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Abstract Massive and passive data such as cell phone traces provide samples of the

whereabouts and movements of individuals. These are a potential source of information for

models of daily activities in a city. The main challenge is that phone traces have low spatial

precision and are sparsely sampled in time, which requires a precise set of techniques for

mining hidden valuable information they contain. Here we propose a method to reveal

activity patterns that emerge from cell phone data by analyzing relational signatures of

activity time, duration, and land use. First, we present a method of how to detect stays and

extract a robust set of geolocated time stamps that represent trip chains. Second, we show

how to cluster activities by combining the detected trip chains with land use data. This is

accomplished by modeling the dependencies between activity type, trip scheduling, and

land use types via a Relational Markov Network. We apply the method to two different

kinds of mobile phone datasets from the metropolitan areas of Vienna, Austria and Boston,

USA. The former data includes information from mobility management signals, while the

latter are usual Call Detail Records. The resulting trip sequence patterns and activity

scheduling from both datasets agree well with their respective city surveys, and we show

that the inferred activity clusters are stable across different days and both cities. This

method to infer activity patterns from cell phone data allows us to use these as a novel and

cheaper data source for activity-based modeling and travel behavior studies.
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Introduction

The field of transportation modeling keeps evolving to adapt to the needs of transportation

development. The required data collection and analysis procedures also change over time.

The first generation of travel demand models, the four step models, were developed in the

1950s characterized by major investments in road infrastructure and rapid increase in car

usage, which called for travel forecast models that are able to predict aggregate level

demand in the long run (Jovicic 2001). The input data of these models are usually zoning

level aggregate statistics collected through surveys. Trip attraction rates are modeled as

functions of land use, which allows to forecast travel demand based on planned or an-

ticipated changes of land use. The second generation of travel demand models, charac-

terised by disaggregate trip based or tour based demand models, emerged when the focus

of transportation modeling turned to more detailed individual level travel behavior mod-

eling. In these models individual level travel diary surveys began to play a more important

role, but trips/tours of the same individual were still analyzed independently. The Travel

Model Improvement Program in the early 1990s marked the boom of the third generation

travel demand models, activity based models. Many of them are based on theoretical

foundations proposed by Hägerstraand (1970) and Chapin (1974). Activity based modeling

treats travel as being derived from the demand for activity participation. Activities are

motivated by economical, physiological and sociological needs of an individual. Travel is

therefore viewed in a broader context of activity scheduling in time and space (Rasouli and

Timmermans 2014). Activity based models are supposed to capture all the interconnections

between activities and trips and to avoid shortcomings of trip based models such as lack of

behavioral realism, strong aggregate nature, and assumption of independency between the

four steps of the traditional urban transportation planning procedure. Activity-based

models imply a shift from aggregate quantities and relationships to disaggregate models

and micro-simulations. The focus on individual and household level decision making

process poses higher requirement on individual level data collection. The ideal input of

such models would include detailed activity time, location, mode choice and interaction

with other family members of a large sample of the population over a long observation

period. This requirement is unattainable for traditional manual surveys, which leads to the

more recent focus on automated data collection methods.

GPS technology has been proposed to enhance travel surveys for more than 15 years

(Casas and Arce 1999; Wolf et al. 2003a, b; Bachman et al. 2011; Nitsche et al. 2013). The

application of GPS data in transportation modeling includes: generation of trip rate cor-

rection factors (Wolf et al. 2003a; Bricka and Bhat 2006), travel mode detection (Tsui and

Shalaby 2006; Reddy et al. 2010; Widhalm et al. 2012), trip end/activity location detection

(Wolf et al. 2001; Stopher et al. 2005; Ashbrook and Starner 2003), assessment of

transportation network conditions (Hackney 2005; Stopher and Swann 2007), and route

choice analysis (Jan et al. 2000; Li et al. 2005; Hood et al. 2011; Quddus et al. 2003). GPS

traces can provide accurate spatial and temporal information of individuals, but generally

the attainable sample size and observation period of GPS-assisted surveys are still limited.

In contrast, the cellular networks of mobile phone operators act as an ubiquitous sensor that

provides an immense amount of information about the movement patterns of almost the

entire population. In recent years this has inspired intensive research, such as the analysis

of human mobility behavior, e.g. (Gonzalez et al. 2008; Schneider et al. 2013; Ratti et al.

2006; Ratti et al. 2007; Sevtsuk and Ratti 2010; Calabrese et al. 2013; Hoteit et al. 2014),

origin–destination flows, e.g. (Tettamanti and Varga 2014; Wang et al. 2013; Caceres et al.
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2012; Calabrese et al. 2011; Friedrich et al. 2010), and road usage patterns (Wang et al.

2012). More detailed reviews of the use of cell phone data in traveler information systems

and travel behavior studies can be found in (Qiu and Cheng 2007; Yue et al. 2014; Wang

et al. 2014). While automatically collected mobile phone records have the advantages of

large sample size and long observation periods, they also have obvious weaknesses: cell

phone traces are sparsely sampled in time, provide only a low spatial resolution and

include noise stemming from pure signal movement. Therefore the data have to be care-

fully processed to extract trip origins and destinations as well as starting and ending times

of activities.

A simple method to extract trips from cell phone records was described in Wang et al.

(2010) where consecutive location measurements are clustered according to their geo-

graphical distance and the resulting clusters are then used as origins and destinations of

trips. While the clustering method accounts for moderate noise in the cell phone track, it

does not include any trajectory filtering to cope with outliers resulting from occasional

large positioning errors. Nor does it filter out ‘‘passing-by’’ points which do not indicate a

trip origin or destination but instead mark positions along the route of a trip. Several

suitable methods to filter cell phone trajectories were compared in Horn et al. (2014),

including Kalman filtering and Recursive filtering. To filter out passing-by points some of

the stay point extraction methods previously applied to GPS traces were also applied to cell

phone datasets with minor adjustments (Zheng et al. 2010; Zheng et al. 2009; Hariharan

and Toyama 2004; Jiang et al. 2013). These methods require at least two position records at

each stay location which accurately define the stay’s beginning and end. However, cell

phone traces often do not fulfill this requirement because of their sparse and irregular

sampling, and stays cannot be easily delimited in time.

