a slightly better agreement when
using travel-time-based cost functions. The PCCs, however, show
a significant difference, 0.273 versus 0.639, indicating that travel
time is a much better criterion for evaluating cost of travel than
travel distance. Although for the travel-distance-based model
there are no other adjustable parameters, one could state that for
the travel-time-based case, however, the velocities provide enough
wiggle room to achieve the much better fit with the data. While
indeed, the fit is improved by varying the velocities, this is not
the main reason for the agreement. The typical travel velocities
were obtained using a consistent procedure described in
Supplementary Method 1. To avoid too many fitting parameters,
we have not used separate velocities for individual roads, but all
roads were lumped into three velocity ranks: fast, medium and
within-city speeds. For the velocity combinations tested shown in
Supplementary Table I, the corresponding PCCs were all found to
be above 0.61, still much higher than the 0.27 PCC from the
travel-distance-based model.

A better agreement can be achieved if capacity limitation is
taken into consideration (Supplementary Method 2), see Fig. 4b.
The distributions of the log traffic show an even better match, and
the highest obtained PCC is 0.752 when using travel time costs. In
the case of capacity limitation, the iterations were stopped when
condition (5) was satisfied. Figure 5 shows roadway traffic values
(using colours to indicate the volume of the traffic) for visual
comparison between model and data, showing a relatively good
agreement between the two, for most of the roads.

The traffic values were generated using the weighted between-
ness centrality type expression (2). On the basis of this we can
give an analytic argument for why the shape of the traffic density
plotted in Fig. 6 is lognormal. It was previously shown25,37

that (for example equation (6) of ref. 37) the natural scaling
variable for the betweenness distribution is the logarithm of the
betweenness (hence traffic) and that the betweenness distribution
can be written as a convolution between the degree distribution
P(k) and the distribution function Cr of the deviation ( noise) of
the shell sizes (the number of network nodes at a given range r)
from its scaling form described by the corresponding branching
process characteristic for that network class. That is, if b denotes
the betweenness variable, p(b)B(1/b)

R
dk P(k)Cr(log b� log

br� log k). For spatial networks such as random geometric
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graphs, or roadways, this scaling form is power-law with the
exponent given by the dimensionality of the embedding space
(d¼ 2) that is brBrd¼ r2. As our degree distribution is almost
uniform we can make P(k)Bd(k�/kS) with good approxi-
mation, which from above leads to p(b)B(1/b)Cr(log b� log
br� log/kS). As shown in refs 25,37 Cr is Gaussian for large
random networks (also for the US highway network), and thus
the betweenness/traffic distribution becomes a lognormal, indeed
supported by Fig. 6.

Discussion
There are several gravity models in the literature that may be used
to better match the local traffic, but they come at the expense of
additional fitting parameters3,7,30–32. However, if we would need
to predict new flow patterns in the wake of network changes (for
example due to natural disasters) it is not clear what values
should be used for the fitting parameters on the changed network.
The main strength of our approach is that it is based on first
principles and thus it can be easily used for flow predictions in the

wake of network changes. The model can be further improved by
adding more features such as a better approximation to popula-
tion distribution at the intersection level, seasonal variations and so
on. And indeed, we have seen the agreement improving already by
including capacity limitations, even with crude approximations for
travel speeds. At every step, our modelling approach follows the
Maximum Entropy Principle by Jaynes40 in the sense that the
model incorporates only known data (population distribution, the
network and capacities) and the assumed behaviour (cost-based
radiation law and cost minimizing path-choice); for everything else
it assumes uniform distributions with minimum parameters so as
to minimize biases (such as the coefficient z or the distributions
within speed categories).

The original radiation model treats costs simply as a geometric
range; it does not involve any transportation network. As our
framework allows the use of any cost-function, we could still use
the original radiation model for calculating the fluxes Fab by
calculating the area populations sab using geodesic, or in this case,
great-circle distances. However, we cannot use great-circle
distances to find the lowest travel cost paths on the network
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Figure 4 | Comparison with data. (a) Left panel: comparison between the densities of log(traffic) obtained from data (black line) and the model

without capacity limitation based on travel distance (blue line) and travel time (red line). The heat maps (right panels) are the scatter plot between

real log traffic and model log traffic values without capacity limitation. The linear bin size is 0.02 in the heat maps and the colour bar gives the number of

events (road segments) that fall within the same bin. For the upper map the travel distance cost function (with a range limit of 400 km) was used,

generating a PCC of 0.273. For the lower map the travel time cost function was used with a range limit of 400 min and velocity classes 90-40-15 mph

