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ABSTRACT1
Falling oil revenues and rapid urbanization are putting a strain on the budgets of oil producing2
nations. A direct and easy way to appropriate funds is to reduce fuel consumption by reducing3
congestion and car trips. While fuel consumption models have started to incorporate data sources4
from ubiquitous sensing devices, the opportunity is to develop comprehensive models at urban5
scale leveraging sources such as Global Positioning System (GPS) data and Call Detail Records.6
We combine these Big Data sets in a novel method to model fuel consumption within a city and7
estimate how it may change due to different scenarios. To do so we calibrate a fuel consumption8
model for use on any car fleet fuel economy distribution and apply it in Riyadh, Saudi Arabia.9
The model proposed, based on speed profiles, is then used to test the effects on fuel consumption10
of reducing flow, both randomly and by targeting the most fuel inefficient trips in the city. The11
estimates considerably improve baseline methods based on average speeds, showing the benefits12
of the information added by the GPS data fusion. The presented method can be adapted to also13
measure emissions. The results constitute a clear application of data analysis tools to help decision14
makers compare policies aimed at achieving economic and environmental goals.15
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INTRODUCTION1
In many oil producing countries with substantial fuel subsidies, a fall in oil revenue and increasing2
domestic consumption has put increasing strain on government budgets (1). Countries in the Gulf3
Cooperation Council, including Saudi Arabia and the UAE, have launched programs to reduce4
government expenditure on energy subsidies (2). In Saudi Arabia, energy subsidies are estimated5
at 9.3% of GDP, with 1.4% for petroleum subsidies alone. Decreasing energy subsides can be6
achieved in a number of ways but congestion relief offers a simple and direct path to lower fuel7
consumption. As the burden of fuel subsidies continues to grow, it has become increasingly im-8
portant for these countries to find simple and accurate methods to quantify the effects of policies9
on congestion relief and fuel consumption in cities. Recent technological advances in collecting10
and analyzing Big Data offer a potential method to measure how policy changes impact fuel con-11
sumption. With the advent of ubiquitous sensing devices, Transport Network Companies (TNCs),12
and new methods of estimating flow, we propose a method to answer such questions that can be13
further applied anywhere in the world and extended to model emissions and air pollution.14

Call Detail Records (CDRs) produced passively by mobile phones represent a cutting edge15
method to estimate travel demand. Most traffic studies currently use local and national household16
travel surveys to estimate the rate of trip production between different zones of the city but such17
surveys are expensive to conduct and only cover a small sample of the population. Leveraging on18
previous work (3, 4, 5), CDRs can provide simple and effective methods for estimating Origin-19
Destination (OD) flows using location data collected from millions of individual mobile phone20
users.21

In addition to CDRs, the Global Positioning System (GPS) function on smartphones offers22
a precise method to spatially and temporally track traffic conditions across a city. Since smartphone23
market penetration is almost complete in the TNC industry(6), GPS tracking has been successfully24
used to estimate air pollution (7) as well as instantaneous fuel consumption (8, 9, 10, 11, 12).25
Most studies that use GPS data to estimate fuel consumption have focused on individual user fuel26
consumption for route optimization(10, 12). In this paper, we employ the method described in27
(4) to model trip demand, then fuse this result with location data from GPS data to calculate fuel28
consumption during peak and off-peak hours in Riyadh with higher accuracy than models that use29
average speed.30

Fuel consumption and emissions models have been extensively developed in the literature31
(13, 14, 15, 16, 17, 18, 19, 20). They are generally split between models that estimate the fuel32
consumption by balancing the engine’s carbon intake and combustion and those that attempt to33
use mode-specific variables, such as speed and acceleration, to fit a model that estimates fuel con-34
sumption (19). Of those models that use instantaneous mode-specific variables, some estimate air35
pollution and emissions(7, 14, 15, 17), fuel consumption (10, 11, 12, 18) or both (8, 9, 16). Most36
previous attempts at estimating instantaneous fuel consumption and emissions do not incorporate37
GPS data but rely instead on On-Board Diagnostics devices (OBD-II) that measure fuel consump-38
tion and emissions (8, 9, 10, 16). The models that have attempted to use GPS data to estimate fuel39
consumption do so without consideration to the different fuel efficiencies found in today’s cars40
(11, 12, 18) and do not account for the total demand.41