Trip extraction is the basis for observing origin–destination traffic flows and estimating

the current travel demand. But to derive information for an activity-based travel demand

model, the trips need to be related to activities and trip attractors. Activities are typically

categorized into classes such as ‘‘home’’, ‘‘work’’, ‘‘education’’, ‘‘recreation’’, ‘‘shopping’’

and so on, which are supposed to reflect basic personal and family needs. Each individual

is assumed to follow a weekly and daily activity schedule and to optimize trips so as to

perform all activities with a required daily or weekly frequency, taking into account

constraints on time and duration of each activity as well as the transportation and activity

location infrastructure, which they share with other individuals. Therefore, another inter-

esting challenge in terms of the research proposed here is that cell phone tracks are

semantically poor: they do not include activity type labels and therefore do not reveal the

purposes of the trips, which are the key determinant for trip scheduling and destination

choice. This shortcoming hampers their use in activity-based modeling and travel behavior

studies.

For GPS data several approaches to automatically infer the type of activity conducted at

each visited location have been proposed in both the transportation and computer science

community. Trip end locations where matched to land use data to derive trip purposes and

good agreement was reported for ‘‘go to home’’ and ‘‘go to work’’ trips (Wolf et al. 2001).

A multistage hierarchical matching procedure was designed to infer trip purposes

(Schönfelder et al. 2003). Other types of statistical approaches include Bayesian frame-

works (Hurtubia et al. 2006; Moiseeva et al. 2010) and decision trees (McGowen and

McNally 2007; Reumers et al. 2013). GPS data, GIS data, and individual and household

demographic data were usually combined (Bohte and Maat 2009; Stopher et al. 2008). The

relationship between consecutive trips was introduced as tour based corrections (Shen and

Stopher 2013). A combination of the approaches proposed in Schönfelder et al. (2003) with
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probabilistic multinomial logit models was proposed in Chen et al. (2010). A framework

for activity recognition using Relational Markov Networks was proposed in Liao et al.

(2005). However, it remains unclear if the methods proposed for activity recognition using

GPS tracks can directly be applied to mobile data, since the spatial and temporal accuracy

is not comparable to that of GPS data. Moreover, the methods require manually labeled

training data for the recognition of activity classes which is often difficult to obtain. On the

other hand, the vast amount of data allows to analyze mobility behavior in whole new ways

and opens the way towards data-driven approaches, where the required information for

activity-based simulation models can be learned from the cellular data itself. To the best of

our knowledge no previous study has investigated activity-behavioral clusters in cellular

data with the goal to endow more semantic structure to the extracted trips, even when

manually labeled training data are not available.

The contribution of this paper is twofold. First, we propose a method for robustly

detecting stays and converting the raw cell phone tracks into a sequence of trips and

activity locations including estimates of arrival times and stay durations. This allows to

study travel patterns at intra-urban scales and forms the basis for the analysis of urban

travel behavior. Different from previous approaches the method accounts for positioning

errors and sparse sampling of cell phone tracks by combining properties of a low-pass filter

with an incremental clustering algorithm. In order to delimit stays in time and to detect

passing-by points the lower and upper bounds of arrival time and stay duration are com-

puted based on minimum feasible travel times between the visited locations. Moreover, the

method considers the geometry of travel trajectory to detect activity locations. Second, we

propose an unsupervised learning method to reveal activity patterns in the cell phone

tracks. Mobile phone data do not include activity labels of a predefined categorization

scheme. We therefore propose a data-driven approach where the conventionally predefined

activity classes are replaced by activity clusters that emerge from the data without the need

of manually labeled training data. An activity cluster is defined as a set of activities that

show similar properties in activity start time, duration, nearby landuse types around the

activity location, frequency of similar activities and the sequence of activity locations.

These features allow activity clusters to emerge naturally without predefined class labels

such as ‘‘home’’ and ‘‘work’’. Each activity cluster defines a daily frequency, attraction

rates by each land use type, and properties regarding the trip chain patterns such as the

number of times an activity location is visited during a day or the number of different

locations where a particular activity is performed. Although the resulting activity clusters

are not equivalent to activity classes in conventional surveys, they can be related by their

characteristic spatial and temporal features. For example, if a cluster represents activities

which start around 9 am, end around 5 pm, and the surrounding landuse are mainly office

buildings, then this cluster can be interpreted as ‘‘work’’ activities. Once these activity

clusters are revealed, the frequencies of daily activity chains as well as characteristic trip

length or travel time distributions can also be easily computed. This way the discovered

activity clusters can be used in activity based simulation models as a substitution for

conventional activity categorization schemes. In this study we model trip attraction as a

function of land use, although the proposed method can easily be extended to use other

attraction factors such as points-of-interest. Similar to Liao et al. (2005) we model the

dependencies between activity type, trip scheduling and land use types with a Relational

Markov Network. Inference is done by sampling from the joint probability expressed by

the RMN. Instead of relying on labeled training data to recognize predetermined activity

types the RMN is trained in an unsupervised way, following an Expectation–Maximization

scheme.
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We demonstrate the proposed approach with two different datasets of the metropolitan

areas of Vienna, Austria and Boston, USA, and we compare the results. For Boston the

analysis was based on anonymized Call Detail Records (CDRs), whereas for Vienna

mobile signaling traffic was used for analysis, including network communications of de-

vices in idle mode. We show that the resulting activity time scheduling and trip sequence

patterns agree well with data obtained with traditional surveys. The proposed method

yields similar activity clusters in both cities. The clusters are stable across different

workdays, while work days and weekends show different patterns, corresponding to the

well-known differences in travel behavior between these types of days.

The remainder of this paper is organized as follows: the proposed method to extract

trips and visited places is introduced in ‘‘Reconstruction of trips and visited places’’

section, and in ‘‘Activity patterns’’ section we explain our approach to revealing activity

patterns in cell phone data. In ‘‘Results’’ section we describe the data sources and pa-

rameter settings and present the empirical results. ‘‘Conclusion’’ section concludes this

paper and identifies directions for future research.