(Supplementary Method 1), generating a PCC of 0.639. (b) is similar to (a) but with capacity limitation (Supplementary Method 2). Here the PCC of 0.752

was obtained with the same velocity class configuration as in (a). The range limits were 100 km and 100 min, respectively. For the computation with

capacity limitation and time costs, the iterations were stopped when equation (5) was first satisfied, after 83 iterations corresponding to about 2.37% of

the edges being congested.
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because great-circle distances say nothing about network paths.
Thus, we would be forced to employ two, somewhat inconsistent
travel cost criteria: when estimating the area population that we
can reach (sab) we would use as-crow-flies distances, but when
computing network paths for travel we have to revert to network-
based travel costs. This would lead to errors in geographically
heterogeneous areas, where a direct path to a location may run
through an obstacle (such as a lake, a mountain, a gorge and so
on), and thus that location would be included into sab, but the real
network path would avoid the obstacle at a more significant cost
(excluding that location from sab). Statistically, however, using
the original radiation model would not lead to large errors in the

traffic distribution r and the PCC for a large country as the
United States. The reason is because using great circle distances
we still get a good approximation of the population sab on the
network for most OD pairs (a, b). Both the PCC and the traffic
distribution imply sums/averages taken over a large fraction of
the whole United States, and these averages are dominated by
short and medium distances, which are abundant in heavily
populated areas. With some exceptions, heavily populated areas
tend to be in regions where mobility is not hampered by
geographical obstacles and thus in these heavily populated areas
network paths tend to run in the direction of the shortest
geometrical distance, making the two cost measures proportional
to one another.

Besides consistency, our model also has a computational
advantage in that we can simultaneously find the lowest cost
paths and the population values sab (within the Dijkstra part of
the algorithm, see the Methods section), within one run of the
algorithm. However, when computing the fluxes Fab using great-
circle distances we need a separate algorithm of an entirely
different nature, which is in addition to the flux distribution code.
This additional algorithm needs to find all the points increasingly
by their great-circle distance from an origin a, then it needs to do
this for all (N) origins. This is a well-known problem in
computational geometry and the most efficient implementation
runs in O(N2 log N) time41. Thus, as the flux distribution
algorithm is also of O(N2 log N) complexity (the roadway
network is sparse), this additional algorithm essentially doubles
the computational time (confirmed by our simulations).

Simulation

1.5 2 2.5 3 3.5 4 4.5 5 5.5

Traffic data

Figure 5 | A visual comparison. (a) Log traffic values indicated via colours (see colour bar) on major highways in the contiguous US. (b) Magnification of a

south-east region. (c) Same as in (a) but for the model output using travel time cost with capacity limitation and with the same parameters as in Fig. 4b.

(d) magnification of the same region from (c) as in (a).
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In summary, the cost-based radiation model provides a feasible
approach to model flows in spatial networks where the choice of
transport paths on the network is driven by a cost-minimization
principle, given the distribution of population and resources. The
mobility fluxes are generated by the individuals finding those
absorption sites on the network that meet their expectation
thresholds and that are the least costly to reach on the network.
This couples the socio-demographic aspect (mobility law) with
the network transport aspect (flux distribution), and the final flow
will be the result of the interplay between these two aspects.
Because of its principled nature, we expect that the modelling
approach presented here is applicable with some modifications
not just for highway network data sets but for spatial networks
in general where traffic is generated by a cost-incurring
transport.

Methods
Assigning populations to network vertices. To compute the mobility fluxes Fab

we need to know not only the populations at sites a and b but also at all sites
around a within the domain defined by the cost function cab. As we are modelling
traffic at the level of road intersections, we need to resolve the distribution of
population at this level. For this purpose, we used population information from the
US government’s zipcode database (http://federalgovernmentzipcodes.us/).
Restricted to the contiguous US, the corresponding population data came from
31,343 zip code instances. However, there are N¼ 137,267 network vertices
(intersections), which implies that a finer resolution is needed than what is pro-
vided by zip codes, for population. We perform this refinement in two steps. First,
we construct a 2D Voronoi diagram using the set of points (Voronoi sites) pro-
vided to us in the zip code data (these usually correspond to post-office locations,
given in (long, lat)) and assign every intersection (network node) to that Voronoi
site to which it is the closest. Second, we label those Voronoi cells that had no
intersections assigned to them (26%). We remove their sites temporarily, then we
redo the Voronoi mesh with these labelled sites absent. Next we place back the
labelled sites and find those Voronoi cells from the second mesh that contain these
labelled sites. We then add the population of the labelled sites to the population of
those cells from the second mesh that contain them, and redistribute the popu-
lation among the intersections within all cells of the second mesh, uniformly, see
Fig. 2b. This way no population is lost and they are all assigned naturally to the
closest intersections.

Weighted betweenness centrality algorithm. This algorithm proceeds by con-
structing the MPT rooted at a vertex a, for all vertices a using Dijkstra’s algo-
rithm42 (based on breadth-first search). Then starting from the leafs (the furthest
nodes from the root a) of the MPT it computes recursively for every edge (i, j) of
the MPT the contributions in the sum (2) coming from all paths with source node
a. Note that for a given root (source) node a only those fluxes Fau contribute to
these sums for which u is part of the corresponding MPT. Thus, we don’t need to
generate all the fluxes Fab for all pairs beforehand (which would be on the order of
2� 1010 values for the US highway system), but we can compute them locally when
generating the minimum paths tree.