With the aim of filling this gap, the contributions of this work are threefold: First, we cali-42
brated a previously developed fuel consumption model (StreetSmart) and applied it to varying fuel43
efficiencies in car fleets; Second, the model is used along with travel demand estimated by CDR-44
based traffic assignment to approximate fuel consumption rates in Riyadh, Saudi Arabia; Third,45
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we examined the effects of the proposed method comparing the reduction on fuel consumption1
in two scenarios: random trip reduction and reduction targeted at the least fuel efficient trips. We2
find that our proposed models calibrated with speed and acceleration profiles considerably differ in3
their fuel consumption estimates at the city scale when verified against estimations from a baseline4
model with average speeds.5

The paper is structured as follows. In section 2.1 we discuss the methodology used to6
calibrate the fuel consumption model (StreetSmart). In section 2.2, we describe the cleaning of7
the GPS data and the extraction of speed and acceleration profiles on each street in specific time8
windows in a typical week to represent different snapshots of traffic throughout the road network9
of Riyadh. In section 2.3 we describe the application of the model combined with flow data to10
visualize the fuel consumption across different time periods. Moreover, we present the results of11
the targeted and random flow reductions and their effects on fuel consumption via the presented12
model vs. baseline estimates. Finally, in Section 3 we discuss the results and the conclusions13
derived from the study.14

2 METHODOLOGY15
2.1 StreetSmart Model Calibration16
In this work, we use the StreetSmart model to estimate the fuel consumption of personal vehicles17
(21). It was comprehensively developed by measuring the energy required by vehicles for various18
movement conditions. It estimates the fuel consumption with data from GPS coordinates from19
smartphones and ground truth fuel consumption data from OBD-II devices . Using the details of20
a trip’s speed profile, the model successfully predicts fuel consumption with over 96% accuracy21
(21), a substantial improvement over models that only consider constant average speeds. Average22
speed estimations do not account for the stop and go effect of traffic, which is a significant factor23
leading to an increase in fuel consumption. In other words, average speed simplification results in24
lower, or more optimistic, fuel consumption estimates since drag is lower at low speeds.25

After testing different variables for their use in predicting fuel consumption, the model26
employs a combination of four variables to predict fuel consumption as shown in equation 1.27
The first term accounts for energy wasted while the car is idling with the engine turned on; the28
second accounts for energy used with time spent moving; The third accounts for energy used due29
to acceleration and deceleration over a distance; the fourth accounts for energy used with distance30
traveled. Each term is multiplied by a specific energy index, ki such that:31

FC = k1Tidle + k2Tmove + k3

∫
|a|dx+ k4L, (1)

where FC is fuel consumption in US gal and k1,k2,k3, and k4 are the Energy indices calibrated32
with data. Tidle and Tmove are time spent idling and moving respectively in sec, a is acceleration in33
m/s2, and L is the distance driven in km.34

Following (21), we further tested the StreetSmart model’s indices by regression of the idle35
fuel consumption and moving fuel consumption separately using data from an experiment con-36
ducted at the University of Illinois by Wu et al. (22). To verify the benefit of using the model, its37
results were compared to a baseline estimation using average speed and the United States’ Depart-38
ment of Energy’s (DOE) graph of fuel economy variations by speed as shown in Figure 1. The39
StreetSmart model achieved inaccuracies of about 4% while the baseline method had inaccuracies40
of up to 29%. The details of the comparison are summarized in Table 1.41
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FIGURE 1 A fitted model of fuel economy vs. speed from DOE as a baseline comparison to
the StreetSmart model. (23)