Reconstruction of trips and visited places

The goal of the first processing step is to extract from the raw cell phone records the times

and locations where the cell phone user stayed to perform some activity. The challenges

one faces when reconstructing activity times and locations from cell phone traces are to

filter out noise while preserving the best possible spatial resolution and to interpolate the

sparsely sampled trajectories to estimate arrival times and stay durations. A common

approach to detecting stays in travel trajectories recorded with technologies such as GPS, is

to define a radius corresponding to the positioning error and a minimum dwell-time

(Hariharan and Toyama 2004). A stay is detected if the position estimates stay within the

given radius for at least the predetermined time. A similar method to extract trips from cell

phone records was described in Wang et al. (2010). Trajectories of moving objects can be

filtered and interpolated by assuming constraints on velocity or acceleration. Several such

methods to filter cell phone trajectories were compared in Horn et al. (2014), including

Kalman filtering and Recursive filtering. The best results in terms of reduction of the

positioning error were achieved with the Recursive Look-Ahead Filter. This filter considers

the geographical distance and the time difference between consecutive records to calculate

a speed, which is then compared to a threshold to detect and remove outliers.

The method proposed here combines properties of a low-pass filter with an incremental

clustering algorithm to robustly detect stays and to convert the raw cell phone track into a

sequence of visited places. Figure 1 illustrates the individual steps in our algorithm by an

example of a cell phone track depicted in a space–time diagram. The red dots indicate cell

phone records with timestamps represented on the horizontal axis and location estimates

represented on the vertical axis, where, for illustration only, the coordinates are projected

onto a single dimension. The short black bars extending vertically from the red dots

represent a radius q around the location which is defined according to a desired and

feasible spatial resolution. In this illustration the axes are scaled such that given an as-

sumed maximum travel speed one spatial unit can be traversed in one unit of time. The

light blue area along the cell phone track shows the resulting spatial uncertainty of the

devices’ location over time.
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Positioning errors caused by rapid jumps to distant cells are smoothed out by intro-

ducing constraints on the travel speed. This is illustrated in the upper left corner of Fig. 1.

The basic idea is to estimate an upper bound on the distance a mobile device has traveled

without needing to know the devices’ actual locations. The measure of distance between

two cell phone records used in the clustering algorithm is therefore defined as

dH ¼ minðdg; d̂dÞ, where dg is the geographical distance between the cell coordinates and

d̂d ¼ v̂dt is the upper bound of the distance the mobile device was able to travel, which is

computed with an assumed travel speed v̂ and the time span dt between the two records. In

the Vienna data set it is possible to identify records belonging to the same cell in the

mobile network via their location coordinates. This allows to calculate a measure of

distance between pairs (Ca, Cb) of cells rather than pairs (ra, rb) of individual records by

defining d̂dðra; rbÞ :¼ d̂dðCa;CbÞ ¼ v̂ minr
a
0 2Ca;rb

0 2Cb
dtðra

0 ; rb
0 Þ, which increases the effec-

tiveness of the approach.

The clustering procedure is described in Algorithm 1. It consecutively examines the cell

phone records of a mobile device in their temporal order and incrementally creates and

appends clusters of phone records with small distances dH. The distance between a new

record r and an existing cluster C is computed as average distance to all the records already

in the cluster:

Dðr;CÞ ¼ 1

jCj
X

rC2C

dHðr; rCÞ:

The resulting clusters are shown as grey ellipses in Fig. 1 and the letters A, B and C are

the cluster labels. In this example the sequence of clusters is therefore A-B-C-B. Each

Fig. 1 Illustration of the algorithm to convert cell phone tracks into sequences of visited places
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cluster represents a ‘‘virtual location’’ with coordinates calculated by averaging the loca-

tion estimates of all records in the cluster.

Algorithm 1 Clustering of cell phone records into virtual locations.

The arrival times and stay durations at the virtual locations are estimated based on the

timestamps of the cell phone records and by assuming constraints on the travel speed. An

upper bound of the arrival time at location B is given by t̂arrðBÞ ¼ minrB2BtðrBÞ, the earliest

transaction time at B. Likewise, a lower bound of the departure time from location B is

estimated by �tdepðBÞ ¼ maxrB2BtðrBÞ. Let us now consider a stay at location B, arriving

from location A and continuing to location C. We assume �dtðA;BÞ ¼ dgðA;BÞ=v̂ to be a

lower bound for the travel time between A and B and estim.te thexpected arrival time

~tarrðBÞ ¼
1

2
t̂arrðBÞ þ �tdepðAÞ þ �dtðA;BÞ
� �

Here the parameter 1
2

means we assume the user would arrive randomly between the

lower bound arrival time �tdepðAÞ þ �dtðA;BÞ and the upper bound arrival time t̂arrðBÞ. For

the same reason, the expected time of departure is given by
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~tdepðBÞ ¼
1

2
�tarrðCÞ þ t̂depðBÞ þ �dtðB;CÞ
� �

:

The stay duration is bounded by dminðBÞ ¼ �tdepðBÞ � t̂arrðBÞ and dmaxðBÞ ¼
t̂depðBÞ � �tarrðBÞ, the time span between the earliest possible time of arrival and the latest

possible departure time. The expected duration of stay is estimated by

dexpðBÞ ¼ ~tdepðBÞ � ~tarrðBÞ:

In the Vienna data set the user IDs are rotated daily at midnight which requires to

introduce assumptions about the arrival time at the first location and the stay duration at the

last location of a day. If the first and last virtual locations are identical, then we assume

their arrival and departure times of day to be also identical. This assumption means that on

the following day the phone users leave the location at the same time of day as they did on

the previous day. For tracks where the first and the last virtual location differ, we simply set
~tarr ¼ t̂arr and ~tdep ¼ �tdep

In order to identify activity locations and to filter out passing-by points we examine the

upper and lower bounds of the stay duration as well as the geometry of the travel trajectory.

Let us again consider a sequence A-B-C of virtual locations. Location B is identified as

activity location if at least one of the following two criteria is met:

1. dmin [ s; or

2. dmax [ s and dg A;Bð Þ þ dg B;Cð Þ
� �

=dg A;Cð Þ[ i;

where s and i are thresholds. The rationale behind the second criterion is the assumption

that significant extra distances travelled are motivated by an activity, as illustrated in

Fig. 2. These two criteria are applied to all the triplet sequences of virtual locations.

For illustration, an exemplary cell phorack and the reconstructed sequence of activity

locations is shown in Fig. 3. In the further analysis the arrival times and stay durations at

activity locations are estimated by ~tarr. and dexp, and for easier notation we will simply

write ti and di for the arrival time and stay duration of the i-th stay of a cell phone track.