Distributing flows in networks with capacity limitation. Consider the first step
k¼ 1. Denoting the whole-graph with G and its edge set by E, starting with G we
compute the non-adjusted flow values tij;1 � tij(G) on all edges. We identify the set
L1 of q roads with the smallest Cij/tij;1 ratio, which are the roads that become
congested early on. Define:

z1 ¼
Cij

tij;1

� �
L1

; ð7Þ

where �h iL1
is an average taken over the edges in L1. For edges in L1, z1tij;1 will be

near their capacity Cij (if q is not too large). This allows for fluctuations around the
congestion capacities, modelling the softness effect mentioned in the main text. The
adjusted flow on edge (i, j) at the end of the first step will therefore be

Tij;1 ¼ z1tij;1; 8ði; jÞ 2 G: ð8Þ

On the non-congested edges (i, j)eL1, the new capacity will be Cij;1¼Cij�Tij;1.
In the next step (k¼ 2) we consider the new graph G1 with edge-set E1¼ E\L1

(removed the q congested edges identified in the previous step). We then compute
the non-adjusted flow tij;2¼ (1� z1)tij(G1) for all edges of G1. The latter
corresponds to flow computed with mobility fluxes Fab¼ (1� z1)mapab because a
z1 fraction of the population is already on the roads. We now identify the set L2CE

of q edges (|L2|¼ q) with the smallest ratios Cij;1/tij;2 and define:

z2 ¼
Cij;1

tij;2

� �
L2

¼ 1
1� z1

Cij �Tij;1

tijðG1Þ

� �
L2

: ð9Þ

Then, the new, adjusted flow on the edges of G1 will be

Tij;2 ¼ Tij;1 þ z2tij;2 ¼ z1tijðGÞþ ð1� z1Þz2tijðG1Þ; ð10Þ

8(i, j)AG1, with the new capacities for further traffic becoming Cij;2¼Cij�Tij;2. In
the third step k¼ 3, we compute the non-adjusted flow tij;3¼ (1� z1)(1� z2)tij(G2),
from fluxes Fab¼ (1� z1)(1� z2)mapab corresponding to the fraction of
population not in the network, where G2 is obtained from G1 by removing the
edges in L2. We then identify the set L3 of q edges with the smallest Cij;2/tij;3 ratios
and compute:

z3 ¼
Cij;2

tij;3

� �
L3

¼ 1
ð1� z1Þð1� z2Þ

Cij �Tij;2

tijðG2Þ

� �
L3

ð11Þ

yielding the adjusted flow on all the roads (i, j) of G2:

Tij;3 ¼ Tij;2 þ z3tij;3 ¼ a1tijðGÞþ a2tijðG1Þþ a3tijðG2Þ; ð12Þ

8 (i, j)AG2, where a1¼ z1, a2¼ z2(1� z1), a3¼ z3(1� z2)(1� z1). Thus, in the first
step we distributed z1m¼ a1m travellers, in the second step another
(1� z1)z2m¼ a2m, in the third (1� z1)(1� z2)z3m¼ a3m and so on. A
straightforward generalization of this yields the equations in the main text.

Determining the effective range limitation. The very small mobility flux values
in Fig. 3a,b are coming from OD pairs whose separation involves a large travel cost
cab. However, we expect that fluxes that are too small (10� 4 and smaller) do not
contribute significantly to any traffic flow value, implying that we may limit our
computaton of fluxes to ranges that generate fluxes that are not too small. To assess
when range limitation is effective, we have computed the fraction of population
from a location a travelling to sites whose travel cost (from a) is beyond a given
threshold value cab ¼ R : Ea ¼

P
b Fab �FR

ab

� �
=
P

b Fab ¼ 1�
P

b pR
ab , where

FR
ab ¼ Fab if cabrR and zero otherwise, and we used the expressions Fab¼ zmapab

and FR
ab ¼ zmapR

ab . This fraction Ea is the probability that a person from location a
will travel beyond range R, which is then omitted from traffic flow calculations with
range limit R. Supplementary Fig. 6a,b shows the cumulative fraction of the
locations with long-range (larger than R) travel probability less than E. When cost
of travel is computed based on travel distance, we see that for 95% of all locations
the likelihood of daily long-range travel is less than 1, 0.2 and 0.05% when going
beyond 100, 200 and 400 km, respectively. In terms of travel time cost, 95% of all
locations have less than 0.5, 0.09 and 0.02% likelihood of one-way daily trips taking
longer that 100, 200 and 400 min, respectively. While neglecting these probabilities
causes some error in the traffic values, the PCC (between flow data and model)
saturates as function of the range limit, as shown in Supplementary Fig. 6c,d. In
particular, at 100 km or 100 min the PCCs are already close to their corresponding
saturation values. As in Fig. 3b, this translates back to about 10� 4 below which
mobility flux values can be neglected.
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