To apply the StreetSmart model on a known distribution of car fuel economies, the first step1
is to relate the energy indices specific to each car type in order to predict fuel consumption. We2
conducted a sensitivity analysis to assess the influence of each term on the estimates and found that3
the fuel consumption estimates were most affected by the second and fourth terms. This indicates4
that the variables with the highest influence over fuel consumption were the time moving and the5
distance traveled. This suggests that the first and third terms, representing the influence of speed6
profiles, have little impact on the overall estimate of fuel consumption. However, results shown in7
section 2.3 show that this is not the case. To calibrate the model and get energy index values for8
use on the scale of a city, we used the fuel economies reported by the Environmental Protection9
Agency’s (EPA) 2016 report to arrive at ranges of each index for different cars, categorized by their10
fuel economy (24). The EPA uses a standard speed profile to test for a car’s urban fuel economy, the11
FTP-75, shown in Figure 2a. We used the mode specific variables from the FTP-75 speed profile12
with the reported fuel economy to calibrate the energy index ranges for each bin shown in Table 2.13
Using these ranges and the distribution of fuel economies found in the EPA report, we successfully14
recreated the distribution of fuel economies (shown in in Figure 2b) with the SmartStreet model .
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FIGURE 2 (a) FTP-75 EPA’s standard speed profile used for calculating the reported inner-
city fuel economies of cars. (b) The distribution of fuel economies recreated by the StreetS-
mart model shows the same distribution as the that of the reported fuel economies. (c) The
distribution of fuel economies based on Riyadh’s fleet of cars compared to those of Poland
and the UK shows that the distributions are similar but shifted from one another. The car
fleet of Riyadh is less fuel efficient than that of Poland which is less than that of the UK
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TABLE 1 A Comparison of Fuel Consumption Estimates from the StreetSmart Model and
the DOE Fuel Economy Fit on Data From the Experiment Conducted by Wu et al. (22))

Car No. (Illinois Test A) : 6 7 8 9
OBD-II FC [US Gal] 0.0246 0.0220 0.0356 0.0211
DOE Fitted Curve [US Gal] 0.0247 0.0253 0.0252 0.0245
StreetSmart FC [US Gal] 0.0243 0.0230 0.0371 0.0210
% diff. StreetSmart -1.2% 4.2% 4.2% -0.6%
% diff. DOE Fitted Curve 0.4% 14.7% -29.3% 16.0%

TABLE 2 Results of the Calibration of the StreetSmart Model. Ranges of ki Parameters for
Each Bin of Fuel Economy

Bin FE Range [MPG] FE Range [km/l] k1 k2 k3 k4
1 [10 - 12) [4.25 - 5.10) 37.0 30 - 34 1 - 4.8 2000 - 2300
2 [12 - 14) [5.10 - 5.95) 34.6 23 - 32 1 - 4.8 1300 - 2300
3 [14 - 16) [5.95 - 6.80) 31.9 21 - 26 1 - 4.8 1100 - 1900
4 [16 - 18) [6.80 - 7.65) 29.5 17.5 - 24 1 - 4.8 1000 - 1600
5 [18 - 20) [7.65 - 8.50) 26.9 15 - 22 1 - 4.8 1000 - 1250
6 [20 - 22) [8.50 - 9.35) 24.3 13 - 18 1 - 4.8 980 - 1250
7 [22 - 24) [9.35 - 10.20) 21.7 12 - 16 1 - 4.8 850 - 1200
8 [24 - 26) [10.20 - 11.05) 19.0 12 - 15 1 - 4.8 750 - 1050
9 [26 - 28) [11.05 - 11.90) 16.3 11 - 14 1 - 4.8 780 - 900
10 [28 - 30) [11.90 - 12.75) 14.0 10.5 - 12.5 1 - 4.8 710 - 900
11 >30 >12.75 5.0 5 - 14.5 1 - 4.8 500 - 1000
12 (Bus) 6.3 2.68 30.0 - 37.0 30 - 75 1 - 4.8 2000 - 8000
13 (Truck) 17.27 7.34 29.0 - 30.0 12 - 27 1 - 4.8 500 - 2200
14 (Motorcycle) 43.5 18.49 5.0 6 - 10 1 - 4.8 500 - 600