Fig. 2 Detection of activity
locations by the geometry of the
trajectory: in I) B is not detected
as activity location, while in II)
B is probably an activity location,
assuming that significant extra
distances travelled are motivated
by an activity
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Activity patterns

The reconstructed sequences of activity locations are suitable for analyzing trip time

scheduling and to compute Origin–Destination flows between traffic assignment zones.

The resulting flows will show the observed traffic without explaining any of the behavioral

mechanisms behind the travel decisions. In order to allow modeling the underlying activity

time and and location choice behavior, the reconstructed activity location sequences are

enriched with an activity type and a land use type which serves as attraction factor in our

study. However, due to the low precision of the location estimate, the land use type of the

activity location cannot be unambiguously observed. Instead, we can only compute the

land use shares within a buffer area around the location estimate. Moreover, a given land

use type does not unambiguously determine the type of activity performed at that location.

In our approach we view the activity types as patterns defining activity time scheduling

and the attractiveness of destinations. For example, the activity type ‘‘working’’ is often

constrained by given working hours, e.g. 9 am to 5 pm, and is attracted by working

locations indicated by certain land use types. In addition, there are dependencies between

the sequence of activity locations and the types of activity performed at these places: some

activity types, such as ‘‘working’’ or ‘‘being at home’’, are usually attracted by only one

location while other activity types, such as ‘‘shopping’’ or ‘‘leisure’’ can be attracted by

multiple distinct locations. Some activity types, in particular ‘‘being at home’’, typically

involve returning to a specific location after performing some other activities elsewhere.

The activity types are initially unknown and have to be inferred from the data.

We approach the problem by estimating the joint posterior probability distribution Pr(l,
a|P, t, d, i) of the land use types l ¼ l1; . . .; lnð Þ 2 Ln and the activity labels a ¼
ða1; . . .; anÞ 2 An of a track with n activity locations, given

• vectors P = (p1, …, pn) of land use shares in proximity of the estimated locations,

• arrival times t = (t1, …, tn),

Fig. 3 Reconstruction of trips and visited places. Red dots represent the raw cell locations and the green
line is the filtered trajectory. Yellow stars mark visited places and the numbers indicate the time of day in
hours since midnight
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• stay durations d = (d1, …, dn), and

• the sequence of activity location indexes i = (i1, …, in) which number consecutively

the distinct locations visited during a day.

The activity sequences can be conveniently represented in a relational schema as shown

in Fig. 4, and the joint distribution Pr(L, A|P, t, d, i) can be modeled with a Relational

Markov Network (RMN). Before we elaborate on the specific details of our probability

model we provide a short introduction to RMNs in the following section.

Relational Markov networks

Relational Markov Networks (Taskar et al. 2002; Getoor and Taskar 2007) are an exten-

sion of undirected graphical models known as Markov Random Fields or Markov Net-

works. These models define a joint distribution over a set V of random variables and

comprise a graph G = (V, E). and a set U ¼ /cðVcÞf gc2CðGÞ of clique potentials. The links

E of the graph indicate dependencies between the connected variables. A set Vc ( V

where each Vi;Vj 2 Vc is connected by an edge Vi;Vj

� �
2 E. is called a clique. The clique

potentials /c(Vc) are non-negative functions such that

Pr V¼ vð Þ ¼ 1

Z

Y

c2CðGÞ
/c vcð Þ

is a factorization of the joint density of V over the cliques c 2 C Gð Þ of graph G with the

normalization constant

Z ¼
X

v0

Y

c2CðGÞ
/cðvc

0 Þ:

Fig. 4 Relational schema used for inference of activity clusters. The blue tables represent an activity
sequence consisting of a number of stays at locations with certain land use shares. The attribute ‘‘count’’ in
table ‘‘Location’’ gives the number of times the location is visited during the day. The attributes ‘‘activity’’
and ‘‘landuse’’ of table ‘‘Stay’’ are the label attributes to predict. The gray tables contain frequency counts
f used for calculating the potential functions. Attributes in bold letters are automatically learnt from the cell
phone data
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If the random variables are partitioned into target variables Y and predictor variables X,

the conditional distribution of the target variables given the predictors is given by

PrðyjxÞ ¼ 1

ZðxÞ
Y

c2CðGÞ
/cðxc; ycÞ

where

ZðxÞ ¼
X

y0

Y

c2CðGÞ
/cðxc; y

0
cÞ:

The model calibration task consists of optimizing parameters of the potential functions

/c.

RMNs extend Markov Random Fields by defining them over a relational dataset.

A RMN consists of a schema defining entity types and their attributes and a set of relational

clique templates with their respective potentials. Relational clique templates are a means to

specify cliques and potentials at a template level. Using a relational query language they

specify the cliques to be constructed in an instantiation of the schema. The query consists

of the same three parts as SQL queries:

1. a set of entitiy variables, corresponding to the FROM-clause,

2. a boolean condition corresponding to the WHERE-clause, and

3. a subset of selected attributes corresponding to the SELECT-clause.

Inspired by Liao et al. (2005), we extend the definition of the clique templates to allow a

template to select aggregations of attributes, such as counts or sums. This makes it nec-

essary to also include GROUP-BY-clauses in the queries.

For each data row retrieved by the query a clique is constructed, where the nodes

correspond to the selected attributes. All cliques constructed from the same template share

the same potential functions /c. Together, the generated cliques of all clique templates

form an unrolled Markov network defining the distribution of all the label attributes in the

instantiation conditioned on content attributes and on reference attributes which specify

the relational structure.

Model specification

In our model we discretize arrival times and durations of stay to 15 min intervals. The land

use shares at each activity location are computed according to the area covered by each of

the land use types within a buffer area around the estimated locations. They serve as priors

for the true land use type at the user’s actual position before any context information is

taken into account. The label attributes yc. in our model are the activity and land use types

at each activity location. Based on the schema shown in Fig. 4 we define the following

clique templates:

• C1: the activity type itself, to represent its prior probability:

SELECT S.activity

FROM Stay S

• C2: activity type, land use type and the fraction of the buffer area covered by the land

use type:

SELECT S.activity, S.landuse, L.fraction

Transportation

123



FROM Stay S, Land_Use_Shares L

WHERE L.location = S.location

• C3: type, starting time and duration of the activity:

SELECT S.activity, S.arrival, S.duration

FROM Stay S

• C4: the activity type and an indicator that the activity location is visited more than once

during the day:

SELECT S.activity, L.count [ 1 AS is_returning

FROM Stay S, Location L

WHERE S.location = L.id

• C5: the activity type and an indicator that the activity is performed at only one unique

location:

SELECT S.activity, COUNT(DISTINCT S.location) = 1 AS unique_place

FROM Stay S

GROUP BY S.activity

• C6: an indicator that only one unique actity is performed at each location

SELECT COUNT(DISTINCT S.activity) = 1 AS unique_actvitiy

FROM Stay S

GROUP BY S.location

Note that the structure of the unrolled Markov network can change during inference

because in C5 the label attribute ‘‘activity’’ appears in the GROUP BY-clause. Such label

specific cliques have been introduced in Liao et al. (2005) and require a specific inference

method which will be discussed in ‘‘Inference’’ section.

The potential functions are usually represented as log-linear combinations of real-

valued feature functions of the variables in the clique, and the coefficients are optimized to

fit the training data. In our model however, all variables—except for the land use shares—

are discrete and we simply represent the potential functions with histograms which can be

linked to the target entities ‘‘Activity’’ and ‘‘Landuse’’ as shown in Fig. 4. In detail, we

define the potential functions /1, …, /6 for the corresponding clique temates C1, …, C6

described above as follows: let f(X = x) denote the frequency that a random variable X

assumes the value x., then

/1 að Þ ¼ f S:activity ¼ að Þ
/ Pr S:activity ¼ að Þ

/2ðl; a; plÞ ¼ pl �
f ðS:landuse ¼ l; S:activity ¼ aÞ

f ðS:landuse ¼ lÞf ðS:activity ¼ aÞ

/ pl �
PrðS:landuse ¼ l; S:activity ¼ aÞ

PrðS:landuse ¼ lÞPrðS:activity ¼ aÞ

� PrðS:landuse ¼ ljL:fraction ¼ plÞ
Pr S:activity ¼ ajS:landuse ¼ lð Þ

PrðS:activity ¼ aÞ
¼ PrðS:landuse ¼ ljL:fraction ¼ pl; S:activity ¼ aÞ

/3ða; t; dÞ ¼
f ðS:activity ¼ a; S:arrival ¼ t; S:duration ¼ dÞ

f ðS:activity ¼ aÞ
¼ PrðS:arrival ¼ t; S:duration ¼ djS:activity ¼ aÞ
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/4 a; rð Þ ¼ f S:activity ¼ a; S:returning ¼ rð Þ=f S:activity ¼ að Þ
¼ PrðS:is returning ¼ rjS:activity ¼ aÞ

/5ða; upÞ ¼
f ðS:activity ¼ a; S:unique place ¼ upÞ

f ðS:activity ¼ aÞ
¼ PrðS:unique place ¼ upjS:activity ¼ aÞ

/6ðuaÞ ¼ f S:unique activity ¼ uað Þ
/ PrðS:unique activity ¼ uaÞ

The land use share L.fraction is the only non-discrete variable. It serves as ap-

proximation of the probability PrðS:landuse ¼ ljL:fraction ¼ plÞ � pl that l is the land use

type at the user’s actual position given the share pl of land use type l within the buffer area

around the location.

Given these definitions we can write

Prðl; ajP; t; d; iÞ /
� Y

c2C1ðGÞ
/1ðacÞ

�
�
� Y

c2C2ðGÞ
/2ðlc; ac; pl;cÞ

�

�
� Y

c2C3ðGÞ
/3ðac; tc; dcÞ

�
�
� Y

c2C4ðGÞ
/4ðac; rcÞ

�

�
� Y

c2C5ðGÞ
/5ðac; up;cÞ

�
�
� Y

c2C6ðGÞ
/6ðua;cÞ

�

where G is the graph of the unrolled Markov Network.

Inference

Computing the joint posterior distribution of land use and activity types exactly would require

a summation over all possible combinations of land use and activity types that can be assigned

to the activity locations of a cell phone track. However, since the number of such combi-

nations increases exponentially with the number of activity locations and due to the vast

number of tracks to analyse this is not practicable. A method commonly used in graphical

models to compute the marginal sums in a much more efficient way is Belief Propagation

(Pearl 1982). However, Liao et al. (2005) pointed out that because of the label specific cliques,

standard Belief Propagation cannot be used and proposed to sample from the posterior

distribution using a Markov chain Monte Carlo (MCMC) method. For our model it is difficult

to create a Markov chain that rapidly converges to the target distribution and yields uncor-

related samples without requiring a large number of iterations. Instead we sample from the

posterior distribution using Rejection Sampling which is another well-known technique to

draw samples from an arbitrary distribution p(x). The basic idea is to define a proposal

distribution q(x) for which we know how to efficiently generate samples and define an upper

bound M. on p(x)/q(x). A sample from q(x) is accepted with probability p(x)/(Mq(x)).,

otherwise a new sample is drawn from q(x). until the sample is accepted. A low upper bound

M has the advantage that a smaller number of samples from q(x) will be rejected, which results

in faster sampling from p(x). Rejection Sampling does not require normalization: it suffices to

know functions p0(x) = Zp(x) and q0(x) = Zq(x) with some arbitrary normazation factor Z.

We can therefore simply split the potential products into two parts and define
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q0ðl; ajP; t; d; iÞ ¼
� Y

c2C1ðGÞ
/1ðacÞ

�
�
� Y

c2C2ðGÞ
/2ðlc; ac; pl;cÞ

�

�
� Y

c2C3ðGÞ
/3ðac; tc; dcÞ

�
�
� Y

c2C4ðGÞ
/4ðac; rcÞ

�
;

and as a consequence

p0ðl; ajP; t; d; iÞ=q0ðl; ajP; t; d; iÞ ¼
Q

c2C5ðGÞ
/5ðac; up;cÞ

" #
�

Q
c2C6ðGÞ

/6ðua;cÞ
" #

:

Sampling from q0(l, a|P, t, d, i) is straightforward because the clique potentials

/1, …, /4 do not include dependencies between the individual activity locations. A pair

(li, ai) can be sampled independently for each location and summing over all combinations

of ðli; aiÞ 2 L � A for a single location is feasible. An upper bound M is given by

M ¼
� Q

a2A
max

up2fT ;Fg
/5ða; upÞ

�
�
�

max
ua2fT ;Fg

/6ðuaÞ
�m

;

where m is the number of distinct activity locations.