The energy index ranges for each bin are then used to recreate the fuel economy distri-1
bution of the fleet of cars in Riyadh using the car makes and models from motor vehicle crash2
statistics data provided by the city of Riyadh. Data on car crashes from January 2013 until October3
2015 in the city of Riyadh were used as a proxy for Riyadh’s fleet composition. The fuel economy4
distribution of Riyadh’s fleet was compared to two cities in Europe chosen on the basis of similar5
population size or Gross Domestic Product and the results show similar trends exist in the relative6
variety of fuel efficiencies in all cities. The data on fleet compositions of the two European coun-7
tries were acquired from an in-depth study of the fleets of all European countries (25). As can be8
seen in Figure 2c, the comparison in the distributions of fleet fuel economies between the three9
areas indicates that the car fleet of Riyadh is less energy efficient those of Poland and the UK. The10
usage of country level fleet composition for Poland and the UK compared to city level for Riyadh11
represents a limitation in this comparison but the results adequately verify the success of fusing12
the fleet composition from the crash statistics data with the SmartStreet model. With the relative13
fuel economies of Riyadh’s fleet and the calibrated StreetSmart model, we discuss next how we14
integrate speed profiles from GPS data to estimate fuel consumption at the urban scale.15
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2.2 From GPS Data to Speed Profiles1
We extracted speed profiles from a large dataset of GPS tracking points of taxi trips from a local2
Saudi Arabian TNC company over the period of May 2015 until December 2016. The dataset3
included trip duration and length, pick up and drop off times, and a chronologically ordered list of4
GPS coordinates. To ensure that the traffic is representative of year-round conditions we compared5
the rate of trip production during Ramadan of 2015 and 2016 with non-Ramadan trip production6
rates. We found that Ramadan trip production rates are much fewer so their impact on the average7
traffic speed profile for a specific street is negligible. For this reason, we kept the Ramadan trips in8
the analysis to benefit from the higher amount of data on the street level. A graph of the average9
number of trips per hour during Ramadan, non-Ramadan, and combined can be seen in Figure 3.10

t

FIGURE 3 Average hourly taxi trip production rates in Riyadh in Ramadan, non-Ramadan,
and combined.

Before use, the data was filtered to remove trips that were outside Riyadh and the GPS11
routes were cleaned and modified to correct for measurement errors. We detected errors in the12
GPS points and fixed them using the following algorithm. Since the GPS coordinates were given13
as an ordered list without a timestamp, and are known to be collected at regular intervals, the14
interval or frequency of recording was calculated as the total duration of the trip divided by the15
number of points recorded. Errors were detected as spikes in speed that are greater than 160 km/h16
since the taxi’s fleet and the road conditions typically preclude speeds above that. Two different17
causes of error were detected and repaired using different methods. In the first case, errors were18
caused by missing points due to a lack of network signal. This would result in a spike in speed for19
one segment but not the following segment, which would revert to realistic speeds and GPS points.20
The number of skipped points was estimated from the average of the speed before and after the21
single speed spike. Second, for errors caused by a GPS point that is in an obviously anomalous22
location, the speed spike occurs in two simultaneous segments, one to jump to the wrong location23
and another to return to the realistic location. This error was fixed by removing the erroneous24
point. This simple method was able to adequately correct the GPS coordinates.25

We also cleaned the taxi data using an algorithm developed by Jiang et al. to detect long26
periods of immobility, or stays, that can be interpreted as parking in our dataset. This may occur if27
a client asks to keep the meter running while they finish an errand. The reason for the splitting is28
not to affect the recorded speeds on the streets where the taxi is effectively parked. We chose the29
minimum thresholds for idling time and distance by inspecting the distribution of stay durations30
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throughout the week. A minimum value of 2,200s (around 37 min) was chosen to allow for the1
majority of traffic stays during peak and off-peak hours. A maximum distance for a trip to be split2
around a stay was 10 m. This number reflects the relatively high precision of the GPS points. In3
other words, a trip that remained within a 10 m radius for longer than 37 min was split into two4
trips, removing the 37 min or longer section of immobility.5

After filtering and cleaning GPS routes for the city of Riyadh, we obtained nearly 43,0006
trips that were analyzed by a custom mapping algorithm to assign full GPS routes to edges in7
the road network. For more accurate mapping, longer edges in the road network were split into8
shorter segments to ensure that nodes are no more than 10 m apart. The mapping algorithm was9
implemented using the following procedure:10

11

1. For each point i in the GPS trajectory, we identify the set of nodes (Ni) in the road12
network that fall within a 25 m radius.13

2. We constructed a path network G consisting of the nodes Ni.14

3. For each point i in the GPS trajectory, we used the Dijkstra algorithm to find the fastest15
route from every node in Ni to every node in Ni+1. For each route, we added a represen-16
tative edge to G with the route’s total travel time as the weight.17

4. For each edge, we added a time penalty based on the distance of the target node to the18
original GPS coordinate at a rate of 1 second per additional meter past the closest node.19

5. Any gaps in G were identified to determine contiguous sequences of paths that represent20
segments of potential routes.21