We use an EM (expectation–maximization) based learning scheme summarized in

Algorithm 2 to discover behavioral patterns in an unsupervised way. However, our ap-

proach allows using prior background knowledge about certain activity clusters to initialize

some or all of the potential functions before fitting the model to the data. In particular,

initializing /2 allows defining an initial probabilistic mapping between land use and ac-

tivity types, and the clique potentials /4 and /5 allow formulating global constraints on the

sequence of activity types and their locations. For example, it can be defined that there is

only one ‘‘home’’ location, and that individuals have to return to that location, after

performing some activity at a different place.

Algorithm 2 EM-based learning of activity clusters

Results

We applied the proposed methods to two different datasets of the metropolitan areas of

Vienna, Austria and Boston, USA, and we compared the results. In the following we

describe the data sources and parameter settings, and report the achieved results.
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Data sources

The data sources used in this study comprise cell phone and land use data of Vienna and

Boston. We use travel surveys of Massachusetts and Austria for comparing the results with

travel data obtained with traditional survey methods.

The Boston mobile dataset comprises CDRs collected from different US mobile carriers

and preprocessed by a wireless data provider company. The data used for this study

included approximately 600,000 users in the Greater Boston area for a period of 2 weeks in

February 2010. Each record contains anonymous user id, longitude, latitude, and time

stamp of the phone activity. The location coordinates of the records are estimated by the

data provider using proprietary algorithms. The location accuracy is claimed to be about

200–300 m, which improves the resolution obtained by simply approximating locations

with cell tower positions (Candia et al. 2008; Song et al. 2010).

The Vienna mobile signaling dataset was provided by an Austrian mobile carrier. We

used data from approximately one million users in Vienna and surrounding areas. For this

study we used cell phone records from a period of two weeks in September 2012. The

records include an anonymous user id, the time the signaling event was generated, esti-

mated latitude and longitude coordinates, and the type of event in the mobile communi-

cations. The coordinates do not directly correspond to the cell tower location but instead

represent an estimate of the mobile subscriber’s position, which is computed by the mobile

operator using undisclosed algorithms. The Vienna cell phone data contains all events in

the mobile communications protocol, e.g. when an outgoing or incoming call is started or

ended, an SMS is sent or received or when data packages are sent via the mobile network.

In addition to these examples the protocol events also includes Mobility Management

signals of all devices even when they are in idle mode. The cells of a mobile network are

organized in groups which are called Location Areas (LA). When a device is moved

between LAs the network updates its position by registering the device with a LA Update

event. The size of LAs determines the ratio of registration and paging costs and is chosen

to minimize the total signaling traffic. Mobile carriers usually do not disclose the orga-

nization of their networks, and in practice the spatial extent of Location Areas varies and is

difficult to quantify. In our experiments the spatial resolution provided by LAs seemed to

be in the order of several kilometers. In addition to LA Update events, each device’s

location is automatically updated when a set time interval since the last signaling event has

elapsed. The update intervals are determined by the operator and are typically in the order

of a few hours. In summary this means that in addition to the information contained in the

CDR data, Mobility Management signals provide location data when an active mobile

device is moved between cells, when a device in standby mode is moved between Location

Areas, or the device has been in standby mode for a set time interval.

The user IDs in the Vienna dataset are shuffled every day while the IDs for the Boston

users remain the same during the two week observation period. The datasets include both

local residents and foreign roaming clients, but we only consider records made when the

users were physically in the Greater Boston area and Vienna Metro area, respectively.

The temporal sparsity of the cell phone traces differ between Vienna and Boston. In

order to quantify sampling sparsity we devide the day into n time intervals of equal length

and define the sampling frequency level Sn as the number of time intervals, where the

location of the device is revealed at least once. The comparison of the sampling frequency

levels in Vienna and Boston is shown in Fig. 5. In particular between midnight and noon a
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significantly higher percentage of devices reveals its location at least once per hour in the

Vienna dataset.

We used publicly available land use data provided by the city governments of Vienna

and Boston, respectively. The Vienna dataset defines 32 distinct categories representing the

factual land use, which was identified manually based on aerial photographs and on-site

inspectations. The dataset was last updated in 2009. The Boston land use dataset defines 33

distinct categories and was created in 2005 with semi-automated methods based on digital

ortho imagery.

The Vienna travel survey data was collected in October and November 1995 from

12,564 households representing the population of all nine federal states of Austria. We

only used data from households located in Vienna to represent approximately the same

population as the cell phone dataset, which results in a sample size of 727 households.

Travel days were randomly selected from all weekdays, excluding public holidays. The

Massachusetts travel survey dataset contains information for 15,033 households, which

were randomly selected following a stratified sampling approach. Data collection activities

for the full-study began in May 2010 and continued through October 2011, with a break

during the summer. Travel days were evenly distributed among each weekday. The survey

population represents all households residing in the thirteen MPO regions in the Com-

monwealth of Massachusetts.

Parameter settings

For our experiments we chose a location clustering radius q = 1000 m because of the

spatial measurement accuracies in the cell phone data, and the maximum straight-line

travel speed was assumed to be v = 40 km/h. The buffer size for land use analysis around

each activity location was set to q/2 = 500 m. Since the minimum stay duration s and the

detour ratio i control the filtering of passing-by points the values of s a i have a direct

effect on the resulting trip chain lengths. How the average trip chain length changes as the

two parameters change is presented in Table 1. The minimum stay duration s is set to

15 min for reconstructing visited places based on our previous studies (Jiang et al. 2013).

Fig. 5 Comparison of the sparsity of the two cell phone data sources. Left distribution of sampling
frequency level S24. Right percentage of devices with at least one record as a function of the hour of a day

Transportation

123



The decline of trip chain length is steepest between i = 1 and i = 1.5, whereas for higher

values of i the effect on the average trip chain length abates rapidly. Based on these results

we set the detour ratio i = 1.5.

For the inference of activity clusters we initialized /2 by assuming a uniform distri-

bution over the land use types such that

f ðS:landuse ¼ l; S:activity ¼ aÞ / f ðS:activity ¼ ajS:landuse ¼ lÞ

and defined conditional probabilities of activity types given the land use category. The land

use types were mapped to 5 different activity types: ‘‘home’’, ‘‘working’’, ‘‘shopping’’,

‘‘leisure’’ and ‘‘other’’ activities. The mapping was often ambiguous, which was accounted

for by assigning one of three different weight levels proportional to 1 (low), 10 (medium)

and 1000 (high) to each of the activity types and converting the weights into probabilities

by normalizing their sum to 1. The activity type ‘‘other’’ was initialized with medium

weights for all land use types. Potential /4 was initialized such that

PrðS:is returning ¼ truejS:activity ¼ ‘‘home’’Þ ¼ 1

and

PrðS:is returning ¼ truejS:activity 6¼ ‘‘home’’Þ ¼ 0:5:

For initialization of potential /5 we assumed that

PrðS:unique place ¼ truejS:activity ¼ ‘‘home’’ [ S:activity ¼ ‘‘working’’Þ ¼ 1

and

PrðS:unique place ¼ truejS:activity 6¼ ‘‘home’’ \ S:activity 6¼ ‘‘working’’Þ ¼ 0:5:

Potential /6 was initialized such that

PrðS:unique activity ¼ trueÞ ¼ 1:

The potentials /1 and /3 were initialized assuming uniform distributions.

Activity locations and trips

We used cell phone traces of a single work day to estimate the distribution of trip se-

quences between activity locations as well as the joint distribution of arrival time and

duration of stay at each visited place. For comparison we also computed these distributions

using travel survey data of Vienna and Boston. The cell phone data include devices with

very few location records per day resulting in an extremely sparse sampling in time.

Including these devices in the analysis leads to an overestimation of individuals with no or

very few trips. We therefore discarded observation days with sampling frequency level

Table 1 The change of average
trip length with parameter s and i

i

1 1.5 2 2.5 3

s 300 s 5.29 4.82 4.72 4.67 4.63

600 s 5.27 4.77 4.65 4.58 4.55

900 s 5.26 4.73 4.61 4.54 4.49
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S24 \ 6, according to previous studies [Schneider et al. 2013]. The comparison of the

resulting trip sequences shown in Fig. 6 shows a good general agreement between the

estimations derived from cell phone data and the distributions found in the survey datasets.

However, the results obtained from cell phone data still tend to overestimate the number of

patterns with only two trips in comparison to the survey data, while complex patterns with

a larger number of trips tend to be underestimated. The reason could be that very short trips

cannot be detected due to the low spatial resolution of cell phone data. The distribution of

arrival times and durations of stay shown in Fig. 7 agree well between the different data

sources, although data sparsity in the Boston CDR and Vienna survey data results in more

noise in the distribution estimates. We calculated the Kolmogorov–Smirnov test statistic on

the marginal distributions of activity start time and duration from the survey data and cell

phone data to quantitatively characterize the difference between sub-figures in the left

column and right column of Fig. 7. In the Boston data, the test statistic of activity start time

distribution is 0.10, the test statistic of activity duration distribution is 0.08. In the Vienna

data, these two values are 0.12 and 0.10 respectively. These results show that while

statistically speaking the distributions extracted from the survey data and cell phone data

are not the same, they still share resemblance. The difference might be explained by the

difficulty to detected short trips in cell phone data, which is confirmed by Fig. 6. Another

reason might be that the detectability of stays with short duration and/or early starting time

is strongly influenced by the variations of phone usage and data sparsity at different times

of a day (see right side of Fig. 5). As a result, trips and activities starting in the morning

ours are underrepresented, especially if their duration is short.

Activity patterns

We used cell phone data of single work days and weekend days for the inference of activity

patterns. Only intra-urban tracks which start and end at a location within the metropolitan

area have been used for analysis. The temporal characteristics of the activity clusters of a

work day and the ten most frequent activity chains are shown in Figs. 8 and 9. The cell

phone data of the two cities reveal similar activity clusters, and also the resulting activity

chain distributions are in high agreement. The activity type ‘‘home’’ peaks at an arrival

time at about 6pm and a duration of approximately 14 h which is the typical pattern of

people coming home after work and staying at home over night. This pattern also includes

short activities in the afternoon corresponding to people coming home and leaving again to

Fig. 6 Comparison of the distributions of activity location sequences in the cell phone and survey datasets
of Vienna and Boston. The numbers above the location sequences represent the number of trips
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carry out another activity in the afternoon or evening. The activity cluster ‘‘work’’ peaks at

a starting time at approximately 9am and a duration of 9 h, corresponding to typical

working hours. The pattern also includes activities with shorter durations and has a sec-

ondary local maximum at around noon and a duration of approximately 1 h. It is inter-

esting to note that while these short activities obviously do not correspond to work

behavior they are attracted by the same land use types. They could be removed from this

pattern by introducing prior knowledge about the stay duration. However, the goal of this

study was not to recognize predefined activity types but to discover activity clusters based

on activity scheduling and attraction by land use. The ‘‘shopping’’ activity spans the time

range between 6 am and 9 pm, extending until midnight in Boston. It peaks in both cities at

about 5 pm and a duration of 1 h. In the Boston dataset this pattern also includes some

longer activities starting at about 8 am, which potentially result from part-time workers in

shopping areas. The peak time of the activity cluster ‘‘leisure’’ ranges from 3 pm to 6 pm.

(a)

(b)

Fig. 7 Comparison of the distribution of reconstructed starting time and duration of activities in the CDR
and survey dataset in Vienna and Boston
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In both data sets this pattern also includes activities with long durations, starting in the

morning hours. In Vienna the ‘‘leisure’’ pattern has a secondary peak at 8am, presumably

corresponding to activities performed before work. The remaining activity type ‘‘other’’

shows start times ranging from 6am to midnight, again peaking between 3pm and 6pm.

This activity type differs the most between the two cities. In Vienna the pattern shows a

morning peak and an afternoon peak and drops at noon, and most of the morning activities

in this category end before noon. Considering the temporal pattern and the activity se-

quence ‘‘home-other-home-other-home’’ one may speculate that this activity cluster in-

cludes taking and fetching of children.