6. For each contiguous sequence, we identified the fastest path in G as the most likely route22
taken by the vehicle.23

For verification purposes, trip distances, free flow and observed travel times as well as fuel24
economy estimates are plotted in Figure 4. Fuel economy is defined as the distance traveled per25
liter of fuel consumption. In Figure 4a, we verified that the reported distances were generally26
consistent with the sum of the distances calculated between every two consecutive GPS points in27
each trip using the Haversine formula. In Figure 4b the free flow times, computed as the sum of the28
free flow times of every matched segment in each trip is compared to the observed flow times as29
reported in the taxi data. The comparison only considered the observed total times from trips that30
were successfully matched with streets. The figure shows consistent results with observed travel31
times during the morning peak hour being slower than the free flow times of each trip. As a baseline32
comparison to using speed profiles from taxi data, we calculate fuel economy with the StreetSmart33
model assuming a constant speed and one fuel economy bin based on the Hyundai Elantra, the most34
common car according to the accident data ( Figure 4c). We plotted the results if speed profiles are35
used with only one fuel economy bin and if all bins are used in proportion to the fleet of Riyadh36
from the crash statistics data. It shows a very close distribution to the simpler assumption that all37
cars are the most common car fuel economy, and in high contrast to the result given by not using38
the speed profiles. Incorporating speed profiles in the model results in higher fuel consumption, or39
lower fuel economy, which is more accurate and important for policy projections. This constitutes40
the core benefits of integrating the more accurate fuel consumption model.41
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FIGURE 4 Data Verification figures using trips in the morning peak time period of weekdays
from 8 - 9 AM. (a) Histogram of Reported and calculated Trip Distances. (b) Histogram
of free flow travel time and Observed travel time in matched trips. (c) Histogram of Fuel
economies using constant speed, speed profiles, and 1 bin and all bins.

2.3 Fuel Consumption Results1
With the StreetSmart model calibrated and speed profiles extracted from GPS data, we can now2
estimate fuel consumption for three typical time periods representing distinct traffic conditions.3
The time periods are morning peak (8 - 9 AM), midday off-peak (12 - 13 PM), and evening peak4
(17 - 18 PM) during weekdays. For every edge in the road network, we calculated fuel consumption5
per car based on each speed profile matched to that edge. The estimates were computed for each6
bin of fuel economy in the Streetsmart model. For each edge, the average fuel consumption rate7
per car was multiplied by the flow of cars per hour as computed by a version of the Iterative Traffic8
Assignment (ITA) algorithm to get a fuel consumption rate per hour, with car volumes included.9

The flow was calculated from OD matrices previously derived from CDR data in Riyadh10
by Toole et al. (4), in cars/hour over morning, midday, and evening time periods. Following Toole11
et al. (4), a factor of 1.5 was applied to the average morning flow of the morning and evening time12
periods to determine peak hour demand. The congested time estimates correlated successfully with13
the ones acquired from Google Maps (see comparisons in (5)).14

Fuel Consumption Rate15
As presented in Chodrow et al. (5), the ITA algorithm assigns trips in a series of four increments.16
It incrementally assigns 40%, 30%, 20% and 10% of the OD flows to the fastest routes in the road17
network. After each iteration, the congested time of each edge is updated so that the effects of18
congestion can be factored into the assignment. The resulting flow volume is multiplied by the19
fuel consumption rate per car to arrive at hourly fuel consumption as shown in Equation 2 which20
is normalized by edge length.21

FC =
f lowe[

car
hr ]× f cre[

liter
car ]

Le[m]
, (2)

where FC is the rate of fuel consumption in [ liter
m.hr ], f lowe is the flow on edge e as estimated by the22

assignment algorithm, f cre is the rate of fuel consumption per car on edge e as estimated by our23
application of the StreetSmart model, and Le is the length of the edge in meters.24

The results of the model are shown in the choropleth maps in Figure 5 below. For the fuel25
consumption rate per street, we used a weighted average of fuel consumption by bin proportional26
to Riyadh’s fleet. The maps show that the most fuel consuming streets are the grid highways of27
the city. As expected, the flow of cars and total fuel consumption per meter of road is found to be28
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higher in the peak periods of the morning and evening than the midday off-peak. The evening peak1
shows slightly higher fuel consumption than the morning peak, indicated by more red streets. We2
used quantile breaks on the fuel consumption rate values of all time periods combined to display3
the streets that are the most fuel consuming. A high fuel consumption rate per meter of road is due4
to high fuel consumption rate per car and high car flow values. We observe that King Fahd Road5
is by far the most fuel consuming road in the city, especially in the area bounded by the old city6
center from the south and the Northern Ring road from the north.