We can divide the population into different groups according to their activity chains,

and then observe how each group contributes to the daily activity flow as is shown in

Fig. 8. In Vienna the daily flow has two clear peaks. the ‘‘HWH’’ type takes up over 70 %

of the morning peak flow while during the evening peak this percentage drops to less than

50 %. The second and third most frequent chain, ‘‘HLH’’ and ‘‘HSH’’ are most active

during evening.

To illustrate the revealed dependencies between land use type and activity we plotted

the posterior distribution over the land use types for given activity clusters in Fig. 10. The

values in each column sum up to 1 and show the distribution of trip destinations over types

of land use. For example, in the Vienna dataset the activity cluster ‘‘Home’’ is mostly

attracted by residential land use types, while the ‘‘Work’’ pattern is predominantly attracted

by the land use types ‘‘office and administration’’, ‘‘industry, manufacturing and whole-

sale’’ and ‘‘education’’. In an agent-based simulation model these correlations can be used

to define the attractiveness of land use types for each activity cluster. Together with

activity-specific trip lengths or travel times these dependencies are the determinants for

destination choice, and the temporal distributions in Fig. 9 determine activity time

scheduling. Some examples of simulations using such data can be found in (Janssens et al.

2007; Bellemans et al. 2010; Yang et al. 2014). The results in Fig. 10 also show ambi-

guities of the activity clusters with respect to the land use of the activity location. This

means that the same activity cluster can be found across different land use types, and

likewise, many land use types are composed of mixed activity clusters. Examining

horizontal rows shows that a significant amount of ‘‘work’’, ‘‘shop’’, ‘‘leisure’’, and

‘‘other’’ trips are conducted on land use type ‘‘dense residential(mixed) area’’ since this

Fig. 8 The traffic flow in an example day in Vienna for the top 10 frequent activity chains
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land use type takes up a large percentage in the entire land area. This suggests that a more

detailed classification in this land use type could help better distinguish between different

activities. In the Boston dataset these ambiguities seem to be stronger than in the Vienna

dataset and the correlations between land use and activity clusters are weaker, which might

result from partially inaccurate land use labelling. Further discussion of the interaction

(a)

(b)

Fig. 9 Distributions of arrival times and durations for different activity classes. The distributions are learnt
from the data based on an initial probabilistic mapping between land use types and activity classes
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between land use and travel behavior is an interesting future research topic and is covered

in more detail in the conclusion section.

To test the stability of the cluster model, we compared the activity clusters discovered in

cell phone data of different days. Similarity was measured by computing the correlation

coefficients between the frequency counts f(S.activity = a, S.arrival = t, S.duration = d),

which are shown in Fig. 11. The activity clusters are very similar across different work

days and as expected, weekends show different activity clusters then workdays. Also,

Friday is more different from other work days. One weekday in the Boston dataset deviated

from the other days: this day was Wednesday, Feb. 10th 2010, where a lot of people seem

to return to their homes at noon. Tracing back to previous news reports and we found that a

major blizzard took place between Feb. 9th and 11th 2010. That blizzard influenced the

entire Northeastern U.S. It is interesting to see that the proposed method is able to detect

the influence of major incidents on the population’s travel behavior.

Conclusion

In this paper we proposed a method to reveal activity behavioral patterns in cell phone

traces that copes with the sparse sampling and low spatial precision of the location esti-

mates. The presented approach consists of a trip extraction method that robustly detects

stays and converts the raw cell phone track into a sequence of trips and visited places, and a

method to reveal activity patterns by combining the reconstructed activity locations with

land use data and modeling the dependencies between activity type, trip scheduling, and

land use types with a Relational Markov Network (RMN).

Fig. 10 Posteriors PrðS:landuse ¼ ljS:activity ¼ aÞ of land use types given the activity type learnt from cell
phone traces
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We showed that the resulting trip chains and activity scheduling patterns agree well

with data obtained with traditional surveys. The method yields robust results across dif-

ferent days, while work days and weekends show different patterns corresponding to the

well-known differences in travel behavior between these types of days. The comparison

between Vienna and Boston showed similar patterns in both cities. The inferred activity

classes were not shown to directly correspond to activity types used in traditional surveys,

but they determine activity scheduling and destination attractiveness in a similar way, so

that by adding the inferred activity classes to the travel patterns our method opens up cell

phone data as a new data source for activity-based modeling and travel behavior studies.

In this study we combined surrounding land use types with extracted activity start time

and duration in the clustering procedure of activities. But we realize there is a deeper

interaction between land use and travel behavior (Litman 2004; Litman 2005; McNally and

Ryan 1992; McNally and Kulkarni 1997). Various land use factors, such as density,

regional accessibility, land use mix, and roadway connectivity, together with travel be-

haviors such as mode choice, trip length, and activity location choice play a role on travel

behavior. Existing studies give mixed results on the strength of connection between land

use and travel behavior because they are based on different hypothesis and modeling

approaches. The modeling approaches include descriptive studies, multivariate statistical

studies, simulation models, choice models, among others (Crane 2000; Boarnet and Crane

2001; Handy 1996; Maat et al. 2005). Many of these modeling approaches require indi-

vidual level travel behavior characteristics such as trip length, activity chain, activity

location choice, etc. Therefore the output result of our proposed model is an ideal input for

these studies. The proposed method turns raw mobile phone records into long term ob-

servations of individual activity patterns. The labeled trips resulting from the proposed

methodology open the way to further interesting research questions that examine travel

behavior and land use.

Future improvements of the presented method can add strategies to counter biases such

as the underrepresentation of activities subject to time, duration and activity type. Allowing

a flexible number of activity clusters and including points-of-interest databases in addition

to land use data can further improve the results. We also plan to analyze the relationship
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Fig. 11 Correlation between PrðS:arrival ¼ t;S:duration ¼ djS:activity ¼ aÞ calculated for 14 consecutive
days
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between the automatically discovered activity clusters to the conventional activity types

used in traditional surveys. In order to evaluate the utility of the presented methods for

transportation forecasting, we plan to use the discovered activity patterns in a simulation

model and compare the resulting traffic flows to actual traffic measurements.
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