FIGURE 5 Choropleth Maps of fuel consumption rates [Liter/meter.hour] by the StreetS-
mart model on streets matched with GPS data for typical time periods morning peak (8 - 9
AM) weekdays, midday off-peak (12 - 13 PM) weekdays, evening peak (17 - 18 PM) week-
days.

7
The taxi GPS data necessary to calculate a fuel consumption on each street did not cover8

the entire network of streets. Similarly, the traffic assignment of ODs did not use all of the city’s9
streets and the majority of roads used were also matched with at least one speed profile from the10
taxi GPS data. Specifically, 56%, 57%, and 63% of streets were covered for the morning,midday,11
and evening time periods respectively.12

Relevance of integrating GPS data13
For the morning time period, a simulation of all OD trips in the city is made and the path, defined14
as the sequence of edges taken from origin node to destination node, is defined using the shortest15
path algorithm as in the ITA algorithm. In the simulation, OD pairs with flow values that are less16
than one car/hour are omitted to ensure each flow represents a discrete trip. We assign a car fuel17
economy bin at random to each trip in proportion to the probability of that bin in Riyadh’s fleet.18
Using the StreetSmart model, we estimate fuel consumption and trip time as the sum of the their19
values on each edge in the trip’s path. For verification, total trip times derived via the demand20
model which were previously verified against Google Maps estimates (5) are plotted against the21
trip times derived via the GPS data. As shown in Figure 6a, travel times via GPS data are generally22
higher than their counterparts from the simulation but their correlation is satisfactory.23

Two sample speed profiles used by the StreetSmart model are plotted with the constant24
speed assumed by the baseline comparison. As expected, not all trip times are equivalent to their25
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speed profile counterparts and the constant speed is generally lower than the peaks of the speed pro-1
file. Extracted speed profiles do not always end at 0 km/h speed since the originally matched trips2
on these edges may not be stopping at that edge. This overestimation of speed at the end of a trip3
represents a negligible increase in fuel consumption estimation. The lower constant speed assump-4
tion used in the baseline comparison results in fuel consumption estimates that are consistently5
lower than those from using speed profiles from GPS data. Thus, the effect of the accelerations6
and deceleration on the StreetSmart model are observed to be significant and not negligible which7
shows the benefit of using GPS data in the fuel consumption model. The distributions of fuel con-8
sumption per trip using speed profiles and constant speed are shown in Figure 6c along with the9
fuel economies. It is clear that the acceleration and detailed speed profiles are not negligible in the10
estimates. These results bring to the urban scale the results of Figure 4c.11

The effect of reducing flows on overall fuel consumption is shown in figure 6d. Trips were12
removed from the simulation described above via three rankings and the resulting fuel saving po-13
tential is shown, normalized by the total fuel consumption of each method. Random trip reduction14
results in a perfectly linear fuel saving effect. In contrast, we see the best case scenario, where trip15
reduction of the worst fuel consuming trips per meter are ranked. As expected, targeted reduction16
results in higher fuel savings with the same number of reduced trips. More importantly, when17
comparing the speed profile estimates (method proposed here) vs. constant speed fuel estimates18
(baseline) differences emerge. Constant speed targeting shows a higher return on fuel savings be-19
cause the variance of the distribution of fuel consumption estimates using constant speed is less20
than that of the speed profiles. In other words, the fuel economy distribution of the constant speed21
estimates shows higher proportions at the high end of the distribution than the high end of the22
speed profile distribution shown in Figure 6c. This would explain the higher fuel savings observed23
when the trips are ranked by constant speed fuel consumption per meter. However, since the con-24
stant speed estimates are not as accurate as those derived using speed profiles, the fuel savings are25
spurious.26

The real gain in using speed profiles to estimate fuel consumption over the baseline constant27
speed assumption is in the city-wide total fuel consumption per hour estimate. The constant speed28
assumption underestimates the city-wide fuel consumption for the morning hour by 60% compared29
to using the speed profiles.30

The relative gain in fuel saving potential of targeting the highest fuel consuming trips over31
random trip reduction is approximately 10% if 14.5% of trips are reduced. In other words, if 14.5%32
of trips are reduced, the policy targeting the highest fuel consuming trips per m would save 10%33
more fuel for every morning peak hour. When 14.5% of targeted trips are reduced, 25% of fuel34
consumption for the morning peak hour is saved. These results are encouraging but the ratio is not35
as high as the effect of similar targeting policies on household energy consumption (27), where the36
increase over random is 51%. These differences can be explained by the more normal distribution37
of fuel economy of the trips which renders the effects of targeting to be much less dramatic than38
the more broad distribution found in house energy consumption.39

DISCUSSION AND CONCLUSION40
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FIGURE 6 Fuel consumption estimates at urban scale. (a) Comparison of the travel time of
the routes in the constant speed model via travel demand vs. the input used in our method
using GPS data (b) Sample speed profiles in two routes used to estimate fuel consumption
overlaid with the constant speed used for comparison (c) Estimates of fuel consumption and
fuel economy in the morning peak via our method (speed profiles) and the base line method
(constant speed) (d) Random and targeted fuel saving ratio vs. number of reduced trips.

We present a data fusion method to estimate fuel consumption at the urban scale. We1
leverage a travel demand model that uses mobile phone data and integrate speed profiles from2
taxi GPS data that covered most of the street network of Riyadh. To identify fleet distribution,3
we used car crash statistics data as a proxy with the assumption that the distribution of car makes4
and models is representative of Riyadh’s car fleet distribution. The method developed here and5
the calibration of the StreetSmart model for fuel consumption can easily be extended to any other6
region. It is significantly faster than if speed profiles were simulated by software which would7
require a large amount of time and computing resources (28).8

The fuel consumption model was verified to produce better results than than the DOE fuel9
economy by speed graph and tested on real OBD-II fuel consumption measurements before being10
calibrated to be used on any car fuel economy. The resulting calibration results are presented in11
Table 2. We used the calibrated StreetSmart model with speed profiles from GPS data to pro-12
duce estimates which were compared with the baseline without GPS data and assuming constant13
speed. The results show that the differences of using speed profiles is significant, justifying the14
introduction of the more elaborate model in policy estimates.15

As a proof of concept, we applied the calibrated StreetSmart model to test a policy of flow16
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reduction, both random and targeted to the least fuel efficient trips and simulated the effect on1
the rate of fuel consumption in the city. We showed that the difference in fuel consumption rate2
reduction between targeted and random schemes was around 10% more fuel savings for 14.5% trip3
reduction. Interestingly, 25% of city-wide fuel savings potential can be achieved by removing only4
14.5% of trips ranked by the worst fuel consuming trips per meter .5

While this project has demonstrated the potential of data-driven models to estimate the ef-6
fects of policies on fuel consumption, it can benefit from further study to understand the impacts of7
several simplifications and assumptions. There are three main areas which require further research:8

1. To correctly assess the benefit of our straightforward approximation over the computa-9
tionally costly alternative, speed profiles of each car across every origin-destination trip10
should be simulated and the results compared.11

2. The GPS data used in our model covered most but not all of the street network. A12
more accurate fuel consumption calculation can be achieved with more data, covering a13
higher proportion of flow over a longer time period.14

3. The trip assignment method used is an efficient and reasonably effective method to15
estimate overall congestion based on a simplified method of route choice. However, the16
baseline estimates would benefit from trip assignment derived from a dynamic traffic17
assignment model.18

We hope that future work will address these issues and measure their effect on the overall19
performance of the model presented in this work.20

Current fuel consumption models are adapting to the wealth of data available from ubiqui-21
tous sensing devices such as smartphones. Our project aims to show the relative gain in accuracy22
of incorporating both fuel economy distribution considerations and speed profiles derived, in our23
case, from GPS devices used by a local taxi TNC. The method developed in this paper can be24
adapted to also measure emissions. It can be further augmented to analyze the economic and envi-25
ronmental impacts of policies targeting specific trips by conducting a network analysis to identify26
the affected trips. The tools developed in this work have the potential to assess the consequences27
of a variety of policies under different circumstances and in any region of the world.28
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